Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3430524.3440628acmotherconferencesArticle/Chapter ViewAbstractPublication PagesteiConference Proceedingsconference-collections
research-article

StringTouch - From String Instruments towards new Interface Morphologies

Published: 14 February 2021 Publication History
  • Get Citation Alerts
  • Abstract

    We present StringTouch, a user interface design exploration translating the expressive resource of string instruments to a new interface morphology. StringTouch transfers the string as a tactile element of interaction to the touch surface, resulting in a tactilely experienceable interface. In this paper we discuss our research through design centered approach, which focused on the exploration of musical string instruments and their translation to the UI context. To investigate this specific design space, we analyzed the systematic and handling of string instruments as well as common HCI principles to develop the interaction concept. The resulting experience prototype demonstrates the idea’s potential for haptic UI design and provides insights into the prototyping process. We present: (1) the investigation of string instruments as a resource for TUI design and (2) the transfer to a generic UI context to inform new hybrid interface morphologies that combine features of tangible, touch, and flexible interaction.

    References

    [1]
    Chadia Abras, Diane Maloney-Krichmar, Jenny Preece, 2004. User-centered design. Bainbridge, W. Encyclopedia of Human-Computer Interaction. Thousand Oaks: Sage Publications 37, 4 (2004), 445–456.
    [2]
    Leonardo Angelini, Jürgen Baumgartner, Francesco Carrino, Stefano Carrino, Maurizio Caon, Omar Abou Khaled, Jürgen Sauer, Denis Lalanne, Elena Mugellini, and Andreas Sonderegger. 2016. A Comparison of Three Interaction Modalities in the Car: Gestures, Voice and Touch. In Actes de La 28ième Conference Francophone Sur l’Interaction Homme-Machine(Fribourg, Switzerland) (IHM ’16). Association for Computing Machinery, New York, NY, USA, 188–196. https://doi.org/10.1145/3004107.3004118
    [3]
    Patrick Baudisch and Gerry Chu. 2009. Back-of-device Interaction Allows Creating Very Small Touch Devices. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Boston, MA, USA) (CHI ’09). ACM, New York, NY, USA, 1923–1932. https://doi.org/10.1145/1518701.1518995
    [4]
    Edgar Berdahl and Julius O. Smith. 2008. A Tangible Virtual Vibrating String : A Physically Motivated Virtual Musical Instrument Interface. In Proceedings of the International Conference on New Interfaces for Musical Expression. Genoa, Italy, 299–302. https://doi.org/10.5281/zenodo.1179493
    [5]
    Alan F. Blackwell. 2006. The Reification of Metaphor as a Design Tool. ACM Trans. Comput.-Hum. Interact. 13, 4 (Dec. 2006), 490–530. https://doi.org/10.1145/1188816.1188820
    [6]
    Alberto Boem and Giovanni Maria Troiano. 2019. Non-Rigid HCI: A Review of Deformable Interfaces and Input. In Proceedings of the 2019 on Designing Interactive Systems Conference (San Diego, CA, USA) (DIS ’19). Association for Computing Machinery, New York, NY, USA, 885–906. https://doi.org/10.1145/3322276.3322347
    [7]
    Simon Butscher, Maximilian Dürr, and Harald Reiterer. 2017. InformationSense: Trade-offs for the Design and the Implementation of a Large Highly Deformable Cloth Display. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 2, Article 7 (June 2017), 28 pages. https://doi.org/10.1145/3090053
    [8]
    John Raymond Callahan, Don Hopkins, Mark David Weiser, and Ben Shneiderman. 1988. An Empirical Comparison of Pie vs. Linear Menus. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Washington, D.C., USA) (CHI ’88). ACM, New York, NY, USA, 95–100. https://doi.org/10.1145/57167.57182
