GIS-Based Flood Assessment Using Hydraulic Modeling and Open Source Data: An Example of Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials and Software Used
- -
- hydrological data, specifically flow rate and water levels, measured at hydrometric stations along the analyzed river segment, obtained from the Crișuri Water Basin Administration [54]. Daily, monthly, and annual average values for five consecutive years were considered;
- -
- Digital Elevation Model (DEM) with a spatial resolution of 1 m (1 point/m2) generated from LiDAR data, a product obtained through the LAKI I and LAKI II projects of the National Agency for Cadastre and Real Estate Publicity (ANCPI) [58];
- -
- field data, specifically detailed topographic surveys, including the measurement of elevation points on the thalweg of the Cigher River and its minor riverbed;
- -
- aerial photographs from the Cigher River basin, captured using a UAV DJI Phantom 4 device available in the GIS and Remote Sensing Laboratory of ULS Timișoara;
- -
- Corine Land Cover (CLC) database, 2018 edition, vector data, used for analyzing the impact of floods on land use classes, available on the Copernicus Land Monitoring Service platform [59];
- -
2.3. Research Methodology
3. Results
3.1. Processing and Validation of the Digital Elevation Model
3.2. Tracing the Geometric Elements of the Analyzed River Sector
3.3. Setting Parameters for Permanent Flow Analysis
3.4. Hydraulic Modeling
- -
- water velocity (Vel Chnl) increases consistently from S1 to S4 as the discharge increases. For example, at ST32, velocity rises from 0.56 m s−1 in S1 to 1.11 m s−1 in S4, while at ST1, the increase is even more pronounced, from 1.96 m s−1 in S1 to 2.53 m s−1 in S4;
- -
- water level (W.S. Elev) increases with each scenario due to the rising discharge. For instance, at ST32, water elevation increases from 138.9 m in S1 to 140.19 m in S4, while at ST1, the increase is from 112.27 m in S1 to 113.31 m in S4;
- -
- flow area increases significantly with discharge as well. At ST32, the flow area expands from 14.21 m2 in S1 to 67.43 m2 in S4, while at ST1, it grows from 4.08 m2 in S1 to 37.12 m2 in S4;
- -
- Froude number (Froude # Chl) varies but not linearly with discharge. Overall, the values remain relatively constant across most scenarios, with a slight upward trend at higher discharges.
3.5. Estimating the Impact of Floods on Land
4. Discussion
4.1. The European, National, and Local Context of Floods: Incidence, Trends, and Impact
4.2. The Relevance and Applicability of the Proposed Working Model for Flood Risk Analysis
4.3. The Role of Hydraulic Modeling in Flood Risk Assessment and Management
4.4. Floods: Challenges for Agriculture, Grasslands, and Anthropogenic Spaces
4.5. Study Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, Q.; Xie, J.; Guo, L.; Zhang, X.; Liu, R. Analysis and evaluation of flash flood disasters: A case of Lingbao County of Henan province in China. Procedia Eng. 2016, 154, 835–843. [Google Scholar] [CrossRef]
- Papaioannou, G.; Efstratiadis, A.; Vasiliades, L.; Loukas, A.; Papalexiou, S.M.; Koukouvinos, A.; Tsoukalas, I.; Kossieris, P. An operational method for flood directive implementation in ungauged urban areas. Hydrology 2018, 5, 24. [Google Scholar] [CrossRef]
- Khosh Bin Ghomash, S.; Bachmann, D.; Caviedes-Voullième, D.; Hinz, C. Impact of Rainfall Movement on Flash Flood Response: A Synthetic Study of a Semi-Arid Mountainous Catchment. Water 2022, 14, 1844. [Google Scholar] [CrossRef]
- Copacean, L.; Man, E.T.; Herban, S.; Popescu, C.A.; Cojocariu, L. Estimating flood susceptibility based on GIS and remote sensing. Case study: Hydrographic Basin of Crisul Alb river. Present Environ. Sustain. Dev. 2024, 18, 121–140. [Google Scholar] [CrossRef]
