Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Meso-Facets for Goniochromatic 3D Printing

Published: 26 July 2023 Publication History

Abstract

Goniochromatic materials and objects appear to have different colors depending on viewing direction. This occurs in nature, such as in wood or minerals, and in human-made objects such as metal and effect pigments. In this paper, we propose algorithms to control multi-material 3D printers to produce goniochromatic effects on arbitrary surfaces by procedurally augmenting the input surface with meso-facets, which allow distinct colors to be assigned to different viewing directions of the input surface while introducing minimal changes to that surface. Previous works apply only to 2D or 2.5D surfaces, require multiple fabrication technologies, or make considerable changes to the input surface and require special post-processing, whereas our approach requires a single fabrication technology and no special post-processing. Our framework is general, allowing different generating functions for both the shape and color of the facets. Working with implicit representations allows us to generate geometric features at the limit of device resolution without tessellation. We evaluate our approach for performance, showing negligible overhead compared to baseline color 3D print processing, and for goniochromatic quality.

Supplementary Material

ZIP File (papers_387-supplemental.zip)
supplemental material.
MP4 File (papers_387_VOD.mp4)
presentation

References

[1]
3DSystems. 2014. Projet 860Pro. http://www.3dsystems.com/3d-printers/professional/projet-860pro.
[2]
T. Auzinger, W. Heidrich, and B. Bickel. 2018. Computational design of nanostructural color for additive manufacturing. ACM TOG 37, 4 (2018).
[3]
T. Baar, S. Samadzadegan, H. Brettel, P. Urban, and M.V.O. Segovia. 2014a. Printing gloss effects in a 2.5 D system. In Measuring, Modeling, and Reproducing Material Appearance, Vol. 9018. 90180M.
[4]
T. Baar, M. Shahpaski, and M.V.O. Segovia. 2014b. Image ghosting reduction in lenticular relief prints. In Measuring, Modeling, and Reproducing Material Appearance, Vol. 9018. 168 -- 174.
[5]
V. Babaei, K. Vidimče, M. Foshey, A. Kaspar, P. Didyk, and W. Matusik. 2017. Color contoning for 3D printing. ACM TOG 36, 4 (2017).
[6]
L. Belcour and P. Barla. 2017. A practical extension to microfacet theory for the modeling of varying iridescence. ACM TOG 36, 4 (2017).
[7]
A. Bermano, I. Baran, M. Alexa, and W. Matusk. 2012. ShadowPix: Multiple Images from Self Shadowing. Computer Graphics Forum 31, 2pt3 (2012), 593--602.
[8]
R. S. Berns. 2019. Billmeyer and Saltzman's: Principles of Color Technology (4th ed.). John Wiley & Sons, Inc., New York.
[9]
J.F. Blinn. 1977. Models of light reflection for computer synthesized pictures. In Proc. 4th annual conference on Computer graphics and interactive techniques. 192--198.
[10]
A. Brunton, C. Arikan, and P. Urban. 2015. Pushing the Limits of 3D Color Printing: Error Diffusion with Translucent Materials. ACM TOG 35, 1 (2015).
[11]
A. Brunton, C. A. Arikan, T. M. Tanksale, and P. Urban. 2018. 3D Printing Spatially Varying Color and Translucency. ACM TOG 37, 4 (2018).
[12]
A. Brunton and L. Abu Rmaileh. 2021. Displaced signed distance fields for additive manufacturing. ACM TOG 40, 4 (2021).
[13]
