Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Stylization and abstraction of photographs

Published: 01 July 2002 Publication History
  • Get Citation Alerts
  • Abstract

    Good information design depends on clarifying the meaningful structure in an image. We describe a computational approach to stylizing and abstracting photographs that explicitly responds to this design goal. Our system transforms images into a line-drawing style using bold edges and large regions of constant color. To do this, it represents images as a hierarchical structure of parts and boundaries computed using state-of-the-art computer vision. Our system identifies the meaningful elements of this structure using a model of human perception and a record of a user's eye movements in looking at the photo; the system renders a new image using transformations that preserve and highlight these visual elements. Our method thus represents a new alternative for non-photorealistic rendering both in its visual style, in its approach to visual form, and in its techniques for interaction.

    References

    [1]
    AGRAWALA, M., AND STOLTE, C. 2001. Rendering effective route maps: improving usability through generalization. In Proc. of ACM SIGGRAPH 2001, 241-249.
    [2]
    AHUJA, N. 1996. A transform for multiscale image segmentation by integrated edge and region detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 18, 12, 1211-1235.
    [3]
    BURT, P., AND ADELSON, E. 1983. The Laplacian pyramid as a compact image code. IEEE Trans. on Communications 31, 4, 532-540.
    [4]
    CAMPBELL, F., AND ROBSON, J. 1968. Application of Fourier analysis to the visibility of gratings. Journal of Physiology 197, 551-566.
    [5]
    CHRISTOUDIAS, C., GEORGESCU, B., AND MEER, P. 2002. Synergism in low level vision. In Proc. ICPR 2002.
    [6]
    COMANICIU, D., AND MEER, P. 2002. Mean shift: A robust approach toward feature space analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 24, 5.
    [7]
    CURTIS, C. 1999. Non-photorealistic animation. In ACM SIGGRAPH 1999 Course Notes #17 (Section 9).
    [8]
    DEUSSEN, O., AND STROTHOTTE, T. 2000. Computer-generated pen-and-ink illustration of trees. In Proc. of ACM SIGGRAPH 2000, 13-18.
    [9]
    DUCHOWSKI, A., AND VERTEGAAL, R. 2000. Eye-based interaction in graphical systems: Theory and practice. In ACM SIGGRAPH 2000 Course Notes #5.
    [10]
    DUCHOWSKI, A. 2000. Acuity-matching resolution degradation through wavelet coefficient scaling. IEEE Trans. on Image Processing 9, 8 (Aug.), 1437-1440.
    [11]
    DURAND, F., OSTROMOUKHOV, V., MILLER, M., DURANLEAU, F., AND DORSEY, J. 2001. Decoupling strokes and high-level attributes for interactive traditional drawing. In Proceedings of the 12th Eurographics Workshop on Rendering, 71-82.
    [12]
    FINKELSTEIN, A., AND SALESIN, D. 1994. Multiresolution curves. In Proc. of ACM SIGGRAPH 94, 261-268.
    [13]
    FOLEY, J., VAN DAM, A., FEINER, S., AND HUGHES, J. 1997. Computer Graphics: Principles and Practice, 2nd edition. Addison Wesley.
    [14]
    GOOCH, B., AND GOOCH, A. 2001. Non-Photorealistic Rendering. A K Peters.
    [15]
    GOOCH, A. A., GOOCH, B., SHIRLEY, P., AND COHEN, E. 1998. A non-photorealistic lighting model for automatic technical illustration. In Proc. of ACM SIGGRAPH 98, 447-452.
    [16]
    HAEBERLI, P. 1990. Paint by numbers: Abstract image representations. In Proc. of ACM SIGGRAPH 90, 207-214.
    [17]
    HANDFORD, M. 1987. Where's Waldo? Little, Brown and Company.
    [18]
    HENDERSON, J. M., AND HOLLINGWORTH, A. 1998. Eye movements during scene viewing: An overview. In Eye Guidance in Reading and Scene Perception, G. Underwood, Ed. Elsevier Science Ltd., 269-293.
    [19]
    HERMAN, I., AND DUKE, D. 2001. Minimal graphics. IEEE Computer Graphics and Applications 21, 6, 18-21.
    [20]
    HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth surfaces. In Proc. of ACM SIGGRAPH 2000, 517-526.
    [21]
    HERTZMANN, A. 1998. Painterly rendering with curved brush strokes of multiple sizes. In Proc. of ACM SIGGRAPH 98, 453-460.
    [22]
    HERTZMANN, A. 2001. Paint by relaxation. In Computer Graphics International, 47-54.
