Role of Estradiol Hormone in Human Life and Electrochemical Aptasensing of 17β-Estradiol: A Review
Abstract
:1. Introduction
2. Estradiol in Human Physiology and Pathophysiology
3. Fundamentals of Electrochemical Sensing
4. Electrochemical Estradiol Sensing
5. Electrochemical 17β-Estradiol Aptasensing
5.1. Aptamers for Estradiol Sensing
5.2. Estradiol Aptasensing Mechanism
5.3. Aptamer Immobilization Strategies
5.4. Blocking Layer Strategies
5.5. Electrode Material and Estradiol Aptasensing Performance
5.5.1. Metal Electrodes
5.5.2. Semiconducting Electrodes
5.5.3. Carbon-Based Electrodes
5.5.4. Polymer Electrodes
6. Summary and Discussion
7. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hariri, L.; Rehman, A. Estradiol-StatPearls-NCBI Bookshelf. Available online: https://www.ncbi.nlm.nih.gov/books/NBK549797/ (accessed on 17 October 2022).
- Giulivo, M.; Lopez de Alda, M.; Capri, E.; Barceló, D. Human Exposure to Endocrine Disrupting Compounds: Their Role in Reproductive Systems, Metabolic Syndrome and Breast Cancer. A Review. Environ. Res. 2016, 151, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Pamplona-Silva, M.T.; Mazzeo, D.E.C.; Bianchi, J.; Marin-Morales, M.A. Estrogenic Compounds: Chemical Characteristics, Detection Methods, Biological and Environmental Effects. Water Air Soil Pollut. 2018, 229, 144. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, B.; Kadioglu, Y. Determination of 17 β-Estradiol in Pharmaceutical Preparation by UV Spectrophotometry and High Performance Liquid Chromatography Methods. Arab. J. Chem. 2017, 10, S1422–S1428. [Google Scholar] [CrossRef]
- Denver, N.; Khan, S.; Homer, N.Z.M.; MacLean, M.R.; Andrew, R. Current Strategies for Quantification of Estrogens in Clinical Research. J. Steroid Biochem. Mol. Biol. 2019, 192, 105373. [Google Scholar] [CrossRef]
- Brognara, A.; Nasri, I.F.M.A.; Bricchi, B.R.; Bassi, A.L.; Gauchotte-Lindsay, C.; Ghidelli, M.; Lidgi-Guigui, N. Highly Sensitive Detection of Estradiol by a SERS Sensor Based on TiO2 Covered with Gold Nanoparticles. Beilstein J. Nanotechnol. 2020, 11, 1026–1035. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.J.; Lai, Y.; Wei, Z.; Li, J. Rapid Detection of Estrogen Compounds Using Surface-Enhanced Raman Spectroscopy with a Zn/Au-Ag/Ag Sandwich-Structured Substrate. Opt. Mater. 2021, 112, 110759. [Google Scholar] [CrossRef]
- Lu, X.; Sun, J.; Sun, X. Recent Advances in Biosensors for the Detection of Estrogens in the Environment and Food. TrAC Trends Anal. Chem. 2020, 127, 115882. [Google Scholar] [CrossRef]
- Zamfir, L.-G.; Puiu, M.; Bala, C. Advances in Electrochemical Impedance Spectroscopy Detection of Endocrine Disruptors. Sensors 2020, 20, 6443. [Google Scholar] [CrossRef] [PubMed]
- Rozenblum; Pollitzer; Radrizzani Challenges in Electrochemical Aptasensors and Current Sensing Architectures Using Flat Gold Surfaces. Chemosensors 2019, 7, 57. [CrossRef] [Green Version]
- Pohanka, M. Aptamers in Electrochemical Biosensors. Int. J. Electrochem. Sci. 2022, 17, 1–9. [Google Scholar] [CrossRef]
- Bhardwaj, T.; Kumar Sharma, T. Aptasensors for Full Body Health Checkup. Biosens. Bioelectron. X 2022, 11, 100199. [Google Scholar] [CrossRef]
- Rather, J.A.; Khudaish, E.A.; Kannan, P. Graphene-Amplified Femtosensitive Aptasensing of Estradiol, an Endocrine Disruptor. Analyst 2018, 143, 1835–1845. [Google Scholar] [CrossRef] [PubMed]