    [9]
    Kyung Yun Choi and Hiroshi Ishii. 2020. AmbienBeat: Wrist-Worn Mobile Tactile Biofeedback for Heart Rate Rhythmic Regulation. In Proceedings of the Fourteenth International Conference on Tangible, Embedded, and Embodied Interaction (Sydney NSW, Australia) (TEI ’20). Association for Computing Machinery, New York, NY, USA, 17–30. https://doi.org/10.1145/3374920.3374938
    [10]
    Ronald Ecker, Verena Broy, Andreas Butz, and Alexander De Luca. 2009. pieTouch: A Direct Touch Gesture Interface for Interacting with In-vehicle Information Systems. In Proceedings of the 11th International Conference on Human-Computer Interaction with Mobile Devices and Services (Bonn, Germany) (MobileHCI ’09). ACM, New York, NY, USA, Article 22, 10 pages. https://doi.org/10.1145/1613858.1613887
    [11]
    Harald Emmerich and Martin Schöfthaler. 2000. Magnetic field measurements with a novel surface micromachined magnetic-field sensor. IEEE Transactions on Electron Devices 47, 5 (May 2000), 972–977. https://doi.org/10.1109/16.841228
    [12]
    Anna Maria Feit and Antti Oulasvirta. 2014. PianoText: Redesigning the Piano Keyboard for Text Entry. In Proceedings of the 2014 Conference on Designing Interactive Systems (Vancouver, BC, Canada) (DIS ’14). ACM, New York, NY, USA, 1045–1054. https://doi.org/10.1145/2598510.2598547
    [13]
    Sean Follmer, Daniel Leithinger, Alex Olwal, Nadia Cheng, and Hiroshi Ishii. 2012. Jamming User Interfaces: Programmable Particle Stiffness and Sensing for Malleable and Shape-changing Devices. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology (Cambridge, Massachusetts, USA) (UIST ’12). ACM, New York, NY, USA, 519–528. https://doi.org/10.1145/2380116.2380181
    [14]
    Sean Follmer, Daniel Leithinger, Alex Olwal, Akimitsu Hogge, and Hiroshi Ishii. 2013. inFORM: Dynamic Physical Affordances and Constraints Through Shape and Object Actuation. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (St. Andrews, Scotland, United Kingdom) (UIST ’13). ACM, New York, NY, USA, 417–426. https://doi.org/10.1145/2501988.2502032
    [15]
    Takanori Fukushi, Sung Hoon Kim, Shuichiro Hashi, and Kazushi Ishiyama. 2013. Magnetic silicone rubber: Fabrication and analysis with applications. Journal of the Korean Physical Society 63, 3 (01 Aug 2013), 686–690. https://doi.org/10.3938/jkps.63.686
    [16]
    Harriet Rosemary Ann Gaywood. 1996. Guqin and Guzheng: the historical and contemporary development of two Chinese musical instruments. Ph.D. Dissertation. Durham University.
    [17]
    Kristian Gohlke, Eva Hornecker, and Wolfgang Sattler. 2016. Pneumatibles: Exploring Soft Robotic Actuators for the Design of User Interfaces with Pneumotactile Feedback. In Proceedings of the TEI ’16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction (Eindhoven, Netherlands) (TEI ’16). ACM, New York, NY, USA, 308–315. https://doi.org/10.1145/2839462.2839489
    [18]
    Shad Gross, Jeffrey Bardzell, and Shaowen Bardzell. 2014. Skeu the Evolution: Skeuomorphs, Style, and the Material of Tangible Interactions. In Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction (Munich, Germany) (TEI ’14). Association for Computing Machinery, New York, NY, USA, 53–60. https://doi.org/10.1145/2540930.2540969
    [19]
    Tobias Grosshauser and Gerhard Tröster. 2013. Finger Position and Pressure Sensing Techniques for String and Keyboard Instruments. In Proceedings of the International Conference on New Interfaces for Musical Expression. Graduate School of Culture Technology, KAIST, Daejeon, Republic of Korea, 479–484. http://nime.org/proceedings/2013/nime2013_286.pdf
    [20]