- Zhong, M.; Jiang, T.; Li, K.; Lu, Q.; Wang, J.; Zhu, J. Multiple environmental factors analysis of flash flood risk in Upper Hanjiang River, southern China. Environ. Sci. Pollut. Res. 2020, 27, 37218–37228. [Google Scholar] [CrossRef]
- Syarifudin, A.; Satyanaga, A.; Destania, H.R. Application of the HEC-RAS Program in the Simulation of the Streamflow Hydrograph for Air Lakitan Watershed. Water 2022, 14, 4094. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, Q.; Singh, V.P.; Shi, P. Changes in magnitude and frequency of heavy precipitation across China and its potential links to summer temperature. J. Hydrol. 2017, 547, 718–731. [Google Scholar] [CrossRef]
- Das, S.; Pardeshi, S.D. Comparative Analysis of Lineaments Extracted from Cartosat, SRTM and ASTER DEM: A Study Based on Four Watersheds in Konkan Region, India. Spat. Inf. Res. 2018, 26, 47–57. [Google Scholar] [CrossRef]
- Ahmad, D.; Afzal, M. Flood Hazards and Livelihood Vulnerability of Flood-Prone Farm-Dependent Bait Households in Punjab, Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 11553–11573. [Google Scholar] [CrossRef]
- Dysarz, T.; Marcinkowski, P.; Wicher-Dysarz, J.; Piniewski, M.; Mirosław-Świątek, D.; Kundzewicz, Z.W. Assessment of Climate Change Impact on Flood Hazard Zones. Water Resour. Manag. 2024, 39, 963–977. [Google Scholar] [CrossRef]
- Peker, İ.B.; Gülbaz, S.; Demir, V.; Orhan, O.; Beden, N. Integration of HEC-RAS and HEC-HMS with GIS in Flood Modeling and Flood Hazard Mapping. Sustainability 2024, 16, 1226. [Google Scholar] [CrossRef]
- Meyer, V.; Becker, N.; Markantonis, V.; Schwarze, R.; Bergh, J.; Bouwer, L.; Bubeck, P.; Ciavola, P.; Genovese, E.; Green, C.; et al. Assessing the costs of natural hazards—State of the art and knowledge gaps. Nat. Hazards Earth Syst. Sci. 2013, 13, 1351–1373. Available online: https://nhess.copernicus.org/articles/13/1351/2013/ (accessed on 1 December 2024).
- Foudi, S.; Osés-Eraso, N.; Tamayo, I. Integrated spatial flood risk assessment: The case of Zaragoza. Land Use Policy 2015, 42, 278–292. [Google Scholar] [CrossRef]
- UNDRR (United Nations Office for Disaster Risk Reduction). Global Assessment Report on Disaster Risk Reduction; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2023; Available online: https://www.undrr.org/media/79595/download?startDownload=20250211 (accessed on 10 February 2025).
- Wang, X.; Liu, Z.; Chen, H. Investigating Flood Impact on Crop Production under a Comprehensive and Spatially Explicit Risk Evaluation Framework. Agriculture 2022, 12, 484. [Google Scholar] [CrossRef]
- Vervuren, P.; Blom, C.W.P.M.; De-Kroon, H. Extreme flooding events on the Rhine and the survival and distribution of riparian plant species. J. Ecol. 2003, 91, 135–146. [Google Scholar] [CrossRef]
- Youssef, M.S.; Mira, M.M.; Renault, S.; Hill, R.D.; Stasolla, C. Phytoglobin expression influences soil flooding response of corn plants. Ann. Bot. 2016, 118, 919–931. [Google Scholar] [CrossRef] [PubMed]
- Barneze, A.S.; van Groenigen, J.W.; Philippot, L.; Bru, D.; Abalos, D.; De Deyn, G.B. Plant communities can attenuate flooding induced N2O fluxes by altering nitrogen cycling microbial communities and plant nitrogen uptake. Soil Biol. Biochem. 2023, 185, 109142. [Google Scholar] [CrossRef]
- Sun, L.; Chen, S.; Chao, L.; Sun, T. Effects of flooding on changes in Eh, pH and speciation of cadmium and lead in contaminated soil. Bull. Environ. Contam. Toxicol. 2007, 79, 514–518. [Google Scholar] [CrossRef]
- Arabameri, A.; Saha, S.; Chen, W.; Roy, J.; Pradhan, B.; Bui, D.T. Flash flood susceptibility modelling using functional tree and hybrid ensemble techniques. J. Hydrol. 2020, 587, 125007. [Google Scholar] [CrossRef]