- Vethaak, A.D.; Lahr, J.; Schrap, S.M.; Belfroid, A.C.; Rijs, G.B.J.; Gerritsen, A.; De Boer, J.; Bulder, A.S.; Grinwis, G.C.M.; Kuiper, R.V.; et al. An Integrated Assessment of Estrogenic Contamination and Biological Effects in the Aquatic Environment of The Netherlands. Chemosphere 2005, 59, 511–524. [Google Scholar] [CrossRef]
- Thiebaut, C.; Konan, H.-P.; Guerquin, M.-J.; Chesnel, A.; Livera, G.; Le Romancer, M.; Dumond, H. The Role of ERα36 in Development and Tumor Malignancy. Int. J. Mol. Sci. 2020, 21, 4116. [Google Scholar] [CrossRef] [PubMed]
- Fourkala, E.O.; Zaikin, A.; Burnell, M.; Gentry-Maharaj, A.; Ford, J.; Gunu, R.; Soromani, C.; Hasenbrink, G.; Jacobs, I.; Dawnay, A.; et al. Association of Serum Sex Steroid Receptor Bioactivity and Sex Steroid Hormones with Breast Cancer Risk in Postmenopausal Women. Endocr. Relat. Cancer 2012, 19, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Skafar, D.F.; Zhao, C. The Multifunctional Estrogen Receptor-Alpha F Domain. Endocrine 2008, 33, 1–8. [Google Scholar] [CrossRef] [PubMed]
- McDevitt, M.A.; Glidewell-Kenney, C.; Jimenez, M.A.; Ahearn, P.C.; Weiss, J.; Jameson, J.L.; Levine, J.E. New Insights into the Classical and Non-Classical Actions of Estrogen: Evidence from Estrogen Receptor Knock-out and Knock-in Mice. Mol. Cell. Endocrinol. 2008, 290, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Park, M.-A.; Hwang, K.-A.; Choi, K.-C. Diverse Animal Models to Examine Potential Role(s) and Mechanism of Endocrine Disrupting Chemicals on the Tumor Progression and Prevention: Do They Have Tumorigenic or Anti-Tumorigenic Property? Lab. Anim. Res. 2011, 27, 265. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, E.R. Chaperoning Steroidal Physiology: Lessons from Mouse Genetic Models of Hsp90 and Its Cochaperones. Biochim. Biophys. Acta Mol. Cell Res. 2012, 1823, 722–729. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Wolfe, A.; Wang, X.; Chang, C.; Yeh, S.; Radovick, S. Generation and Characterization of a Complete Null Estrogen Receptor α Mouse Using Cre/LoxP Technology. Mol. Cell. Biochem. 2009, 321, 145–153. [Google Scholar] [CrossRef]
- Lane, P.H. Estrogen Receptors in the Kidney: Lessons from Genetically Altered Mice. Gend. Med. 2008, 5, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Weiser, M.J.; Foradori, C.D.; Handa, R.J. Estrogen Receptor Beta in the Brain: From Form to Function. Brain Res. Rev. 2008, 57, 309–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, N.E.; Key, T.J.; Dossus, L.; Rinaldi, S.; Cust, A.; Lukanova, A.; Peeters, P.H.; Onland-Moret, N.C.; Lahmann, P.H.; Berrino, F.; et al. Endogenous Sex Hormones and Endometrial Cancer Risk in Women in the European Prospective Investigation into Cancer and Nutrition (EPIC). Endocr. Relat. Cancer 2008, 15, 485–497. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Ganti, A.K.; Marr, A.; Batra, S.K. Lung Cancer in Women: Role of Estrogens. Expert Rev. Respir. Med. 2010, 4, 509–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2018, 95, 197–206. [Google Scholar] [CrossRef]
- Des Azevedo, S.; Lakshmi, D.; Chianella, I.; Whitcombe, M.J.; Karim, K.; Ivanova-Mitseva, P.K.; Subrahmanyam, S.; Piletsky, S.A. Molecularly Imprinted Polymer-Hybrid Electrochemical Sensor for the Detection of β-Estradiol. Ind. Eng. Chem. Res. 2013, 52, 13917–13923. [Google Scholar] [CrossRef]