    Jacob Harrison, Robert H Jack, Fabio Morreale, and Andrew P. McPherson. 2018. When is a Guitar not a Guitar? Cultural Form, Input Modality and Expertise. In Proceedings of the International Conference on New Interfaces for Musical Expression, Thomas Martin Luke Dahl, Douglas Bowman(Ed.). Virginia Tech, Blacksburg, Virginia, USA, 299–304. https://doi.org/10.5281/zenodo.1302589
    [21]
    Ken Hinckley, Seongkook Heo, Michel Pahud, Christian Holz, Hrvoje Benko, Abigail Sellen, Richard Banks, Kenton O’Hara, Gavin Smyth, and William Buxton. 2016. Pre-Touch Sensing for Mobile Interaction. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose, California, USA) (CHI ’16). Association for Computing Machinery, New York, NY, USA, 2869–2881. https://doi.org/10.1145/2858036.2858095
    [22]
    Echo Ho, Prof. Dr. Phil. Alberto de Campo, and Hannes Hoelzl. 2019. The SlowQin: An Interdisciplinary Approach to reinventing the Guqin. In Proceedings of the International Conference on New Interfaces for Musical Expression, Marcelo Queiroz and Anna Xambó Sedó (Eds.). UFRGS, Porto Alegre, Brazil, 256–259. https://doi.org/10.5281/zenodo.3672948
    [23]
    David Holman and Roel Vertegaal. 2008. Organic User Interfaces: Designing Computers in Any Way, Shape, or Form. Commun. ACM 51, 6 (June 2008), 48–55. https://doi.org/10.1145/1349026.1349037
    [24]
    Eva Hornecker. 2011. The Role of Physicality in Tangible and Embodied Interactions. interactions 18, 2 (March 2011), 19–23. https://doi.org/10.1145/1925820.1925826
    [25]
    Cindy Jacob and Bruno Dumas. 2014. Designing for Intimacy: How Fashion Design Can Address Privacy Issues in Wearable Computing. In Proceedings of the 2014 ACM International Symposium on Wearable Computers: Adjunct Program (Seattle, Washington) (ISWC ’14 Adjunct). ACM, New York, NY, USA, 185–192. https://doi.org/10.1145/2641248.2641353
    [26]
    Robert JK Jacob. 1993. Eye movement-based human-computer interaction techniques: Toward non-command interfaces. Advances in human-computer interaction 4 (1993), 151–190.
    [27]
    Heekyoung Jung, Heather Wiltse, Mikael Wiberg, and Erik Stolterman. 2017. Metaphors, materialities, and affordances: Hybrid morphologies in the design of interactive artifacts. Design Studies 53(2017), 24 – 46. https://doi.org/10.1016/j.destud.2017.06.004
    [28]
    Melvin Khoo and Chang Liu. 2001. Micro magnetic silicone elastomer membrane actuator. Sensors and Actuators A: Physical 89 (04 2001), 259–266. https://doi.org/10.1016/S0924-4247(00)00559-8
    [29]
    Scott R. Klemmer, Björn Hartmann, and Leila Takayama. 2006. How Bodies Matter: Five Themes for Interaction Design. In Proceedings of the 6th Conference on Designing Interactive Systems (University Park, PA, USA) (DIS ’06). ACM, New York, NY, USA, 140–149. https://doi.org/10.1145/1142405.1142429
    [30]
    Juyoung Lee, Hui-Shyong Yeo, Murtaza Dhuliawala, Jedidiah Akano, Junichi Shimizu, Thad Starner, Aaron Quigley, Woontack Woo, and Kai Kunze. 2017. Itchy Nose: Discreet Gesture Interaction Using EOG Sensors in Smart Eyewear. In Proceedings of the 2017 ACM International Symposium on Wearable Computers (Maui, Hawaii) (ISWC ’17). ACM, New York, NY, USA, 94–97. https://doi.org/10.1145/3123021.3123060
    [31]
    Rong-Hao Liang, Liwei Chan, Hung-Yu Tseng, Han-Chih Kuo, Da-Yuan Huang, De-Nian Yang, and Bing-Yu Chen. 2014. Gaussbricks: Magnetic Building Blocks for Constructive Tangible Interactions on Portable Displays. In CHI ’14 Extended Abstracts on Human Factors in Computing Systems (Toronto, Ontario, Canada) (CHI EA ’14). ACM, New York, NY, USA, 587–590. https://doi.org/10.1145/2559206.2574776
    [32]
    Markus Löchtefeld, Sven Gehring, Ralf Jung, and Antonio Krüger. 2011. guitAR: Supporting Guitar Learning Through Mobile Projection. In CHI ’11 Extended Abstracts on Human Factors in Computing Systems (Vancouver, BC, Canada) (CHI EA ’11). ACM, New York, NY, USA, 1447–1452. https://doi.org/10.1145/1979742.1979789