- Bharadwaj, B.; Mishegyan, A.; Nagalingam, S.; Guenther, A.; Joshee, N.; Sherman, S.H.; Basu, C. Physiological and genetic responses of lentil (Lens culinaris) under flood stress. Plant Stress 2023, 7, 100130. [Google Scholar] [CrossRef]
- Rupngam, T.; Messiga, A.J. Unraveling the Interactions between Flooding Dynamics and Agricultural Productivity in a Changing Climate. Sustainability 2024, 16, 6141. [Google Scholar] [CrossRef]
- Lacasta, A.; Morales-Hernández, M.; Murillo, J.; García-Navarro, P. An optimized GPU implementation of a 2D free surface simulation model on unstructured meshes. Adv. Eng. Softw. 2014, 78, 1–15. [Google Scholar] [CrossRef]
- Kastridis, A.; Stathis, D. Evaluation of Hydrological and Hydraulic Models Applied in Typical Mediterranean Ungauged Watersheds Using Post-Flash-Flood Measurements. Hydrology 2020, 7, 12. [Google Scholar] [CrossRef]
- AL-Hussein, A.A.M.; Khan, S.; Ncibi, K.; Hamdi, N.; Hamed, Y. Flood Analysis Using HEC-RAS and HEC-HMS: A Case Study of Khazir River (Middle East—Northern Iraq). Water 2022, 14, 3779. [Google Scholar] [CrossRef]
- Swain, K.C.; Singha, C.; Nayak, L. Flood Susceptibility Mapping through the GIS-AHP Technique Using the Cloud. ISPRS Int. J. Geo-Inf. 2020, 9, 720. [Google Scholar] [CrossRef]
- Cai, S.; Fan, J.; Yang, W. Flooding Risk Assessment and Analysis Based on GIS and the TFN-AHP Method: A Case Study of Chongqing, China. Atmosphere 2021, 12, 623. [Google Scholar] [CrossRef]
- Alarifi, S.S.; Abdelkareem, M.; Abdalla, F.; Alotaibi, M. Flash Flood Hazard Mapping Using Remote Sensing and GIS Techniques in Southwestern Saudi Arabia. Sustainability 2022, 14, 14145. [Google Scholar] [CrossRef]
- Hagos, Y.G.; Andualem, T.G.; Yibeltal, M.; Mengie, M.A. Flood hazard assessment and mapping using GIS integrated with multi-criteria decision analysis in upper Awash River basin, Ethiopia. Appl. Water Sci. 2022, 12, 148. [Google Scholar] [CrossRef]
- Roy, D.K.; Sarkar, T.K.; Kamar, S.S.A.; Goswami, T.; Muktadir, M.A.; Al-Ghobari, H.M.; Alataway, A.; Dewidar, A.Z.; El-Shafei, A.A.; Mattar, M.A. Daily Prediction and Multi-Step Forward Forecasting of Reference Evapotranspiration Using LSTM and Bi-LSTM Models. Agronomy 2022, 12, 594. [Google Scholar] [CrossRef]
- Simon, M.; Copăcean, L.; Cojocariu, L. Techniques for identification, mapping and analysis of grasslands. Case study: Arad county. Present Environ. Sustain. Dev. 2022, 16, 39–49. [Google Scholar] [CrossRef]
- Souza, F.A.A.; Samprogna Mohor, G.; Guzmán Arias, D.A.; Buarque, A.C.S.; Taffarello, D.; Mendiondo, E.M. Droughts in São Paulo: Challenges and lessons for a water-adaptive society. Urban Water J. 2022, 20, 1682–1694. [Google Scholar] [CrossRef]
- Tehrany, M.; Pradhan, B.; Jebur, M. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J. Hydrol. 2014, 512, 332–343. [Google Scholar] [CrossRef]
- Rahmati, O.; Pourghasemi, H.R.; Zeinivand, H. Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province. Iran Geocarto Int. 2015, 31, 42–70. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Hong, H.; Peng, L. Flood susceptibility mapping using convolutional neural network frameworks. J. Hydrol. 2020, 582, 124482. [Google Scholar] [CrossRef]
- Dang, A.T.N.; Kumar, L. Application of remote sensing and GIS-based hydrological modelling for flood risk analysis: A case study of District 8, Ho Chi Minh City, Vietnam. Geomat. Nat. Hazards Risk. 2017, 8, 1792–1811. [Google Scholar] [CrossRef]
- Zhou, Q.; Su, J.; Arnbjerg-Nielsen, K.; Ren, Y.; Luo, J.; Ye, Z.; Feng, J. A GIS-Based Hydrological Modeling Approach for Rapid Urban Flood Hazard Assessment. Water 2021, 13, 1483. [Google Scholar] [CrossRef]
- Souissi, D.; Zouhri, L.; Hammami, S.; Msaddek, M.H.; Zghibi, A.; Dlala, M. GIS-based MCDM-AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto Int. 2019, 35, 991–1017. [Google Scholar] [CrossRef]