- Janegitz, B.C.; dos Santos, F.A.; Faria, R.C.; Zucolotto, V. Electrochemical Determination of Estradiol Using a Thin Film Containing Reduced Graphene Oxide and Dihexadecylphosphate. Mater. Sci. Eng. C 2014, 37, 14–19. [Google Scholar] [CrossRef]
- Moraes, F.C.; Rossi, B.; Donatoni, M.C.; de Oliveira, K.T.; Pereira, E.C. Sensitive Determination of 17β-Estradiol in River Water Using a Graphene Based Electrochemical Sensor. Anal. Chim. Acta 2015, 881, 37–43. [Google Scholar] [CrossRef]
- Arvand, M.; Hemmati, S. Analytical Methodology for the Electro-Catalytic Determination of Estradiol and Progesterone Based on Graphene Quantum Dots and Poly(Sulfosalicylic Acid) Co-Modified Electrode. Talanta 2017, 174, 243–255. [Google Scholar] [CrossRef]
- Masikini, M.; Ghica, M.E.; Baker, P.G.L.; Iwuoha, E.I.; Brett, C.M.A. Electrochemical Sensor Based on Multi-walled Carbon Nanotube/Gold Nanoparticle Modified Glassy Carbon Electrode for Detection of Estradiol in Environmental Samples. Electroanalysis 2019, 31, 1925–1933. [Google Scholar] [CrossRef]
- Supchocksoonthorn, P.; Alvior Sinoy, M.C.; de Luna, M.D.G.; Paoprasert, P. Facile Fabrication of 17β-Estradiol Electrochemical Sensor Using Polyaniline/Carbon Dot-Coated Glassy Carbon Electrode with Synergistically Enhanced Electrochemical Stability. Talanta 2021, 235, 122782. [Google Scholar] [CrossRef] [PubMed]
- Ku, T.-H.; Zhang, T.; Luo, H.; Yen, T.; Chen, P.-W.; Han, Y.; Lo, Y.-H. Nucleic Acid Aptamers: An Emerging Tool for Biotechnology and Biomedical Sensing. Sensors 2015, 15, 16281–16313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayasena, S.D. Aptamers: An Emerging Class of Molecules That Rival Antibodies in Diagnostics. Clin. Chem. 1999, 45, 1628–1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.S.; Jung, H.S.; Matsuura, T.; Lee, H.Y.; Kawai, T.; Gu, M.B. Electrochemical Detection of 17β-Estradiol Using DNA Aptamer Immobilized Gold Electrode Chip. Biosens. Bioelectron. 2007, 22, 2525–2531. [Google Scholar] [CrossRef] [PubMed]
- Jaffrezic-Renault, N.; Kou, J.; Tan, D.; Guo, Z. New Trends in the Electrochemical Detection of Endocrine Disruptors in Complex Media. Anal. Bioanal. Chem. 2020, 412, 5913–5923. [Google Scholar] [CrossRef] [PubMed]
- Ke, H.; Liu, M.; Zhuang, L.; Li, Z.; Fan, L.; Zhao, G. A Femtomolar Level 17β-Estradiol Electrochemical Aptasensor Constructed On Hierachical Dendritic Gold Modified Boron-Doped Diamond Electrode. Electrochim. Acta 2014, 137, 146–153. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, L.; Zhang, G.; Liu, Q.; Qiu, B.; Cai, Z.; Chen, G. Label-Free Aptamer-Based Electrochemical Impedance Biosensor for 17β-Estradiol. Analyst 2012, 137, 819–822. [Google Scholar] [CrossRef]
- Zhu, B.; Alsager, O.A.; Kumar, S.; Hodgkiss, J.M.; Travas-Sejdic, J. Label-Free Electrochemical Aptasensor for Femtomolar Detection of 17β-Estradiol. Biosens. Bioelectron. 2015, 70, 398–403. [Google Scholar] [CrossRef]
- Mat Zaid, M.H.; Abdullah, J.; Rozi, N.; Mohamad Rozlan, A.A.; Abu Hanifah, S. A Sensitive Impedimetric Aptasensor Based on Carbon Nanodots Modified Electrode for Detection of 17ß-Estradiol. Nanomaterials 2020, 10, 1346. [Google Scholar] [CrossRef]
- Yang, W.; Ozsoz, M.; Hibbert, D.B.; Gooding, J.J. Evidence for the Direct Interaction Between Methylene Blue and Guanine Bases Using DNA-Modified Carbon Paste Electrodes. Electroanalysis 2002, 14, 1299–1302. [Google Scholar] [CrossRef]
