Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Seamless Parametrization with Cone and Partial Loop Control

Published: 30 August 2023 Publication History

Abstract

We present a method for constructing seamless parametrization for surfaces of any genus that can handle any feasible cone configuration with any type of cones. The mapping is guaranteed to be locally injective, which is due to careful construction of a simple domain boundary polygon. The polygon’s complexity depends on the cones in the field, and it is independent of mesh geometry. The result is a small polygon that can be optimized prior to the interior mapping, which contributes to the robustness of the pipeline.
For a surface of genus >0, non-contractible loops play an important role, and their holonomies significantly affect mapping quality. We enable holonomy prescription, where local injectivity is guaranteed. Our prescription, however, is limited and cannot handle all feasible holonomies due to monotonicity constraints that keep our polygon simple. Yet this work is an important step toward fully solving the holonomy prescription problem.

Supplementary Material

3600087-supp (3600087-supp.pdf)
Supplementary material

References

[1]
Noam Aigerman and Yaron Lipman. 2015. Orbifold tutte embeddings. ACM Trans. Graph. 34, 6 (2015), 190–1.
[2]
David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt. 2013a. Integer-grid maps for reliable quad meshing. ACM Trans. Graph. 32, 4 (2013), 98.
[3]
David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva, Marco Tarini, and Denis Zorin. 2013b. Quad-mesh generation and processing: A survey. Comput. Graph. Forum 32, 6 (2013), 51–76.
[4]
David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3 (2009), 77:1–77:10.
[5]
Marcel Campen, David Bommes, and Leif Kobbelt. 2015. Quantized global parametrization. ACM Trans. Graph. 34, 6 (2015), 192:1–192:12.
[6]
Marcel Campen, Ryan Capouellez, Hanxiao Shen, Leyi Zhu, Daniele Panozzo, and Denis Zorin. 2021. Efficient and robust discrete conformal equivalence with boundary. ACM Trans. Graph. 40, 6 (2021), 1–16.
[7]
Marcel Campen, Hanxiao Shen, Jiaran Zhou, and Denis Zorin. 2019. Seamless parametrization with arbitrary cones for arbitrary genus. ACM Trans. Graph. 39, 1 (2019), 1–19.
[8]
Marcel Campen and Denis Zorin. 2017. Similarity maps and field-guided T-splines: A perfect couple. ACM Trans. Graph. 36, 4 (2017), 1–16.
[9]
Der-San Chen, Robert G. Batson, and Yu Dang. 2010. Applied Integer Programming: Modeling and Solution. John Wiley & Sons.
[10]
Wei Chen, Xiaopeng Zheng, Jingyao Ke, Na Lei, Zhongxuan Luo, and Xianfeng Gu. 2019. Quadrilateral mesh generation I: Metric based method. Comput. Methods Appl. Mech. Eng. 356 (2019), 652–668. https://scholar.googleusercontent.com/scholar.bib?q=info:N8rgiMNe2Q4J:scholar.google.com/&output=citation&scisdr=Cm2Nms06EJSSn4lAXrI:AGlGAw8AAAAAZH9FRrId00Dy9sGd5JyEp0mDShc&scisig=AGlGAw8AAAAAZH9FRsEUo3ManL1HbgV0YgmHg-g&scisf=4&ct=citation&cd=-1&hl=en.
[11]
Edward Chien, Zohar Levi, and Ofir Weber. 2016. Bounded distortion parametrization in the space of metrics. ACM Trans. Graph. 35, 6 (2016), 215:1–215:16.
[12]
Tamal K. Dey, Fengtao Fan, and Yusu Wang. 2013. An efficient computation of handle and tunnel loops via Reeb graphs. ACM Trans. Graphics 32, 4 (2013), 1–10.
[13]
Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Integrable PolyVector fields. ACM Trans. Graph. 34, 4 (2015), 38:1–38:12.
[14]
Xianzhong Fang, Hujun Bao, Yiying Tong, Mathieu Desbrun, and Jin Huang. 2018. Quadrangulation through morse-parameterization hybridization. ACM Trans. Graph. 37, 4 (2018), 92:1–92:15.
[15]
Michael Floater. 2003. One-to-one piecewise linear mappings over triangulations. Math. Comp. 72, 242 (2003), 685–696.
[16]
Mark Gillespie, Boris Springborn, and Keenan Crane. 2021. Discrete conformal equivalence of polyhedral surfaces. ACM Trans. Graph. 40, 4 (2021).
[17]
Steven J. Gortler, Craig Gotsman, and Dylan Thurston. 2006. Discrete one-forms on meshes and applications to 3D mesh parameterization. Comput. Aid. Geom. Des. 23, 2 (2006), 83–112.
[18]
Branko Grunbaum. 1969. Planar maps with prescribed types of vertices and faces. Mathematika 16, 1 (1969), 28–36.
[19]
Gurobi. 2018. Gurobi Optimizer Reference Manual. Retrieved from http://www.gurobi.com.
[20]
Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Instant field-aligned meshes. ACM Trans. Graph. 34, 6 (2015), 189–1.
[21]
