Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Conditional Mixture Path Guiding for Differentiable Rendering

Published: 19 July 2024 Publication History

Abstract

The efficiency of inverse optimization in physically based differentiable rendering heavily depends on the variance of Monte Carlo estimation. Despite recent advancements emphasizing the necessity of tailored differential sampling strategies, the general approaches remain unexplored.
In this paper, we investigate the interplay between local sampling decisions and the estimation of light path derivatives. Considering that modern differentiable rendering algorithms share the same path for estimating differential radiance and ordinary radiance, we demonstrate that conventional guiding approaches, conditioned solely on the last vertex, cannot attain this density. Instead, a mixture of different sampling distributions is required, where the weights are conditioned on all the previously sampled vertices in the path. To embody our theory, we implement a conditional mixture path guiding that explicitly computes optimal weights on the fly. Furthermore, we show how to perform positivization to eliminate sign variance and extend to scenes with millions of parameters.
To the best of our knowledge, this is the first generic framework for applying path guiding to differentiable rendering. Extensive experiments demonstrate that our method achieves nearly one order of magnitude improvements over state-of-the-art methods in terms of variance reduction in gradient estimation and errors of inverse optimization. The implementation of our proposed method is available at https://github.com/mollnn/conditional-mixture.

Supplementary Material

ZIP File (papers_183.zip)
supplemental

References

[1]
Dejan Azinovic, Tzu-Mao Li, Anton Kaplanyan, and Matthias Niessner. 2019. Inverse Path Tracing for Joint Material and Lighting Estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
[2]
Martin Balint, Karol Myszkowski, Hans-Peter Seidel, and Gurprit Singh. 2023. Joint Sampling and Optimisation for Inverse Rendering. In SIGGRAPH Asia 2023 Conference Papers (SA '23). Association for Computing Machinery, New York, NY, USA, Article 29, 10 pages.
[3]
Sai Praveen Bangaru, Michael Gharbi, Fujun Luan, Tzu-Mao Li, Kalyan Sunkavalli, Milos Hasan, Sai Bi, Zexiang Xu, Gilbert Bernstein, and Fredo Durand. 2022. Differentiable Rendering of Neural SDFs through Reparameterization. In SIGGRAPH Asia 2022 Conference Papers (SA '22). Association for Computing Machinery, New York, NY, USA.
[4]
Sai Praveen Bangaru, Tzu-Mao Li, and Frédo Durand. 2020. Unbiased Warped-Area Sampling for Differentiable Rendering. ACM Transactions on Graphics 39, 6 (Nov. 2020), 245:1--245:18.
[5]
Yash Belhe, Bing Xu, Sai Praveen Bangaru, Ravi Ramamoorthi, and Tzu-Mao Li. 2024. Importance Sampling BRDF Derivatives. ACM Trans. Graph. (feb 2024). Just Accepted.
[6]
Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, and Wojciech Jarosz. 2020. Spatiotemporal Reservoir Resampling for Real-Time Ray Tracing with Dynamic Direct Lighting. ACM Transactions on Graphics 39, 4 (Aug. 2020).
[7]
Wesley Chang, Venkataram Sivaram, Derek Nowrouzezahrai, Toshiya Hachisuka, Ravi Ramamoorthi, and Tzu-Mao Li. 2023. Parameter-space ReSTIR for Differentiable and Inverse Rendering. In ACM SIGGRAPH 2023 Conference Proceedings (SIGGRAPH '23). Association for Computing Machinery, New York, NY, USA, Article 18, 10 pages.
[8]
Ana Dodik, Marios Papas, Cengiz Öztireli, and Thomas Müller. 2022. Path Guiding Using Spatio-Directional Mixture Models. Computer Graphics Forum 41, 1 (Feb. 2022), 172--189.
[9]
Honghao Dong, Guoping Wang, and Sheng Li. 2023. Neural Parametric Mixtures for Path Guiding. In ACM SIGGRAPH 2023 Conference Proceedings (SIGGRAPH '23). Association for Computing Machinery, New York, NY, USA, Article 29, 10 pages.
[10]
Jerry Jinfeng Guo, Pablo Bauszat, Jacco Bikker, and Elmar Eisemann. 2018. Primary sample space path guiding. In Proceedings of the Eurographics Symposium on Rendering: Experimental Ideas & Implementations (Karlsruhe, Germany) (SR '18). Eurographics Association, Goslar, DEU, 73--82.
[11]