- Huang, K.-J.; Liu, Y.-J.; Zhang, J.-Z.; Cao, J.-T.; Liu, Y.-M. Aptamer/Au Nanoparticles/Cobalt Sulfide Nanosheets Biosensor for 17β-Estradiol Detection Using a Guanine-Rich Complementary DNA Sequence for Signal Amplification. Biosens. Bioelectron. 2015, 67, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.; Zhu, B.; Liu, J.; Zhu, X.; Xu, M.; Travas-Sejdic, J. Electrochemical Aptasensor for 17β-Estradiol Using Disposable Laser Scribed Graphene Electrodes. Biosens. Bioelectron. 2021, 185, 113247. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Ke, H.; Sun, C.; Wang, G.; Wang, Y.; Zhao, G. A Simple and Highly Selective Electrochemical Label-Free Aptasensor of 17β-Estradiol Based on Signal Amplification of Bi-Functional Graphene. Talanta 2019, 194, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.C.; Kouzani, A.Z.; Duan, W. Aptasensors: A Review. J. Biomed. Nanotechnol. 2010, 6, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Radi, A.-E.; Abd-Ellatief, M.R. Electrochemical Aptasensors: Current Status and Future Perspectives. Diagnostics 2021, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Olowu, R.A.; Arotiba, O.; Mailu, S.N.; Waryo, T.T.; Baker, P.; Iwuoha, E. Electrochemical Aptasensor for Endocrine Disrupting 17β-Estradiol Based on a Poly(3,4-Ethylenedioxylthiopene)-Gold Nanocomposite Platform. Sensors 2010, 10, 9872–9890. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Zhao, G.; Shi, H.; Liu, M. A Simple and Label-Free Aptasensor Based on Nickel Hexacyanoferrate Nanoparticles as Signal Probe for Highly Sensitive Detection of 17β-Estradiol. Biosens. Bioelectron. 2015, 68, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Nameghi, M.A.; Danesh, N.M.; Ramezani, M.; Alibolandi, M.; Abnous, K.; Taghdisi, S.M. An Ultrasensitive Electrochemical Sensor for 17β-Estradiol Using Split Aptamers. Anal. Chim. Acta 2019, 1065, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.-J.; Liu, Y.-J.; Shi, G.-W.; Yang, X.-R.; Liu, Y.-M. Label-Free Aptamer Sensor for 17β-Estradiol Based on Vanadium Disulfide Nanoflowers and Au Nanoparticles. Sens. Actuators B Chem. 2014, 201, 579–585. [Google Scholar] [CrossRef]
- Huang, K.-J.; Liu, Y.-J.; Zhang, J.-Z.; Liu, Y.-M. A Novel Aptamer Sensor Based on Layered Tungsten Disulfide Nanosheets and Au Nanoparticles Amplification for 17β-Estradiol Detection. Anal. Methods 2014, 6, 8011–8017. [Google Scholar] [CrossRef]
- Huang, K.-J.; Liu, Y.-J.; Zhang, J.-Z. Aptamer-Based Electrochemical Assay of 17β-Estradiol Using a Glassy Carbon Electrode Modified with Copper Sulfide Nanosheets and Gold Nanoparticles, and Applying Enzyme-Based Signal Amplification. Microchim. Acta 2015, 182, 409–417. [Google Scholar] [CrossRef]
- Rozi, N.; Hanifah, S.A.; Zaid, M.H.M.; Abd Karim, N.H.; Ikeda, M. Feasible Study on Poly(Pyrrole-Co-Pyrrole-3-Carboxylic Acid)-Modified Electrode for Detection of 17β-Estradiol. Chem. Pap. 2021, 75, 3493–3503. [Google Scholar] [CrossRef]
- Ming, T.; Wang, Y.; Luo, J.; Liu, J.; Sun, S.; Xing, Y.; Xiao, G.; Jin, H.; Cai, X. Folding Paper-Based Aptasensor Platform Coated with Novel Nanoassemblies for Instant and Highly Sensitive Detection of 17β-Estradiol. ACS Sens. 2019, 4, 3186–3194. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Deng, K.; Wang, H.; Li, C.; Zhang, S.; Huang, H. Aptamer Based Ratiometric Electrochemical Sensing of 17β-Estradiol Using an Electrode Modified with Gold Nanoparticles, Thionine, and Multiwalled Carbon Nanotubes. Microchim. Acta 2019, 186, 347. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.S.; Wei, M.; Wei, W.; Liu, Y.; Liu, S. Electrochemical Aptasensor for Aflatoxin B1 Based on Smart Host-Guest Recognition of β-Cyclodextrin Polymer. Biosens. Bioelectron. 2019, 129, 58–63. [Google Scholar] [CrossRef]