- Schumann, G.; Neal, J.; Mason, D.; Bates, P. The accuracy of sequential aerial photography and SAR data for observing urban flood dynamics: A case study of the UK summer 2007 floods. Remote Sens. Environ. 2011, 115, 2536–2546. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Skilodimou, H.D.; Soukis, K.; Koskeridou, E. Temporal and Spatial Analysis of Flood Occurrences in the Drainage Basin of Pinios River (Thessaly, Central Greece). Land 2018, 7, 106. [Google Scholar] [CrossRef]
- Samanta, S.; Koloa, C.; Kumar Pal, D.; Palsamanta, B. Flood Risk Analysis in Lower Part of Markham River Based on Multi-Criteria Decision Approach (MCDA). Hydrology 2016, 3, 29. [Google Scholar] [CrossRef]
- Rijal, S.; Rimal, B.; Sloan, S. Flood Hazard Mapping of a Rapidly Urbanizing City in the Foothills (Birendranagar, Surkhet) of Nepal. Land 2018, 7, 60. [Google Scholar] [CrossRef]
- Tanaka, T.; Yoshioka, H.; Siev, S.; Fujii, H.; Fujihara, Y.; Hoshikawa, K.; Ly, S.; Yoshimura, C. An Integrated Hydrological-Hydraulic Model for Simulating Surface Water Flows of a Shallow Lake Surrounded by Large Floodplains. Water 2018, 10, 1213. [Google Scholar] [CrossRef]
- Bessar, M.A.; Matte, P.; Anctil, F. Uncertainty Analysis of a 1D River Hydraulic Model with Adaptive Calibration. Water 2020, 12, 561. [Google Scholar] [CrossRef]
- Andreadis, K.M.; Schumann, G.J.P. Estimating the impact of satellite observations on the predictability of large-scale hydraulic models. Adv. Water Resour. 2014, 73, 44–54. [Google Scholar] [CrossRef]
- Ameera, M.A. Hydraulic Model Development using HEC-RAS and Determination of Manning Roughness Value for Shatt Al-Rumaith. Muthanna J. Eng. Technol. 2016, 4, 9–13. [Google Scholar] [CrossRef]
- US Army Corps of Engineers. HEC-RAS, River Analysis System, HEC-RAS Hydraulic Reference Manual, Version 6.5; US Army Corps of Engineers: Washington, DC, USA, 2024. Available online: https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS_Hydraulic_Reference_Manual_v6.5.pdf (accessed on 10 June 2024).
- Hashemyan, F.; Khaleghi, M.; Kamyar, M. Combination of HEC-HMS and HEC-RAS Models in GIS in Order to Simulate Flood (Case Study: Khoshke Rudan River in Fars Province, Iran). Res. J. Recent Sci. 2015, 4, 122–127. Available online: https://www.isca.me/rjrs/archive/v4/i8/20.ISCA-RJRS-2014-42.pdf (accessed on 1 December 2024).
- Mai, D.; De Smedt, F. A Combined Hydrological and Hydraulic Model for Flood Prediction in Vietnam Applied to the Huong River Basin as a Test Case Study. Water 2017, 9, 879. [Google Scholar] [CrossRef]
- Namara, W.G.; Damisse, T.A.; Tufa, F.G. Application of HEC-RAS and HEC-GeoRAS Model for Flood Inundation Mapping, the Case of Awash Bello Flood Plain, Upper Awash River Basin, Oromiya Regional State, Ethiopia. Model. Earth Syst. Environ. 2022, 8, 1449–1460. [Google Scholar] [CrossRef]
- Yamani, K.; Hazzab, A.; Sekkoum, M.; Slimane, T. Mapping of Vulnerability of Flooded Area in Arid Region. Case Study: Area of Ghardaïa-Algeria. Model. Earth Syst. Environ. 2016, 2, 147. [Google Scholar] [CrossRef]
- Gül, G.O.; Harmancıoğlu, N.; Gül, A. A Combined Hydrologic and Hydraulic Modeling Approach for Testing Efficiency of Structural Flood Control Measures. Nat. Hazards 2010, 54, 245–260. [Google Scholar] [CrossRef]
- Urzică, A.; Mihu-Pintilie, A.; Stoleriu, C.C.; Cîmpianu, C.I.; Huţanu, E.; Pricop, C.I.; Grozavu, A. Using 2D HEC-RAS Modeling and Embankment Dam Break Scenario for Assessing the Flood Control Capacity of a Multi-Reservoir System (NE Romania). Water 2021, 13, 57. [Google Scholar] [CrossRef]
- Administraţia Bazinală de Apă (ABA) Crişuri. 2023. Available online: https://crisuri.rowater.ro/ (accessed on 1 September 2024).