    [23]
    HOFFMAN, D. D. 1998. Visual intelligence: how we create what we see. Norton.
    [24]
    JUST, M. A., AND CARPENTER, P. A. 1976. Eye fixations and cognitive processes. Cognitive Psychology 8, 441-480.
    [25]
    KELLY, D. 1984. Retinal inhomogenity: I. spatiotemporal contrast sensitivity. Journal of the Optical Society of America A 74, 1, 107-113.
    [26]
    KOENDERINK, J. J., M. A. BOUMAN, A. B. D. M., AND SLAPPENDEL, S. 1978. Perimetry of contrast detection thresholds of moving spatial sine wave patterns. II. the far peripheral visual field (eccentricity 0-50). Journal of the Optical Society of America A 68, 6, 850-854.
    [27]
    KOENDERINK, J. J. 1984. The structure of images. Biological Cybernetics 50, 363-370.
    [28]
    KOENDERINK, J. J. 1984. What does the occluding contour tell us about solid shape? Perception 13, 321-330.
    [29]
    KOWALSKI, M. A., MARKOSIAN, L., NORTHRUP, J. D., BOURDEV, L., BARZEL, R., HOLDEN, L. S., AND HUGHES, J. 1999. Art-based rendering of fur, grass, and trees. In Proc. of ACM SIGGRAPH 99, 433-438.
    [30]
    LEYTON, M. 1992. Symmetry, causality, mind. MIT Press.
    [31]
    LINDEBERG, T. 1994. Scale-Space Theory in Computer Vision. Kluwer Academic Publishers.
    [32]
    LITWINOWICZ, P. 1997. Processing images and video for an impressionist effect. In Proc. of ACM SIGGRAPH 97, 407-414.
    [33]
    MACKWORTH, N., AND MORANDI, A. 1967. The gaze selects informative details within pictures. Perception and Psychophysics 2, 547-552.
    [34]
    MANNOS, J. L., AND SAKRISON, D. J. 1974. The effects of a visual fidelity criterion on the encoding of images. IEEE Trans. on Information Theory 20, 4, 525-536.
    [35]
    MARKOSIAN, L., KOWALSKI, M. A., TRYCHIN, S. J., BOURDEV, L. D., GOLDSTEIN, D., AND HUGHES, J. F. 1997. Real-time nonphotorealistic rendering. In Proc. of ACM SIGGRAPH 97, 415-420.
    [36]
    MARR, D. 1982. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W. H. Freeman, San Francisco.
    [37]
    MEER, P., AND GEORGESCU, B. 2001. Edge detection with embedded confidence. IEEE Trans. on Pattern Analysis and Machine Intelligence 23, 12, 1351-1365.
    [38]
    PATTANAIK, S. N., FERWERDA, J. A., FAIRCHILD, M. D., AND GREENBERG, D. P. 1998. A multiscale model of adaptation and spatial vision for realistic image display. In Proc. of ACM SIGGRAPH 98, 287-298.
    [39]
    REDDY, M. 2001. Perceptually optimized 3D graphics. IEEE Computer Graphics and Applications 21, 5 (September/October), 68-75.
    [40]
    REGAN, D. 2000. Human Perception of Objects: Early Visual Processing of Spatial Form Defined by Luminance, Color, Texture, Motion and Binocular Disparity. Sinauer.
    [41]
    ROVAMO, J., AND VIRSU, V. 1979. An estimation and application of the human cortical magnification factor. Experimental Brain Research 37, 495-510.
    [42]
    SAITO, T., AND TAKAHASHI, T. 1990. Comprehensible rendering of 3-D shapes. In Proc. of ACM SlGGRAPH 90, 197-206.
    [43]
    SANTELLA, A., AND DECARLO, D. 2002. Abstracted painterly renderings using eye-tracking data. In Proc. of the Second International Symp. on Non-photorealistic Animation and Rendering (NPAR).
    [44]
    SHIRAISHI, M., AND YAMAGUCHI, Y. 2000. An algorithm for automatic painterly rendering based on local source image approximation. In Proc. of the First International Symp. on Non-photorealistic Animation and Rendering (NPAR), 53-58.
    [45]
    SIBERT, L. E., AND JACOB, R. J. K. 2000. Evaluation of eye gaze interaction. In Proc. CHI 2000, 281-288.
    [46]
    TRUCCO, E., AND VERRI, A. 1998. Introductory Techniques for 3-D Computer Vision. Prentice-Hall.
    [47]
    TUFTE, E. R. 1990. Envisioning Information. Graphics Press.
    [48]
    VERTEGAAL, R. 1999. The gaze groupware system: Mediating joint attention in mutiparty communication and collaboration. In Proc. CHI '99, 294-301.
    [49]
    WINKENBACH, G., AND SALESIN, D. H. 1994. Computer-generated pen-and-ink illustration. In Proc. of ACM SIGGRAPH 94, 91-100.
    [50]
    YARBUS, A. L. 1967. Eye Movements and Vision. Plenum Press.
    [51]
    ZEKI, S. 1999. Inner Vision: An Exploration of Art and the Brain. Oxford Univ. Press.