    [33]
    Paul Marshall, Eva Hornecker, Richard Morris, Nick Sheep Dalton, and Yvonne Rogers. 2008. When the fingers do the talking: A study of group participation with varying constraints to a tabletop interface. In 2008 3rd IEEE International Workshop on Horizontal Interactive Human Computer Systems. 33–40. https://doi.org/10.1109/TABLETOP.2008.4660181
    [34]
    Carolina Brum Medeiros and Marcelo M Wanderley. 2014. A comprehensive review of sensors and instrumentation methods in devices for musical expression. Sensors 14, 8 (2014), 13556–13591. https://doi.org/10.3390/s140813556
    [35]
    Mathias Müller, Anja Knöfel, Thomas Gründer, Ingmar Franke, and Rainer Groh. 2014. FlexiWall: Exploring Layered Data with Elastic Displays. In Proceedings of the Ninth ACM International Conference on Interactive Tabletops and Surfaces (Dresden, Germany) (ITS ’14). ACM, New York, NY, USA, 439–442. https://doi.org/10.1145/2669485.2669529
    [36]
    Donald Arthur Norman. 2002. The Design of Everyday Things. Basic Books, Inc., New York, NY, USA.
    [37]
    Dan Overholt. 2012. Violin-Related HCI: A Taxonomy Elicited by the Musical Interface Technology Design Space. In Arts and Technology, Anthony L. Brooks(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 80–89.
    [38]
    Jimmie Paloranta, Anders Lundström, Ludvig Elblaus, Roberto Bresin, and Emma Frid. 2016. Interaction with a large sized augmented string instrument intended or a public setting. In Proceedings Sound and Music Computing 2016 (SMC), Rolf Großmann and Georg Hajdu (Eds.). Hamburg: Zentrum für Mikrotonale Musik und Multimediale Komposition (ZM4), 388–395.
    [39]
    Laurel Pardue, Kurijn Buys, Dan Overholt, Andrew P. McPherson, and Michael Edinger. 2019. Separating sound from source: sonic transformation of the violin through electrodynamic pickups and acoustic actuation. In Proceedings of the International Conference on New Interfaces for Musical Expression, Marcelo Queiroz and Anna Xambó Sedó (Eds.). UFRGS, Porto Alegre, Brazil, 278–283. https://doi.org/10.5281/zenodo.3672958
    [40]
    James Patten, Ben Recht, and Hiroshi Ishii. 2006. Interaction Techniques for Musical Performance with Tabletop Tangible Interfaces. In Proceedings of the 2006 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology (Hollywood, California, USA) (ACE ’06). ACM, New York, NY, USA, Article 27. https://doi.org/10.1145/1178823.1178856
    [41]
    Sylvain Pauchet, Jean-Luc Vinot, Catherine Letondal, Alexandre Lemort, Claire Lavenir, Timothée Lecomte, Stéphanie Rey, Valentin Becquet, and Guillaume Crouzet. 2019. Multi-plié: A Linear Foldable and Flattenable Interactive Display to Support Efficiency, Safety and Collaboration. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). ACM, New York, NY, USA, Article 154, 13 pages. https://doi.org/10.1145/3290605.3300384
    [42]
    Joshua Peschke, Fabian Göbel, Thomas Gründer, Mandy Keck, Dietrich Kammer, and Rainer Groh. 2012. DepthTouch: An Elastic Surface for Tangible Computing. In Proceedings of the International Working Conference on Advanced Visual Interfaces (Capri Island, Italy) (AVI ’12). ACM, New York, NY, USA, 770–771. https://doi.org/10.1145/2254556.2254706
    [43]
    Isabel P. S. Qamar, Rainer Groh, David Holman, and Anne Roudaut. 2018. HCI Meets Material Science: A Literature Review of Morphing Materials for the Design of Shape-Changing Interfaces. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). ACM, New York, NY, USA, Article 374, 23 pages. https://doi.org/10.1145/3173574.3173948
    [44]