- România: Seturi de Date Vectoriale Generale. Geo-spatial Website. Available online: https://geo-spatial.org/vechi/download/romania-seturi-vectoriale (accessed on 15 March 2021).
- Copernicus Land Monitoring Service-EU-DEM—European Environment Agency. Available online: https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-eu-dem (accessed on 10 December 2015).
- Baze de Date Climatice. Available online: https://rp5.ru/Weather_in_Romania (accessed on 30 March 2024).
- Agenţia Naţională de Cadastru şi Publicitate Imobiliară (ANCPI), Proiectul LAKI. Available online: https://geoportal.ancpi.ro/portal/apps/webappviewer/index.html?id=2873d5b4707749349f6ad78e5c6b239e (accessed on 28 June 2024).
- Corine Land Cover—Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 15 March 2024).
- Autodesk, AutoCAD Map 3D Help. Available online: https://help.autodesk.com/view/MAP/2016/ENU/ (accessed on 12 September 2024).
- ArcGIS Desktop Documentation, ArcMap (Including ArcCatalog, ArcScene, ArcGlobe). Available online: https://desktop.arcgis.com/en/documentation/ (accessed on 15 June 2022).
- Wu, W.; Emerton, R.; Duan, Q.; Wood, A.W.; Wetterhall, F.; Robertson, D.E. Ensemble flood forecasting: Current status and future opportunities. Wiley Interdiscip. Rev. Water 2020, 7, e1432. [Google Scholar] [CrossRef]
- Papagiannaki, K.; Petrucci, O.; Diakakis, M.; Kotroni, V.; Aceto, L.; Bianchi, C.; Brázdil, R.; Gelabert, M.G.; Inbar, M.; Kahraman, A.; et al. Developing a large-scale dataset of flood fatalities for territories in the Euro-Mediterranean region. FFEM-DB. Sci. Data 2022, 9, 166. [Google Scholar] [CrossRef]
- Lehmkuhl, F.; Schüttrumpf, H.; Schwarzbauer, J.; Brüll, C.; Dietze, M.; Letmathe, P.; Völker, C.; Hollert, H. Assessment of the 2021 summer flood in Central Europe. Environ. Sci. Eur. 2022, 34, 107. [Google Scholar] [CrossRef]
- Dimitriou, E.; Efstratiadis, A.; Zotou, I.; Papadopoulos, A.; Iliopoulou, T.; Sakki, G.K.; Mazi, K.; Rozos, E.; Koukouvinos, A.; Koussis, A.D.; et al. Post-Analysis of Daniel Extreme Flood Event in Thessaly, Central Greece: Practical Lessons and the Value of State-of-the-Art Water-Monitoring Networks. Water 2024, 16, 980. [Google Scholar] [CrossRef]
- Stamos, I.; Diakakis, M. Mapping Flood Impacts on Mortality at European Territories of the Mediterranean Region within the Sustainable Development Goals (SDGs) Framework. Water 2024, 16, 2470. [Google Scholar] [CrossRef]
- Mohleji, S.; Pielke, R. Reconciliation of trends in global and regional economic losses from weather events: 1980–2008. Nat. Hazards Rev. 2014, 15, 04014009. [Google Scholar] [CrossRef]
- Prama, M.; Omran, A.; Schröder, D.; Abouelmagd, A. Vulnerability assessment of flash floods in Wadi Dahab Basin, Egypt. Environ. Earth Sci. 2020, 79, 114. [Google Scholar] [CrossRef]
- Ionita, M.; Nagavciuc, V. Extreme Floods in the Eastern Part of Europe: Large-Scale Drivers and Associated Impacts. Water 2021, 13, 1122. [Google Scholar] [CrossRef]
- Wilhelm, B.; Rapuc, W.; Amann, B.; Anselmetti, F.S.; Arnaud, F.; Blanchet, J.; Brauer, A.; Czymzik, M.; Giguet-Covex, C.; Gilli, A. Impact of warmer climate periods on flood hazard in the European Alps. Nat. Geosci. 2022, 15, 118–123. [Google Scholar] [CrossRef]