Canon. 2021. Océ Arizona 480 Series UV Flatbed Printer. https://www.usa.canon.com/internet/portal/us/home/products/details/professional-large-format-printers/graphic-arts-signage/arizona-uv-flatbed/arizona-480.
[14]
R.L. Cook and T. DeRose. 2005. Wavelet noise. ACM TOG 24, 3 (2005).
[15]
E.W. Dijkstra. 1959. A note on two problems in connexion with graphs. Numer. Math. 1 (1959), 269--271.
[16]
Y. Dong, J. Wang, F. Pellacini, X. Tong, and B. Guo. 2010. Fabricating Spatially-Varying Subsurface Scattering. ACM TOG 29, 4 (2010).
[17]
Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi. 1997. The farthest point strategy for progressive image sampling. IEEE TIP 6, 9 (1997), 1305--1315.
[18]
O. Elek, D. Sumin, R. Zhang, T. Weyrich, K. Myszkowski, B. Bickel, A. Wilkie, and J. Křivánek. 2017. Scattering-aware Texture Reproduction for 3D Printing. ACM TOG 36, 6 (2017).
[19]
M.S. Floater and K. Hormann. 2005. Surface Parameterization: a Tutorial and Survey. In Advances in Multiresolution for Geometric Modelling. 157--186.
[20]
T. Gonzales. 1985. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science 38 (1985), 293--306.
[21]
I. Guillén, J. Marco, D. Gutierrez, W. Jakob, and A. Jarabo. 2020. A general framework for pearlescent materials. ACM TOG 39, 6 (2020).
[22]
M. Hašan, M. Fuchs, W. Matusik, H. Pfister, and S. Rusinkiewicz. 2010. Physical Reproduction of Materials with Specified Subsurface Scattering. ACM TOG 29, 3 (2010).
[23]
Fraunhofer IGD. 2022. Cuttlefish SDK. https://www.cuttlefish.de/.
[24]
Intel. 2020. Intel Threading Building Blocks. https://software.intel.com/content/www/us/en/develop/tools/threading-building-blocks.html.
[25]
T. Iser, T. Rittig, E. Nogué, T. Nindel, and A. Wilkie. 2022. Affordable Spectral Measurements of Translucent Materials. ACM TOG 41, 6 (2022).
[26]
A. Kensler, A. Knoll, and P. Shirley. 2008. Better gradient noise. Technical Report. Tech. Rep. UUSCI-2008-001, SCI Institute, University of Utah.
[27]
T. Kneiphof, T. Golla, and R. Klein. 2019. Real-time Image-based Lighting of Microfacet BRDFs with Varying Iridescence. Computer Graphics Forum 38, 4 (2019), 77--85.
[28]
A. Kraushaar, P. Urban, S. Geiger, M. Morsy, and P. Korzer. 2022. Modellierung der Farberscheinung im Vollfarb-3D-Druck. Technical Report Fogra-Forschungsbericht 13.005.
[29]
A. Lagae and G. Drettakis. 2011. Filtering solid Gabor noise. ACM TOG 30, 4 (2011).
[30]
A. Lagae, S. Lefebvre, R. Cook, T. DeRose, G. Drettakis, D.S. Ebert, J.P. Lewis, K. Perlin, and M. Zwicker. 2010. A survey of procedural noise functions. Computer Graphics Forum 29, 8 (2010), 2579--2600.
[31]
A. Lagae, S. Lefebvre, G. Drettakis, and P. Dutré. 2009. Procedural noise using sparse Gabor convolution. ACM TOG 28, 3 (2009).
[32]
Y. Lan, Y. Dong, F. Pellacini, and X. Tong. 2013. Bi-scale appearance fabrication. ACM TOG 32, 4 (2013).
[33]
J.P. Lewis. 1984. Texture synthesis for digital painting. In Proc. 11th annual conference on Computer graphics and interactive techniques. 245--252.
[34]
J.P. Lewis. 1989. Algorithms for solid noise synthesis. In Proc. 16th annual conference on Computer graphics and interactive techniques. 263--270.
[35]
A. Luongo, V. Falster, M.B. Doest, M.M. Ribo, E.R. Eiríksson, D.B. Pedersen, and J.R. Frisvad. 2020. Microstructure control in 3D printing with digital light processing. Computer Graphics Forum 39, 1 (2020), 347--359.
