Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Intrinsic Image Decomposition via Ordinal Shading

Published: 30 November 2023 Publication History
  • Get Citation Alerts
  • Abstract

    Intrinsic decomposition is a fundamental mid-level vision problem that plays a crucial role in various inverse rendering and computational photography pipelines. Generating highly accurate intrinsic decompositions is an inherently under-constrained task that requires precisely estimating continuous-valued shading and albedo. In this work, we achieve high-resolution intrinsic decomposition by breaking the problem into two parts. First, we present a dense ordinal shading formulation using a shift- and scale-invariant loss in order to estimate ordinal shading cues without restricting the predictions to obey the intrinsic model. We then combine low- and high-resolution ordinal estimations using a second network to generate a shading estimate with both global coherency and local details. We encourage the model to learn an accurate decomposition by computing losses on the estimated shading as well as the albedo implied by the intrinsic model. We develop a straightforward method for generating dense pseudo ground truth using our model’s predictions and multi-illumination data, enabling generalization to in-the-wild imagery. We present exhaustive qualitative and quantitative analysis of our predicted intrinsic components against state-of-the-art methods. Finally, we demonstrate the real-world applicability of our estimations by performing otherwise difficult editing tasks such as recoloring and relighting.

    Supplementary Material

    tog-22-0123-File003 (tog-22-0123-file003.zip)
    Supplementary material
    tog-22-0123-File005 (tog-22-0123-file005.mp4)
    Supplementary video