    Cited By

    View all
    • (2024)Fabricable 3D Wire ArtACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657453(1-11)Online publication date: 13-Jul-2024
    • (2023)Algorithmic Analysis of Color Combinations Principle in Game Concept ArtThe Journal of the Society for Art and Science10.3756/artsci.22.15_122:4(15_1-15_7)Online publication date: 2023
    • (2023)Where Do People Draw Lines?Seminal Graphics Papers: Pushing the Boundaries, Volume 210.1145/3596711.3596756(409-419)Online publication date: 1-Aug-2023
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 21, Issue 3
    July 2002
    548 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/566654
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 July 2002
    Published in TOG Volume 21, Issue 3

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. eye-tracking
    2. image simplification
    3. non-photorealistic rendering
    4. visual perception

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)90
    • Downloads (Last 6 weeks)11
    Reflects downloads up to 26 Jul 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Fabricable 3D Wire ArtACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657453(1-11)Online publication date: 13-Jul-2024
    • (2023)Algorithmic Analysis of Color Combinations Principle in Game Concept ArtThe Journal of the Society for Art and Science10.3756/artsci.22.15_122:4(15_1-15_7)Online publication date: 2023
    • (2023)Where Do People Draw Lines?Seminal Graphics Papers: Pushing the Boundaries, Volume 210.1145/3596711.3596756(409-419)Online publication date: 1-Aug-2023
    • (2023)Img2Logo: Generating Golden Ratio Logos from ImagesComputer Graphics Forum10.1111/cgf.1474242:2(37-49)Online publication date: 23-May-2023
    • (2023)A Method for Determining the Subjective Dominant Color of an Image Region by Support Vector Regression2023 Nicograph International (NicoInt)10.1109/NICOINT59725.2023.00010(1-6)Online publication date: Jun-2023
    • (2023)Weighted and truncated $$L_1$$ image smoothing based on unsupervised learningThe Visual Computer10.1007/s00371-023-03141-040:8(5871-5882)Online publication date: 20-Nov-2023
    • (2022)Recolorable Posterization of Volumetric Radiance Fields Using Visibility‐Weighted Palette ExtractionComputer Graphics Forum10.1111/cgf.1459441:4(149-160)Online publication date: 30-Jul-2022
    • (2022)Fast Text Placement Scheme for ASCII Art SynthesisIEEE Access10.1109/ACCESS.2022.316756710(40677-40686)Online publication date: 2022
    • (2022)Structure-aware bottle cap artComputers and Graphics10.1016/j.cag.2022.08.004107:C(277-288)Online publication date: 1-Oct-2022
    • (2022)Line drawing via saliency map and ETFFrontiers of Computer Science: Selected Publications from Chinese Universities10.1007/s11704-021-1027-z16:5Online publication date: 1-Oct-2022
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media