    Majken Rasmussen, Esben Pedersen, Marianne Petersen, and Kasper Hornbæk. 2012. Shape-changing interfaces: A review of the design space and open research questions. Conference on Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/2207676.2207781
    [45]
    Beat Rossmy and Alexander Wiethoff. 2019. COMB – Shape As a Meaningful Element of Interaction. In Proceedings of the Thirteenth International Conference on Tangible, Embedded, and Embodied Interaction(Tempe, Arizona, USA) (TEI ’19). ACM, New York, NY, USA, 287–295. https://doi.org/10.1145/3294109.3295646
    [46]
    Beat Rossmy and Alexander Wiethoff. 2019. StringTouch: A Scalable Low-Cost Concept for Deformable Interfaces. In Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI EA ’19). Association for Computing Machinery, New York, NY, USA, 1–4. https://doi.org/10.1145/3290607.3313245
    [47]
    Curt Sachs. 2012. The history of musical instruments. Courier Corporation.
    [48]
    Deepak Ranjan Sahoo, Kasper Hornbæk, and Sriram Subramanian. 2016. TableHop: An Actuated Fabric Display Using Transparent Electrodes. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose, California, USA) (CHI ’16). ACM, New York, NY, USA, 3767–3780. https://doi.org/10.1145/2858036.2858544
    [49]
    Philipp Schoessler, Sang-won Leigh, Krithika Jagannath, Patrick van Hoof, and Hiroshi Ishii. 2015. Cord UIs: Controlling Devices with Augmented Cables. In Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction (Stanford, California, USA) (TEI ’15). ACM, New York, NY, USA, 395–398. https://doi.org/10.1145/2677199.2680601
    [50]
    Ronit Slyper, Ivan Poupyrev, and Jessica Hodgins. 2011. Sensing Through Structure: Designing Soft Silicone Sensors. In Proceedings of the Fifth International Conference on Tangible, Embedded, and Embodied Interaction (Funchal, Portugal) (TEI ’11). ACM, New York, NY, USA, 213–220. https://doi.org/10.1145/1935701.1935744
    [51]
    David Strayer, Joel Cooper, Rachel Goethe, Madeleine McCarty, Douglas Getty, and Francesco Biondi. 2019. Assessing the visual and cognitive demands of in-vehicle information systems. Cognitive Research: Principles and Implications 4 (12 2019). https://doi.org/10.1186/s41235-019-0166-3
    [52]
    Miriam Sturdee and Jason Alexander. 2018. Analysis and Classification of Shape-Changing Interfaces for Design and Application-based Research. ACM Comput. Surv. 51, 1, Article 2 (Jan. 2018), 32 pages. https://doi.org/10.1145/3143559
    [53]
    Yuta Sugiura, Gota Kakehi, Anusha Withana, Calista Lee, Daisuke Sakamoto, Maki Sugimoto, Masahiko Inami, and Takeo Igarashi. 2011. Detecting Shape Deformation of Soft Objects Using Directional Photoreflectivity Measurement. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology (Santa Barbara, California, USA) (UIST ’11). ACM, New York, NY, USA, 509–516. https://doi.org/10.1145/2047196.2047263
    [54]
    Atau Tanaka. 2000. Musical performance practice on sensor-based instruments. Trends in Gestural Control of Music 13, 389-405 (2000), 284.
    [55]
    Marc Teyssier, Gilles Bailly, Catherine Pelachaud, Eric Lecolinet, Andrew Conn, and Anne Roudaut. 2019. Skin-On Interfaces: A Bio-Driven Approach for Artificial Skin Design to Cover Interactive Devices. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 307–322. https://doi.org/10.1145/3332165.3347943
    [56]
    Karen Vanderloock, Vero Vanden Abeele, Johan A.K. Suykens, and Luc Geurts. 2013. The Skweezee System: Enabling the Design and the Programming of Squeeze Interactions. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (St. Andrews, Scotland, United Kingdom) (UIST ’13). ACM, New York, NY, USA, 521–530. https://doi.org/10.1145/2501988.2502033
    [57]
    Jens Vetter and Sarah Leimcke. 2017. Homo Restis - Constructive Control Through Modular String Topologies. In Proceedings of the International Conference on New Interfaces for Musical Expression. Aalborg University Copenhagen, Copenhagen, Denmark, 83–86. http://www.nime.org/proceedings/2017/nime2017_paper0017.pdf