    References

    [1]
    A. S. Baslamisli, T. T. Groenestege, P. Das, H. A. Le, S. Karaoglu, and T. Gevers. 2018a. Joint learning of intrinsic images and semantic segmentation. In Proc. ECCV.
    [2]
    Anil S. Baslamisli, Hoang-An Le, and Theo Gevers. 2018b. CNN based learning using reflection and Retinex models for intrinsic image decomposition. In Proc. CVPR.
    [3]
    Sean Bell, Kavita Bala, and Noah Snavely. 2014. Intrinsic images in the wild. ACM Trans. Graph. 33, 4 (2014), 1–12.
    [4]
    Sai Bi, Nima Khademi Kalantari, and Ravi Ramamoorthi. 2018. Deep hybrid real and synthetic training for intrinsic decomposition. In Proc. EGSR.
    [5]
    Nicolas Bonneel, Balazs Kovacs, Sylvain Paris, and Kavita Bala. 2017. Intrinsic decompositions for image editing. Comput. Graph. Forum 36, 2 (2017).
    [6]
    D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. 2012. A naturalistic open source movie for optical flow evaluation. In Proc. ECCV.
    [7]
    Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository. Technical Report arXiv:1512.03012 [cs.GR]. Stanford University — Princeton University — Toyota Technological Institute at Chicago.
    [8]
    L. Cheng, C. Zhang, and Z. Liao. 2018. Intrinsic image transformation via scale space decomposition. In Proc. CVPR.
    [9]
    Partha Das, Sezer Karaoglu, and Theo Gevers. 2022. PIE-Net: Photometric invariant edge guided network for intrinsic image decomposition. In Proc. CVPR.
    [10]
    Ainaz Eftekhar, Alexander Sax, Jitendra Malik, and Amir Zamir. 2021. Omnidata: A scalable pipeline for making multi-task mid-level vision datasets from 3D scans. In Proc. ICCV.
    [11]
    Qingnan Fan, Jiaolong Yang, Gang Hua, Baoquan Chen, and David Wipf. 2018. Revisiting deep intrinsic image decompositions. In Proc. CVPR.
    [12]
    Elena Garces, Adolfo Munoz, Jorge Lopez-Moreno, and Diego Gutierrez. 2012. Intrinsic images by clustering. Comput. Graph. Forum 31, 4 (2012), 1415–1424.
    [13]
    Elena Garces, Carlos Rodriguez-Pardo, Dan Casas, and Jorge Lopez-Moreno. 2022. A survey on intrinsic images: Delving deep into Lambert and beyond. Int. J. Comput. Vision (2022).
    [14]
    Roger Grosse, Micah Johnson, Edward Adelson, and William Freeman. 2009. Ground truth dataset and baseline evaluations for intrinsic image algorithms. In Proc. ICCV.
    [15]
    Michael Janner, Jiajun Wu, Tejas Kulkarni, Ilker Yildirim, and Joshua B. Tenenbaum. 2017. Self-supervised intrinsic image decomposition. In Proc. NeurIPS.
    [16]
    Balazs Kovacs, Sean Bell, Noah Snavely, and Kavita Bala. 2017. Shading annotations in the wild. Proc. CVPR.
    [17]
    Philipp Krahenbuhl. 2018. Free supervision from video games. In Proc. CVPR.
    [18]
    Hoang-An Le, Partha Das, Thomas Mensink, Sezer Karaoglu, and Theo Gevers. 2021. EDEN: Multimodal synthetic dataset of enclosed garden scenes. In Proc. WACV.
    [19]
    Louis Lettry, Kenneth Vanhoey, and Luc Van Gool. 2018a. DARN: A deep adversarial residual network for intrinsic image decomposition. Proc. WACV.
    [20]
    L. Lettry, K. Vanhoey, and L. Van Gool. 2018b. Unsupervised deep single-image intrinsic decomposition using illumination-varying image sequences. Comput. Graph. Forum 37, 7 (2018), 409–419.
    [21]
    Zhengqin Li, Mohammad Shafiei, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmohan Chandraker. 2020. Inverse rendering for complex indoor scenes: Shape, spatially-varying lighting and SVBRDF from a single image. In Proc. CVPR.
    [22]
    Zhengqi Li and Noah Snavely. 2018a. CGIntrinsics: Better intrinsic image decomposition through physically-based rendering. In Proc. ECCV.
    [23]
    Zhengqi Li and Noah Snavely. 2018b. Learning intrinsic image decomposition from watching the world. In Proc. CVPR.
    [24]
    Zhengqi Li and Noah Snavely. 2018c. MegaDepth: Learning single-view depth prediction from Internet photos. In Proc. CVPR.
    [25]
    Zhengqin Li, Ting Yu, Shen Sang, Sarah Wang, Mengcheng Song, Yuhan Liu, Yu-Ying Yeh, Rui Zhu, Nitesh B. Gundavarapu, Jia Shi, Sai Bi, Hong-Xing Yu, Zexiang Xu, Kalyan Sunkavalli, Miloš Hašan, Ravi Ramamoorthi, and Manmohan Chandraker. 2021. OpenRooms: An open framework for photorealistic indoor scene datasets. Proc. CVPR.
    [26]
    G. Lin, A. Milan, C. Shen, and I. Reid. 2017. RefineNet: Multi-path refinement networks for high-resolution semantic segmentation. In Proc. CVPR.
    [27]
    Yunfei Liu, Yu Li, Shaodi You, and Feng Lu. 2020. Unsupervised learning for intrinsic image decomposition from a single image. In Proc. CVPR.
    [28]
    Jundan Luo, Zhaoyang Huang, Yijin Li, Xiaowei Zhou, Guofeng Zhang, and Hujun Bao. 2020. NIID-Net: Adapting surface normal knowledge for intrinsic image decomposition in indoor scenes. IEEE Trans. Vis. Comp. Graph. (2020).
    [29]
    Wei-Chiu Ma, Hang Chu, Bolei Zhou, Raquel Urtasun, and Antonio Torralba. 2018. Single image intrinsic decomposition without a single intrinsic image. In Proc. ECCV.