Ayoub El Hanchi and David A. Stephens. 2021. Stochastic Reweighted Gradient Descent. In International Conference on Machine Learning. https://api.semanticscholar.org/CorpusID:232320705
[12]
Sebastian Herholz, Oskar Elek, Jiří Vorba, Hendrik Lensch, and Jaroslav Křivánek. 2016. Product Importance Sampling for Light Transport Path Guiding. Computer Graphics Forum 35, 4 (2016), 67--77.
[13]
Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, and Delio Vicini. 2022. DR.JIT: A Just-in-Time Compiler for Differentiable Rendering. ACM Transactions on Graphics 41, 4 (July 2022), 124:1--124:19.
[14]
James T. Kajiya. 1986. The Rendering Equation. Proceedings of the 13th annual conference on Computer graphics and interactive techniques - SIGGRAPH '86 (1986), 143--150.
[15]
Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro Ando, Toru Matsuoka, Wadim Kehl, and Adrien Gaidon. 2020. Differentiable Rendering: A Survey. arXiv:2006.12057 [cs]
[16]
Ivo Kondapaneni, Petr Vevoda, Pascal Grittmann, Tomáš Skřivan, Philipp Slusallek, and Jaroslav Křivánek. 2019. Optimal Multiple Importance Sampling. ACM Transactions on Graphics 38, 4 (Aug. 2019), 1--14.
[17]
Tzu-Mao Li. 2022. Differentiable Visual Computing: Challenges and Opportunities. IEEE Computer Graphics and Applications 42, 2 (March 2022), 101--109.
[18]
Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable Monte Carlo Ray Tracing through Edge Sampling. ACM Transactions on Graphics 37, 6 (Dec. 2018), 222:1--222:11.
[19]
F. Llorente, L. Martino, J. Read, and D. Delgado. 2021. A Survey of Monte Carlo Methods for Noisy and Costly Densities with Application to Reinforcement Learning. arXiv:2108.00490 [cs, stat]
[20]
Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob. 2019. Reparameterizing Discontinuous Integrands for Differentiable Rendering. ACM Transactions on Graphics 38, 6 (Nov. 2019), 228:1--228:14.
[21]
Fujun Luan, Shuang Zhao, Kavita Bala, and Zhao Dong. 2021. Unified Shape and SVBRDF Recovery Using Differentiable Monte Carlo Rendering. Computer Graphics Forum 40, 4 (2021), 101--113.
[22]
Thomas Müller. 2019. "Practical Path Guiding" in Production. In ACM SIGGRAPH Courses: Path Guiding in Production, Chapter 10 (Los Angeles, California). ACM, New York, NY, USA, 18:35--18:48.
[23]
Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical Path Guiding for Efficient Light-Transport Simulation. Computer Graphics Forum 36, 4 (July 2017), 91--100.
[24]
Thomas Müller, Brian Mcwilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. 2019. Neural Importance Sampling. ACM Transactions on Graphics 38, 5 (Oct. 2019), 1--19.
[25]
Baptiste Nicolet, Fabrice Rousselle, Jan Novak, Alexander Keller, Wenzel Jakob, and Thomas Müller. 2023. Recursive Control Variates for Inverse Rendering. ACM Trans. Graph. 42, 4, Article 62 (jul 2023), 13 pages.
[26]
Merlin Nimier-David, Thomas Müller, Alexander Keller, and Wenzel Jakob. 2022. Unbiased Inverse Volume Rendering with Differential Trackers. ACM Transactions on Graphics 41, 4 (July 2022), 1--20.
[27]
Merlin Nimier-David, Sébastien Speierer, Benoît Ruiz, and Wenzel Jakob. 2020. Radiative Backpropagation: An Adjoint Method for Lightning-Fast Differentiable Rendering. ACM Transactions on Graphics 39, 4 (Aug. 2020), 146:146:1--146:146:15.
[28]
Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2: A Retargetable Forward and Inverse Renderer. Transactions on Graphics (Proceedings of SIGGRAPH Asia) 38, 6 (Dec. 2019).
[29]
Art Owen and Yi Zhou. 2000. Safe and Effective Importance Sampling. J. Amer. Statist. Assoc. 95, 449 (March 2000), 135--143.
[30]
Alexander Rath, Pascal Grittmann, Sebastian Herholz, Petr Vévoda, Philipp Slusallek, and Jaroslav Křivánek. 2020. Variance-Aware Path Guiding. ACM Transactions on Graphics 39, 4 (Aug. 2020).
[31]
Florian Reibold, Johannes Hanika, Alisa Jung, and Carsten Dachsbacher. 2018. Selective Guided Sampling with Complete Light Transport Paths. ACM Transactions on Graphics 37, 6 (Dec. 2018), 1--14.
[32]
Lukas Ruppert, Sebastian Herholz, and Hendrik P. A. Lensch. 2020. Robust Fitting of Parallax-Aware Mixtures for Path Guiding. ACM Transactions on Graphics 39, 4 (Aug. 2020).
[33]
Vincent Schüßler, Johannes Hanika, Alisa Jung, and Carsten Dachsbacher. 2022. Path Guiding with Vertex Triplet Distributions. Computer Graphics Forum 41, 4 (July 2022), 1--15.