- Zhao, M.; Cui, L.; Sun, B.; Wang, Q.; Zhang, C. Low-Background Electrochemical Biosensor for One-Step Detection of Base Excision Repair Enzyme. Biosens. Bioelectron. 2020, 150, 111865. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, S.; Li, J.; Wang, E.; Dong, S. Cyclodextrin-Graphene Hybrid Nanosheets as Enhanced Sensing Platform for Ultrasensitive Determination of Carbendazim. Talanta 2011, 84, 60–64. [Google Scholar] [CrossRef]
- Gao, J.; Xiong, H.; Zhang, W.; Wang, Y.; Wang, H.; Wen, W.; Zhang, X.; Wang, S. Electrochemiluminescent Aptasensor Based on β-Cyclodextrin/Graphitic Carbon Nitride Composite for Highly Selective and Ultrasensitive Assay of Platelet Derived Growth Factor BB. Carbon N. Y. 2018, 130, 416–423. [Google Scholar] [CrossRef]
- Sharko, D.O.; Shabalina, A.V.; Gotovtseva, E.Y.; Zamay, G.S.; Zamay, S.S. Electrochemical Study of Sensor with Aptamer Specific to Glioblastoma. In Proceedings of the 2019 20th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), Erlagol, Russia, 29 June–3 July 2019; Volume 2019-June, pp. 612–615. [Google Scholar]
- Herne, T.M.; Tarlov, M.J. Characterization of DNA Probes Immobilized on Gold Surfaces. J. Am. Chem. Soc. 1997, 119, 8916–8920. [Google Scholar] [CrossRef]
- Keighley, S.D.; Li, P.; Estrela, P.; Migliorato, P. Optimization of DNA Immobilization on Gold Electrodes for Label-Free Detection by Electrochemical Impedance Spectroscopy. Biosens. Bioelectron. 2008, 23, 1291–1297. [Google Scholar] [CrossRef]
- Negahdary, M. Electrochemical Aptasensors Based on the Gold Nanostructures. Talanta 2020, 216, 120999. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Q.; Shen, W. Morphology-Dependent Nanocatalysis: Metal Particles. Dalt. Trans. 2011, 40, 5811. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Han, X.; Wang, D.; Liu, D.; You, T. Facile Synthesis of Dendritic Gold Nanostructures with Hyperbranched Architectures and Their Electrocatalytic Activity toward Ethanol Oxidation. ACS Appl. Mater. Interfaces 2013, 5, 9148–9154. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Huang, Y.; Tan, C.; Zhang, X.; Lu, Q.; Sindoro, M.; Huang, X.; Huang, W.; Wang, L.; Zhang, H. Two-Dimensional Transition Metal Dichalcogenide Nanomaterials for Biosensing Applications. Mater. Chem. Front. 2017, 1, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Kour, R.; Arya, S.; Young, S.-J.; Gupta, V.; Bandhoria, P.; Khosla, A. Review—Recent Advances in Carbon Nanomaterials as Electrochemical Biosensors. J. Electrochem. Soc. 2020, 167, 037555. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H.; Nejad, F.G.; Shoaie, I.S.; Khalilzadeh, M.A.; Asl, M.S.; Van Le, Q.; Zhang, K.; Jang, H.W.; Shokouhimehr, M. Recent Developments in Conducting Polymers: Applications for Electrochemistry. RSC Adv. 2020, 10, 37834–37856. [Google Scholar] [CrossRef]
- El Rhazi, M.; Majid, S.; Elbasri, M.; Salih, F.E.; Oularbi, L.; Lafdi, K. Recent Progress in Nanocomposites Based on Conducting Polymer: Application as Electrochemical Sensors. Int. Nano Lett. 2018, 8, 79–99. [Google Scholar] [CrossRef]