    [58]
    Erich M Von Hornbostel and Curt Sachs. 1914. Systematik der Musikinstrumente. Ein Versuch. Zeitschrift für Ethnologie 46, H. 4/5 (1914), 553–590.
    [59]
    Martin Weigel, Tong Lu, Gilles Bailly, Antti Oulasvirta, Carmel Majidi, and Jürgen Steimle. 2015. iSkin: Flexible, Stretchable and Visually Customizable On-Body Touch Sensors for Mobile Computing. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI ’15). ACM, New York, NY, USA, 2991–3000. https://doi.org/10.1145/2702123.2702391
    [60]
    Raphael Wimmer and Patrick Baudisch. 2011. Modular and Deformable Touch-sensitive Surfaces Based on Time Domain Reflectometry. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology(Santa Barbara, California, USA) (UIST ’11). ACM, New York, NY, USA, 517–526. https://doi.org/10.1145/2047196.2047264
    [61]
    Lining Yao, Sayamindu Dasgupta, Nadia Cheng, Jason Spingarn-Koff, Ostap Rudakevych, and Hiroshi Ishii. 2011. Rope Revolution: Tangible and Gestural Rope Interface for Collaborative Play. In Proceedings of the 8th International Conference on Advances in Computer Entertainment Technology (Lisbon, Portugal) (ACE ’11). ACM, New York, NY, USA, Article 11, 8 pages. https://doi.org/10.1145/2071423.2071437
    [62]
    Lining Yao, Ryuma Niiyama, Jifei Ou, Sean Follmer, Clark Della Silva, and Hiroshi Ishii. 2013. PneUI: Pneumatically Actuated Soft Composite Materials for Shape Changing Interfaces. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (St. Andrews, Scotland, United Kingdom) (UIST ’13). ACM, New York, NY, USA, 13–22. https://doi.org/10.1145/2501988.2502037
    [63]
    Lining Yao, Jifei Ou, Chin-Yi Cheng, Helene Steiner, Wen Wang, Guanyun Wang, and Hiroshi Ishii. 2015. bioLogic: Natto Cells As Nanoactuators for Shape Changing Interfaces. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI ’15). ACM, New York, NY, USA, 1–10. https://doi.org/10.1145/2702123.2702611
    [64]
    John Zimmerman, Jodi Forlizzi, and Shelley Evenson. 2007. Research through Design as a Method for Interaction Design Research in HCI. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (San Jose, California, USA) (CHI ’07). Association for Computing Machinery, New York, NY, USA, 493–502. https://doi.org/10.1145/1240624.1240704

    Cited By

    View all

    Index Terms

    1. StringTouch - From String Instruments towards new Interface Morphologies
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Other conferences
        TEI '21: Proceedings of the Fifteenth International Conference on Tangible, Embedded, and Embodied Interaction
        February 2021
        908 pages
        ISBN:9781450382137
        DOI:10.1145/3430524
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 14 February 2021

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. Interaction Vocabulary.
        2. String Instrument Inspired
        3. TUI

        Qualifiers

        • Research-article
        • Research
        • Refereed limited

        Conference

        TEI '21

        Acceptance Rates

        TEI '21 Paper Acceptance Rate 40 of 136 submissions, 29%;
        Overall Acceptance Rate 393 of 1,367 submissions, 29%

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 411
          Total Downloads
        • Downloads (Last 12 months)53
        • Downloads (Last 6 weeks)4
        Reflects downloads up to 09 Aug 2024

        Other Metrics

        Citations

        Cited By

        View all

        View Options

        Get Access

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format.

        HTML Format

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media