[34]
Sebastian U. Stich, Anant Raj, and Martin Jaggi. 2017. Safe Adaptive Importance Sampling. arXiv:1711.02637 [cs, math]
[35]
Eric Veach. 1997. Robust Monte Carlo Methods for Light Transport Simulation.
[36]
Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2021. Path Replay Backpropagation: Differentiating Light Paths Using Constant Memory and Linear Time. ACM Transactions on Graphics 40, 4 (Aug. 2021), 1--14.
[37]
Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2022. Differentiable Signed Distance Function Rendering. ACM Transactions on Graphics 41, 4 (July 2022), 125:1--125:18.
[38]
Jiří Vorba, Johannes Hanika, Sebastian Herholz, Thomas Müller, Jaroslav Křivánek, and Alexander Keller. 2019. Path Guiding in Production. In ACM SIGGRAPH 2019 Courses. ACM, Los Angeles California, 1--77.
[39]
Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014. On-Line Learning of Parametric Mixture Models for Light Transport Simulation. ACM Transactions on Graphics 33, 4 (July 2014), 1--11.
[40]
Yu-Chen Wang, Chris Wyman, Lifan Wu, and Shuang Zhao. 2023. Amortizing Samples in Physics-Based Inverse Rendering Using ReSTIR. ACM Trans. Graph. 42, 6, Article 214 (dec 2023), 17 pages.
[41]
Kai Yan, Christoph Lassner, Brian Budge, Zhao Dong, and Shuang Zhao. 2022. Efficient Estimation of Boundary Integrals for Path-Space Differentiable Rendering. ACM Transactions on Graphics 41, 4 (July 2022), 123:1--123:13.
[42]
Tizian Zeltner, Sébastien Speierer, Iliyan Georgiev, and Wenzel Jakob. 2021. Monte Carlo estimators for differential light transport. ACM Trans. Graph. 40, 4, Article 78 (jul 2021), 16 pages.
[43]
Cheng Zhang, Zhao Dong, Michael Doggett, and Shuang Zhao. 2021a. Antithetic Sampling for Monte Carlo Differentiable Rendering. ACM Transactions on Graphics 40, 4 (July 2021), 77:1--77:12.
[44]
Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. 2020. Path-Space Differentiable Rendering. ACM Transactions on Graphics 39, 4 (Aug. 2020), 143:143:1--143:143:19.
[45]
Cheng Zhang, Lifan Wu, Changxi Zheng, Ioannis Gkioulekas, Ravi Ramamoorthi, and Shuang Zhao. 2019. A Differential Theory of Radiative Transfer. ACM Transactions on Graphics 38, 6 (Nov. 2019), 227:1--227:16.
[46]
Cheng Zhang, Zihan Yu, and Shuang Zhao. 2021b. Path-Space Differentiable Rendering of Participating Media. ACM Transactions on Graphics 40, 4 (July 2021), 76:1--76:15.
[47]
Ziyi Zhang, Nicolas Roussel, and Wenzel Jakob. 2023. Projective Sampling for Differentiable Rendering of Geometry. ACM Trans. Graph. 42, 6, Article 212 (dec 2023), 14 pages.
[48]
Shuang Zhao, Wenzel Jakob, and Tzu-Mao Li. 2020. Physics-Based Differentiable Rendering: From Theory to Implementation. In ACM SIGGRAPH 2020 Courses. ACM, Virtual Event USA, 1--30.
[49]
Quan Zheng and Matthias Zwicker. 2019. Learning to Importance Sample in Primary Sample Space. Computer Graphics Forum 38, 2 (May 2019), 169--179.
[50]
Yang Zhou, Lifan Wu, Ravi Ramamoorthi, and Ling-Qi Yan. 2021. Vectorization for Fast, Analytic, and Differentiable Visibility. ACM Transactions on Graphics 40, 3 (July 2021), 27:1--27:21.
[51]
Jingsen Zhu, Fujun Luan, Yuchi Huo, Zihao Lin, Zhihua Zhong, Dianbing Xi, Rui Wang, Hujun Bao, Jiaxiang Zheng, and Rui Tang. 2022. Learning-Based Inverse Rendering of Complex Indoor Scenes with Differentiable Monte Carlo Raytracing. In SIGGRAPH Asia 2022 Conference Papers (SA '22). Association for Computing Machinery, New York, NY, USA.
[52]
Rong Zhu. 2016. Gradient-Based Sampling: An Adaptive Importance Sampling for Least-squares. arXiv:1803.00841 [cs, stat]

Index Terms

  1. Conditional Mixture Path Guiding for Differentiable Rendering

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 43, Issue 4
    July 2024
    1774 pages
    EISSN:1557-7368
    DOI:10.1145/3675116
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 19 July 2024
    Published in TOG Volume 43, Issue 4

    Check for updates

    Author Tags

    1. path guiding
    2. differentiable rendering

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 162
      Total Downloads
    • Downloads (Last 12 months)162
    • Downloads (Last 6 weeks)46
    Reflects downloads up to 10 Nov 2024

    Other Metrics

    Citations

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media