E. Jucovič and M. Trenkler. 1973. A theorem on the structure of cell–decompositions of orientable 2–manifolds. Mathematika 20, 1 (1973), 63–82.
[22]
F. Kälberer, M. Nieser, and K. Polthier. 2007. QuadCover: Surface parameterization using branched coverings. Comput. Graph. Forum 26, 3 (2007), 375–384.
[23]
Zohar Levi. 2021. Direct seamless parametrization. ACM Trans. Graph. 40, 1 (2021), 1–14.
[24]
Zohar Levi. 2022. Seamless parametrization of spheres with controlled singularities. Comput. Graph. Forum. 41, 1 (2022), 57–68.
[25]
Zohar Levi and Denis Zorin. 2014. Strict minimizers for geometric optimization. ACM Transactions on Graphics (TOG) 33, 6 (2014), 185.
[26]
Yaron Lipman. 2012. Bounded distortion mapping spaces for triangular meshes. ACM Trans. Graph. 31, 4 (2012), 108.
[27]
Feng Luo. 2004. Combinatorial Yamabe flow on surfaces. Commun. Contemp. Math. 6, 05 (2004), 765–780.
[28]
Ashish Myles, Nico Pietroni, and Denis Zorin. 2014. Robust field-aligned global parametrization. ACM Trans. Graph. 33, 4, Article 135 (2014), 14 pages.
[29]
Ashish Myles and Denis Zorin. 2012. Global parametrization by incremental flattening. ACM Trans. Graph. 31, 4 (2012), 109.
[30]
Ashish Myles and Denis Zorin. 2013. Controlled-distortion constrained global parametrization. ACM Trans. Graph. 32, 4 (2013), 105.
[31]
Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017. Scalable locally injective mappings. ACM Trans. Graph. 36, 4 (2017).
[32]
N. Ray, W. C. Li, B. Lévy, A. Sheffer, and P. Alliez. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 4 (2006), 1460–1485.
[33]
Nicolas Ray, Bruno Vallet, Laurent Alonso, and Bruno Levy. 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29, 1 (2009), 1–11.
[34]
Nicolas Ray, Bruno Vallet, Wan Chiu Li, and Bruno Lévy. 2008. N-symmetry direction field design. ACM Trans. Graph. 27, 2 (2008), 10.
[35]
Hanxiao Shen, Zhongshi Jiang, Denis Zorin, and Daniele Panozzo. 2019. Progressive embedding. ACM Trans. Graph. 38, 4 (2019), 32.
[36]
Hanxiao Shen, Leyi Zhu, Ryan Capouellez, Daniele Panozzo, Marcel Campen, and Denis Zorin. 2022. Which cross fields can be quadrangulated? Global parameterization from prescribed holonomy signatures. ACM Trans. Graph. 41, 4 (2022), 1–12.
[37]
Anna Shtengel, Roi Poranne, Olga Sorkine-Hornung, Shahar Z. Kovalsky, and Yaron Lipman. 2017. Geometric optimization via composite majorization. ACM Trans. Graph. 36, 4 (2017).
[38]
Jason Smith and Scott Schaefer. 2015. Bijective parameterization with free boundaries. ACM Trans. Graph. 34, 4 (2015), 70:1–70:9.
[39]
Boris Springborn, Peter Schröder, and Ulrich Pinkall. 2008. Conformal equivalence of triangle meshes. ACM Trans. Graph. 27, 3 (2008), 77.
[40]
Jian Sun, Tianqi Wu, Xianfeng Gu, and Feng Luo. 2015. Discrete conformal deformation: Algorithm and experiments. SIAM J. Imag. Sci. 8, 3 (2015), 1421– 1456.
[41]
Marco Tarini, Enrico Puppo, Daniele Panozzo, Nico Pietroni, and Paolo Cignoni. 2011. Simple quad domains for field aligned mesh parametrization. In Proceedings of SIGGRAPH Asia. 1–12.
[42]
W. T. Tutte. 1963. How to draw a graph. Proc. Lond. Math. Soc 13, 3 (1963), 743–768.
[43]
Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes, Klaus Hildebrandt, and Mirela Ben-Chen. 2016. Directional field synthesis, design, and processing. Comput. Graph. Forum 35, 2 (2016), 545–572.
[44]
Ofir Weber and Denis Zorin. 2014. Locally injective parametrization with arbitrary fixed boundaries. TOG 33, 4 (2014), 75.
[45]
Jiaran Zhou, Changhe Tu, Denis Zorin, and Marcel Campen. 2020. Combinatorial construction of seamless parameter domains. Comput. Graph. Forum, 39 2020. 179–190.

Index Terms

  1. Seamless Parametrization with Cone and Partial Loop Control

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 42, Issue 5
    October 2023
    195 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3607124
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 30 August 2023
    Online AM: 27 May 2023
    Accepted: 17 May 2023
    Revised: 08 May 2023
    Received: 14 April 2022
    Published in TOG Volume 42, Issue 5

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Seamless parametrization
    2. locally injective mappings

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 320
      Total Downloads
    • Downloads (Last 12 months)128
    • Downloads (Last 6 weeks)19
    Reflects downloads up to 12 Nov 2024

    Other Metrics

    Citations

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    Full Text

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media