- Winsemius, H.C.; Jongman, B.; Veldkamp, T.I.; Hallegatte, S.; Bangalore, M.; Ward, P.J. Disaster risk, climate change, and poverty: Assessing the global exposure of poor people to floods and droughts. Environ. Dev. Econ. 2018, 23, 328–348. [Google Scholar] [CrossRef]
- Diakakis, M. Have flood mortality qualitative characteristics changed during the last decades? The case study of Greece. Environ. Hazards 2016, 15, 148–159. [Google Scholar] [CrossRef]
- Pereira, S.; Zêzere, J.L.; Quaresma, I.; Santos, P.P.; Santos, M. Mortality Patterns of Hydro-Geomorphologic Disasters. Risk Anal. 2016, 36, 1188–1210. [Google Scholar] [CrossRef]
- Onuma, H.; Shin, K.J.; Managi, S. Reduction of future disaster damages by learning from disaster experiences. Nat. Hazards 2017, 87, 1435–1452. [Google Scholar] [CrossRef]
- Petrucci, O.; Aceto, L.; Bianchi, C.; Bigot, V.; Brázdil, R.; Pereira, S.; Kahraman, A.; Kılıç, Ö.; Kotroni, V.; Llasat, M.C.; et al. Flood Fatalities in Europe, 1980–2018: Variability, Features, and Lessons to Learn. Water 2019, 11, 1682. [Google Scholar] [CrossRef]
- Wu, J.; Li, Y.; Ye, T.; Li, N. Changes in mortality and economic vulnerability to climatic hazards under economic development at the provincial level in China. Reg. Environ. Chang. 2019, 19, 125–136. [Google Scholar] [CrossRef]
- Ionita, M.; Nagavciuc, V.; Guan, B. Rivers in the sky, flooding on the ground: The role of atmospheric rivers in inland flooding in central Europe. Hydrol. Earth Syst. Sci. 2020, 24, 5125–5147. [Google Scholar] [CrossRef]
- Ulbrich, U.; Brücher, T.; Fink, A.H.; Leckebusch, G.C.; Krüger, A.; Pinto, J.G. The central European floods of August 2002: Part 2 –Synoptic causes and considerations with respect to climatic change. Weather 2003, 58, 434–442. [Google Scholar] [CrossRef]
- Bissolli, P.; Friedrich, K.; Rapp, J.; Ziese, M. Flooding in eastern central Europe in May 2010—Reasons, evolution and climatological assessment. Weather 2011, 66, 147–153. [Google Scholar] [CrossRef]
- Muchan, K.; Lewis, M.; Hannaford, J.; Parry, S. The winter storms of 2013/2014 in the UK: Hydrological responses and impacts. Weather 2015, 70, 55–61. [Google Scholar] [CrossRef]
- Mihu-Pintilie, A.; Cîmpianu, C.I.; Stoleriu, C.C.; Pérez, M.N.; Paveluc, L.E. Using High-Density LiDAR Data and 2D Streamflow Hydraulic Modeling to Improve Urban Flood Hazard Maps: A HEC-RAS Multi-Scenario Approach. Water 2019, 11, 1832. [Google Scholar] [CrossRef]
- AL-Hussein, A.A.M.; Hamed, Y.; Bouri, S.; Hajji, S.; Aljuaid, A.M.; Hachicha, W. The Socio-Economic Effects of Floods and Ways to Prevent Them: A Case Study of the Khazir River Basin, Northern Iraq. Water 2023, 15, 4271. [Google Scholar] [CrossRef]
- Ahmad, H.F.; Alam, A.; Bhat, M.S.; Ahmad, S. One Dimensional Steady Flow Analysis Using HEC-RAS—A case of River Jhelum, Jammu and Kashmir. Eur. Sci. J. 2016, 12, 340–350. [Google Scholar] [CrossRef]
- Rangari, V.A.; Sridhar, V.; Umamahesh, N.V.; Patel, A.K. Floodplain Mapping and Management of Urban Catchment Using HEC-RAS: A Case Study of Hyderabad City. J. Inst. Eng. India Ser. A 2018, 100, 49–63. [Google Scholar] [CrossRef]
- Wara, C.; Thomas, M.; Mwakurya, S.; Katuva, J. Development of river rating curves for simple to complex hydraulic structure based on calibrated HEC-RAS hydraulic model, in Kwale, Coastal Kenya. J. Water Resour. Prot. 2019, 11, 468–490. [Google Scholar] [CrossRef]