[36]
MCor Technologies. 2014. Iris. http://mcortechnologies.com/3d-printers/iris/.
[37]
Mihaly. 2021. Mihaly. https://mihalygroup.com/.
[38]
Mimaki. 2017. 3DUJ-553. https://mimaki.com/product/3d/3d-inkjet/3duj-553/.
[39]
Mimaki. 2022. 3DUJ-2207. https://mimaki.com/product/3d/3d-inkjet/3duj-2207/.
[40]
C. Moenning and N.A. Dodgson. 2003. Fast marching farthest point sampling. Technical Report 562.
[41]
M. Morsy, A. Brunton, and P. Urban. 2022. Shape Dithering for 3D Printing. ACM TOG 41, 4 (2022).
[42]
G. Nazarro, E. Puppo, and F. Pellacini. 2021. geoTangle: Interactive Design of Geodesic Tangle Patterns on Surfaces. ACM TOG 41, 2 (2021).
[43]
T.K. Nindel, T. Iser, T. Rittig, A. Wilkie, and J. Křivánek. 2021. A gradient-based framework for 3D print appearance optimization. ACM TOG 40, 4 (2021).
[44]
M. Papas, C. Regg, W. Jarosz, B. Bickel, P. Jackson, W. Matusik, S. Marschner, and M. Gross. 2013. Fabricating Translucent Materials using Continuous Pigment Mixtures. ACM TOG 32, 4 (2013).
[45]
S.W. Park, L. Linsen, O. Kreylos, J.D. Owens, and B. Hamann. 2006. Discrete Sibson interpolation. IEEE TVCG 12, 2 (2006), 243--253.
[46]
K. Perlin. 1985. An image synthesizer. ACM SIGGRAPH Computer Graphics 19, 3 (1985), 287--296.
[47]
M. Piovarči, M. Foshey, V. Babaei, S. Rusinkiewicz, W. Matusik, and P. Didyk. 2020. Towards spatially varying gloss reproduction for 3D printing. ACM TOG 39, 6 (2020).
[48]
P. Pjanic and R.D. Hersch. 2015a. Color Changing Effects with Anisotropic Halftone Prints on Metal. ACM TOG 34, 6, Article 167 (2015).
[49]
P. Pjanic and R.D. Hersch. 2015b. Color Imaging and Pattern Hiding on a Metallic Substrate. ACM TOG 34, 4, Article 130 (2015).
[50]
T. Reiner, N. Carr, R. Mech, O. Stava, C. Dachsbacher, and G. Miller. 2014. Dual-Color Mixing for Fused Deposition Modeling Printers. Computer Graphics Forum 33, 2 (2014), 479--486.
[51]
J. Reinhard. 2017. Discrete Medial Axis Transform and Applications for 3D Printing. Bachelor Thesis. Technische Universität Darmstadt.
[52]
T. Rittig, D. Sumin, V. Babaei, P. Didyk, A. Voloboy, A. Wilkie, B. Bickel, K. Myszkowski, T. Weyrich, and J. Křivánek. 2021. Neural Acceleration of Scattering-Aware Color 3D Printing. Computer Graphics Forum 40, 2 (2021), 205--219.
[53]
O. Rouiller, B. Bickel, J. Kautz, W. Matusik, and M. Alexa. 2013. 3D-printing spatially varying BRDFs. IEEE CG&A 33, 6 (2013), 48--57.
[54]
K. Sakurai, Y. Dobashi, K. Iwasaki, and T. Nishita. 2018. Fabricating Reflectors for Displaying Multiple Images. ACM TOG 37, 4, Article 158 (2018).
[55]
S. Samadzadegan, T. Baar, P. Urban, M.V.O. Segovia, and J. Blahová. 2015. Controlling colour-printed gloss by varnish-halftones. In Measuring, Modeling, and Reproducing Material Appearance 2015, Vol. 9398. 93980V.
[56]
R. Schmidt, C. Grimm, and B. Wyvill. 2006. Interactive Decal Compositing with Discrete Exponential Maps. ACM TOG 25, 3 (2006).
[57]
A. Sheffer, E. Praun, and K. Rose. 2006. Mesh Parameterization Methods and Their Applications. Foundations and Trends in Computer Graphics and Vision 2, 2 (2006), 105--171.
[58]
W. Shi, J. Dorsey, and H. Rushmeier. 2022. Learning-Based Inverse Bi-Scale Material Fitting From Tabular BRDFs. IEEE TVCG 28, 4 (2022), 1810--1823.
[59]
H. Song, J. Martínez, P. Bedell, N. Vennin, and S. Lefebvre. 2019. Colored Fused Filament Fabrication. ACM TOG 38, 5, Article 141 (2019).