    [30]
    Abhimitra Meka, Maxim Maximov, Michael Zollhoefer, Avishek Chatterjee, Hans-Peter Seidel, Christian Richardt, and Christian Theobalt. 2018. LIME: Live intrinsic material estimation. In Proc. CVPR.
    [31]
    S. Mahdi H. Miangoleh, Sebastian Dille, Long Mai, Sylvain Paris, and Yağız Aksoy. 2021. Boosting monocular depth estimation models to high-resolution via content-adaptive multi-resolution merging. In Proc. CVPR.
    [32]
    Lukas Murmann, Michael Gharbi, Miika Aittala, and Fredo Durand. 2019. A multi-illumination dataset of indoor object appearance. In Proc. ICCV.
    [33]
    Takuya Narihira, Michael Maire, and Stella X. Yu. 2015. Learning lightness from human judgement on relative reflectance. In Proc. CVPR.
    [34]
    Thomas Nestmeyer and Peter V. Gehler. 2017. Reflectance adaptive filtering improves intrinsic image estimation. In Proc. CVPR.
    [35]
    Patrick Pérez, Michel Gangnet, and Andrew Blake. 2003. Poisson image editing. In ACM SIGGRAPH. 313–318.
    [36]
    René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. 2020. Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE Trans. Pattern Anal. Mach. Intell. (2020).
    [37]
    Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit Kumar, Miguel Angel Bautista, Nathan Paczan, Russ Webb, and Joshua M. Susskind. 2021. Hypersim: A photorealistic synthetic dataset for holistic indoor scene understanding. In Proc. ICCV.
    [38]
    Soumyadip Sengupta, Jinwei Gu, Kihwan Kim, Guilin Liu, David W. Jacobs, and Jan Kautz. 2019. Neural inverse rendering of an indoor scene from a single image. In Proc. ICCV.
    [39]
    Jianbing Shen, Xiaoshan Yang, Yunde Jia, and Xuelong Li. 2011. Intrinsic images using optimization. In Proc. CVPR.
    [40]
    Jian Shi, Yue Dong, Hao Su, and Stella X. Yu. 2017. Learning non-Lambertian object intrinsics across ShapeNet categories. In Proc. CVPR.
    [41]
    Michael Maire, Takuya Narihira and Stella X. Yu. 2015. Direct intrinsics: Learning albedo-shading decomposition by convolutional regression. In Proc. ICCV.
    [42]
    Mingxing Tan and Quoc Le. 2019. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proc. ICML.
    [43]
    Ke Xian, Jianming Zhang, Oliver Wang, Long Mai, Zhe Lin, and Zhiguo Cao. 2020. Structure-guided ranking loss for single image depth prediction. In Proc. CVPR.
    [44]
    Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. 2017. Aggregated residual transformations for deep neural networks. In Proc. CVPR.
    [45]
    Genzhi Ye, Elena Garces, Yebin Liu, Qionghai Dai, and Diego Gutierrez. 2014. Intrinsic video and applications. ACM Trans. Graph. 33, 4 (2014).
    [46]
    Qi Zhao, Ping Tan, Qiang Dai, Li Shen, Enhua Wu, and Stephen Lin. 2012. A closed-form solution to Retinex with nonlocal texture constraints. IEEE Trans. Pattern Anal. Mach. Intell. 34, 7 (2012), 1437–1444.
    [47]
    Hao Zhou, Xiang Yu, and David Jacobs. 2019. GLoSH: Global-local spherical harmonics for intrinsic image decomposition. In Proc. ICCV.
    [48]
    Tinghui Zhou, Philipp Krahenbuhl, and Alexei A. Efros. 2015. Learning data-driven reflectance priors for intrinsic image decomposition. In Proc. ICCV.
    [49]
    Rui Zhu, Zhengqin Li, Janarbek Matai, Fatih Porikli, and Manmohan Chandraker. 2022. IRISformer: Dense vision transformers for single-image inverse rendering in indoor scenes. In Proc. CVPR.
    [50]
    Daniel Zoran, Phillip Isola, Dilip Krishnan, and William Freeman. 2015. Learning ordinal relationships for mid-level vision. In Proc. ICCV.

    Cited By

    View all
    • (2024)IntrinsicDiffusion: Joint Intrinsic Layers from Latent Diffusion ModelsACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657472(1-11)Online publication date: 13-Jul-2024

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 43, Issue 1
    February 2024
    211 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3613512
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 30 November 2023
    Online AM: 28 October 2023
    Accepted: 29 September 2023
    Revised: 28 August 2023
    Received: 05 December 2022
    Published in TOG Volume 43, Issue 1

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Intrinsic decomposition
    2. inverse rendering
    3. mid-level vision
    4. shading and reflectance estimation
    5. image manipulation

    Qualifiers

    • Research-article

    Funding Sources

    • Natural Sciences and Engineering Research Council of Canada (NSERC)

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)594
    • Downloads (Last 6 weeks)78
    Reflects downloads up to 29 Jul 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)IntrinsicDiffusion: Joint Intrinsic Layers from Latent Diffusion ModelsACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657472(1-11)Online publication date: 13-Jul-2024

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    Full Text

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media