- Pathan, A.; Agnihotri, P. Application of new HEC-RAS version 5 for 1D hydrodynamic flood modeling with special reference through geospatial techniques: A case of river Purna at Navsari, Gujarat, India. Model. Earth Syst. Environ. 2020, 7, 1133–1144. [Google Scholar] [CrossRef]
- Wang, C. Application of HEC-RAS model in simulation of water surface profile of river. AMM 2014, 641–642, 232–235. [Google Scholar] [CrossRef]
- Aneesh, P.C.; Roy, M.T. Hydraulic modeling of the Periyar River using HEC-RAS: Unraveling flow dynamics. Water Sci. Technol. 2024, 89, 2676–2684. [Google Scholar] [CrossRef]
- Burshtynska, K.; Zayats, I.; Halochkin, M.; Bakuła, K.; Babiy, L. The Influence of the Main Factors on the Accuracy of Hydrological Modelling of Flooded Lands. Water 2023, 15, 3303. [Google Scholar] [CrossRef]
- Cislaghi, A.; Morlotti, E.; Sacchetti, V.G.; Bellingeri, D.; Bischetti, G.B. Towards a Modern and Sustainable Sediment Management Plan in Mountain Catchment. GeoHazards 2024, 5, 1125–1151. [Google Scholar] [CrossRef]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Garssen, A.G.; Baattrup-Pedersen, A.; Riis, T.; Raven, B.M.; Hoffman, C.C.; Verhoeven, J.T.A.; Soons, M.B. Effects of increased flooding on riparian vegetation: Field experiments simulating climate change along five European lowland streams. Glob. Change Biol. 2017, 23, 3052–3063. [Google Scholar] [CrossRef]
- Furtak, K.; Wolińska, A. The impact of extreme weather events as a consequence of climate change on the soil moisture and on the quality of the soil environment and agriculture—A review. Catena 2023, 231, 107378. [Google Scholar] [CrossRef]
- Fukao, T.; Xu, K.; Ronald, P.C.; Baileyserres, J.A. Variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 2006, 18, 2021–2034. [Google Scholar] [CrossRef]
- Pedersen, O.; Colmer, T.D.; Sand-Jensen, K. Underwater photosynthesis of submerged plants—Recent advances and methods. Front. Plant Sci. 2013, 4, 140. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Copăcean, L.; Man, E.T.; Cojocariu, L.L.; Popescu, C.A.; Vîlceanu, C.-B.; Beilicci, R.; Creţan, A.; Herbei, M.V.; Cuzic, O.Ş.; Herban, S. GIS-Based Flood Assessment Using Hydraulic Modeling and Open Source Data: An Example of Application. Appl. Sci. 2025, 15, 2520. https://doi.org/10.3390/app15052520
Copăcean L, Man ET, Cojocariu LL, Popescu CA, Vîlceanu C-B, Beilicci R, Creţan A, Herbei MV, Cuzic OŞ, Herban S. GIS-Based Flood Assessment Using Hydraulic Modeling and Open Source Data: An Example of Application. Applied Sciences. 2025; 15(5):2520. https://doi.org/10.3390/app15052520
Chicago/Turabian StyleCopăcean, Loredana, Eugen Teodor Man, Luminiţa L. Cojocariu, Cosmin Alin Popescu, Clara-Beatrice Vîlceanu, Robert Beilicci, Alina Creţan, Mihai Valentin Herbei, Ovidiu Ştefan Cuzic, and Sorin Herban. 2025. "GIS-Based Flood Assessment Using Hydraulic Modeling and Open Source Data: An Example of Application" Applied Sciences 15, no. 5: 2520. https://doi.org/10.3390/app15052520
APA StyleCopăcean, L., Man, E. T., Cojocariu, L. L., Popescu, C. A., Vîlceanu, C.-B., Beilicci, R., Creţan, A., Herbei, M. V., Cuzic, O. Ş., & Herban, S. (2025). GIS-Based Flood Assessment Using Hydraulic Modeling and Open Source Data: An Example of Application. Applied Sciences, 15(5), 2520. https://doi.org/10.3390/app15052520