- Sudhagar, P.; Nagarajan, S.; Lee, Y.G.; Song, D.; Son, T.; Cho, W.; Heo, M.; Lee, K.; Won, J.; Kang, Y.S. Synergistic Catalytic Effect of a Composite (CoS/PEDOT:PSS) Counter Electrode on Triiodide Reduction in Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2011, 3, 1838–1843. [Google Scholar] [CrossRef]
- Song, Z.; Ma, Y.; Morrin, A.; Ding, C.; Luo, X. Preparation and Electrochemical Sensing Application of Porous Conducting Polymers. TrAC Trends Anal. Chem. 2021, 135, 116155. [Google Scholar] [CrossRef]
- Alsager, O.A.; Kumar, S.; Zhu, B.; Travas-Sejdic, J.; McNatty, K.P.; Hodgkiss, J.M. Ultrasensitive Colorimetric Detection of 17β-Estradiol: The Effect of Shortening DNA Aptamer Sequences. Anal. Chem. 2015, 87, 4201–4209. [Google Scholar] [CrossRef]
- Ozkorucuklu, S.P.; Sahin, Y.; Alsancak, G. Determination of Sulfamethoxazole in Pharmaceutical Formulations by Flow Injection System/HPLC with Potentiometric Detection Using Polypyrrole Electrode. J. Braz. Chem. Soc. 2011, 22, 2171–2177. [Google Scholar] [CrossRef] [Green Version]
- Li, C.M.; Chen, W.; Yang, X.; Sun, C.Q.; Gao, C.; Zheng, Z.X.; Sawyer, J. Impedance Labelless Detection-Based Polypyrrole Protein Biosensor. Front. Biosci. 2005, 10, 2518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truong, L.T.N.; Chikae, M.; Ukita, Y.; Takamura, Y. Labelless Impedance Immunosensor Based on Polypyrrole–Pyrolecarboxylic Acid Copolymer for HCG Detection. Talanta 2011, 85, 2576–2580. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Chen, H.; Cheng, Y.; Huang, Z.; Wei, X.; Feng, J.; Cheng, J.; Mugo, S.M.; Jaffrezic-Renault, N.; Guo, Z. Electrochemical Aptasensor Based on Electrodeposited Poly(3,4-Ethylenedioxythiophene)-Graphene Oxide Coupled with Au@Pt Nanocrystals for the Detection of 17β-Estradiol. Microchim. Acta 2022, 189, 178. [Google Scholar] [CrossRef] [PubMed]
- Eisold, A.; Labudde, D. Detailed Analysis of 17β-Estradiol-Aptamer Interactions: A Molecular Dynamics Simulation Study. Molecules 2018, 23, 1690. [Google Scholar] [CrossRef] [PubMed]
Electrode | Linear Range (M) | Limit of Detection (M) | Measurement Technique | Reference |
---|---|---|---|---|
poly(NPEDMA)/Au | 1 × 10−7–8 × 10−7 | 6.86 × 10−7 | CV | [27] |
rGO-DHP/GCE | 4 × 10−7–2 × 10−5 | 7.7 × 10−8 | CV, EIS, LSV | [28] |
rGO/CuTthP/GCE | 1 × 10−8–1 × 10−6 | 5.4 × 10−9 | CV, DPV | [29] |
GQDs-PSSA/GO/GCE | 1 × 10−9–6 × 10−6 | 2.3 × 10−10 | CV, DPV | [30] |
MWCNTs/Au NPs/GCE | 1 × 10−6–2 × 10−5 | 7.0 × 10−8 | CV, LSV | [31] |
Carbon dots-PANI/GCE | 1 × 10−9–1 × 10−4 | 4.3 × 10−8 | CV, LSV | [32] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waifalkar, P.P.; Noh, D.; Derashri, P.; Barage, S.; Oh, E. Role of Estradiol Hormone in Human Life and Electrochemical Aptasensing of 17β-Estradiol: A Review. Biosensors 2022, 12, 1117. https://doi.org/10.3390/bios12121117
Waifalkar PP, Noh D, Derashri P, Barage S, Oh E. Role of Estradiol Hormone in Human Life and Electrochemical Aptasensing of 17β-Estradiol: A Review. Biosensors. 2022; 12(12):1117. https://doi.org/10.3390/bios12121117
Chicago/Turabian StyleWaifalkar, P. P., Daegwon Noh, Poorva Derashri, Sagar Barage, and Eunsoon Oh. 2022. "Role of Estradiol Hormone in Human Life and Electrochemical Aptasensing of 17β-Estradiol: A Review" Biosensors 12, no. 12: 1117. https://doi.org/10.3390/bios12121117
APA StyleWaifalkar, P. P., Noh, D., Derashri, P., Barage, S., & Oh, E. (2022). Role of Estradiol Hormone in Human Life and Electrochemical Aptasensing of 17β-Estradiol: A Review. Biosensors, 12(12), 1117. https://doi.org/10.3390/bios12121117