[60]
Stratasys. 2016. J750. http://www.stratasys.com/3d-printers/production-series/stratasys-j750.
[61]
Stratasys. 2022. J826. https://www.stratasys.com/en/3d-printers/printer-catalog/polyjet/j8-series-printers/j826-prime-3d-printer/.
[62]
D. Sumin, T. Rittig, V. Babaei, T. Nindel, A. Wilkie, P. Didyk, B. Bickel, J. KR, ivánek, K. Myszkowski, and T. Weyrich. 2019. Geometry-aware scattering compensation for 3D printing. ACM TOG 38, 4 (2019).
[63]
A. Toisoul and A. Ghosh. 2017. Real-time rendering of realistic surface diffraction with low rank factorisation. In Proc. 14th European Conference on Visual Media Production (CVMP 2017). 1--7.
[64]
P. Urban, T. M. Tanksale, A. Brunton, B. Minh Vu, and S. Nakauchi. 2019. Redefining A in RGBA: Towards a Standard for Graphical 3D Printing. ACM TOG 38, 3 (2019).
[65]
Tim Weyrich, Pieter Peers, Wojciech Matusik, and Szymon Rusinkiewicz. 2009. Fabricating Microgeometry for Custom Surface Reflectance. ACM Trans. Graph. 28, 3, Article 32 (2009).
[66]
H. Wu, J. Dorsey, and H. Rushmeier. 2011. Physically-based interactive bi-scale material design. ACM TOG 30, 6 (2011).
[67]
H. Wu, J. Dorsey, and H. Rushmeier. 2013. Inverse Bi-Scale Material Design. ACM TOG 32, 6, Article 163 (2013).
[68]
XYZ Printing. 2017. Da Vinci Color. https://www.xyzprinting.com/en-GB/product/da-vinci-color.
[69]
J. Zeng, H. Deng, Y. Zhu, M. Wessely, A. Kilian, and S. Mueller. 2021. Lenticular Objects: 3D Printed Objects with Lenticular Lens Surfaces That Can Change their Appearance Depending on the Viewpoint. In UIST. 1184--1196.
[70]
S. Zhao, W. Jakob, S. Marschner, and K. Bala. 2012. Structure-Aware Synthesis for Predictive Woven Fabric Appearance. ACM TOG 31, 4, Article 75 (2012).
[71]
G. Zyla, A. Kovalev, C. Esen, A. Ostendorf, and S. Gorb. 2022. Two-photon polymerization as a potential manufacturing tool for biomimetic engineering of complex structures found in nature. Journal of Optical Microsystems 2, 3 (2022).

Cited By

View all
  • (2024)Computational Illusion KnittingACM Transactions on Graphics10.1145/365823143:4(1-13)Online publication date: 19-Jul-2024
  • (2023)Cuttlefish: Pushing the Limits of Graphical 3-D PrintingIEEE Computer Graphics and Applications10.1109/MCG.2023.329817343:5(114-121)Online publication date: 1-Sep-2023

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 42, Issue 4
August 2023
1912 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/3609020
Issue’s Table of Contents
This work is licensed under a Creative Commons Attribution International 4.0 License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 26 July 2023
Published in TOG Volume 42, Issue 4

Check for updates

Author Tags

  1. 3D printing
  2. goniochromism
  3. goniochromatic effects
  4. iridescence
  5. meso-facets

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)375
  • Downloads (Last 6 weeks)29
Reflects downloads up to 24 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Computational Illusion KnittingACM Transactions on Graphics10.1145/365823143:4(1-13)Online publication date: 19-Jul-2024
  • (2023)Cuttlefish: Pushing the Limits of Graphical 3-D PrintingIEEE Computer Graphics and Applications10.1109/MCG.2023.329817343:5(114-121)Online publication date: 1-Sep-2023

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media