On-Site Detection of Ca and Mg in Surface Water Using Portable Laser-Induced Breakdown Spectroscopy
Abstract
:1. Introduction
2. Experimental
2.1. The LIBS System
2.2. Sample Preparation
3. Results and Discussion
3.1. Typical LIBS Emission Spectra
3.2. Optimization of the Spectral Acquisition Conditions
3.3. Quantitative Analysis
3.4. Verification with Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farouk, M.I.H.Z.; Zadariana, J.; Mohd, F.A.L. Towards Online Surface Water Quality Monitoring Technology: A Review. Environ. Res. 2023, 238, 117147. [Google Scholar] [CrossRef] [PubMed]
- Bogart, S.J.; Azizishirazi, A.; Pyle, G.G. Challenges and Future Prospects for Developing Ca and Mg Water Quality Guidelines: A Meta-Analysis. Philos. Trans. R. Soc. B-Biol. Sci. 2019, 374, 20180364. [Google Scholar] [CrossRef] [PubMed]
- Koseki, M.; Fujiki, S.; Tanaka, Y.; Noguchi, H.; Nishikawa, T. Effect of Water Hardness on the Taste of Alkaline Electrolyzed Water. J. Food Sci. 2006, 70, S249–S253. [Google Scholar] [CrossRef]
- Markich, S.J. Water Hardness Reduces the Accumulation and Toxicity of Uranium in a Freshwater Macrophyte (Ceratophyllum Demersum). Sci. Total Environ. 2013, 443, 582–589. [Google Scholar] [CrossRef]
- Kozisek, F. Regulations for Calcium, Magnesium or Hardness in Drinking Water in the European Union Member States. Regul. Toxicol. Pharmacol. 2020, 112, 104589. [Google Scholar] [CrossRef]
- Rapant, S.; Cvečková, V.; Fajčíková, K.; Sedláková, D.; Stehlíková, B. Impact of Calcium and Magnesium in Groundwater and Drinking Water on the Health of Inhabitants of the Slovak Republic. Int. J. Environ. Res. Public Health 2017, 14, 278. [Google Scholar] [CrossRef]
- Escobedo-Monge, M.F.; Barrado, E.; Parodi-Román, J.; Escobedo-Monge, M.A.; Torres-Hinojal, M.C.; Marugán-Miguelsanz, J.M. Magnesium Status and Ca/Mg Ratios in a Series of Children and Adolescents with Chronic Diseases. Nutrients 2022, 14, 2941. [Google Scholar] [CrossRef]
- Al-Subiai, S.N.; Jang, I.K.; Bae, S.-H.; Yoon, H.; Hussain, S.; AlNuaimi, S.; Al-Foudari, M.; Al-Hasan, E. Enhancing the Performance of Litopenaeus Vannamei Nursery and Grow-out by Modifying Mg/Ca Ratios in Biofloc Systems Using Low-Salinity Groundwater of Kuwait Desert. Aquaculture 2025, 594, 741405. [Google Scholar] [CrossRef]
- Van Dam, R.A.; Hogan, A.C.; McCullough, C.D.; Houston, M.A.; Humphrey, C.L.; Harford, A.J. Aquatic Toxicity of Magnesium Sulfate, and the Influence of Calcium, in Very Low Ionic Concentration Water. Environ. Toxicol. Chem. 2010, 29, 410–421. [Google Scholar] [CrossRef]
- Langenfeld, N.J.; Pinto, D.F.; Faust, J.E.; Heins, R.; Bugbee, B. Principles of Nutrient and Water Management for Indoor Agriculture. Sustainability 2022, 14, 10204. [Google Scholar] [CrossRef]
- Jaworek, K.; Czaplicka, M. Organoarsenic Compounds in Water Samples—The Problem of Hydride Generation Atomic Absorption Spectroscopic Method. Desalination Water Treat. 2022, 261, 141–150. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Hirose, D.; Minami, J.; Wang, M.-J.; Takamura, Y. Fabrication and Characterizations of Axial View Liquid Electrode Plasma Atomic Emission Spectrometry for the Sensitive Determination of Trace Zinc, Cadmium, and Lead. Anal. Chem. 2022, 94, 8209–8216. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Luo, Y.T.; Su, Y.A.; Ke, Y.R.; Deng, M.-J.; Chen, W.Y.; Wang, C.Y.; Tsai, J.L.; Lin, C.H.; Shih, T.T. Fabrication of a Microfluidic-Based Device Coated with Polyelectrolyte-Capped Titanium Dioxide to Couple High-Performance Liquid Chromatography with Inductively Coupled Plasma Mass Spectrometry for Mercury Speciation. Polymers 2024, 16, 2366. [Google Scholar] [CrossRef] [PubMed]
- Hart, E.J.A.; Siebecker, M.G. Portable X-ray Fluorescence Spectrometry Accurately Measures Metal Concentrations in Aqueous Mehlich III Soil Extraction Solutions. Soil Sci. Soc. Am. 2024, 88, 2336–2342. [Google Scholar] [CrossRef]
- Kanoun, O.; Lazarević-Pašti, T.; Pašti, I.; Nasraoui, S.; Talbi, M.; Brahem, A.; Adiraju, A.; Sheremet, E.; Rodriguez, R.D.; Ali, M.B.; et al. A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring. Sensors 2021, 21, 4131. [Google Scholar] [CrossRef]
- Herrera-Domínguez, M.; Morales-Luna, G.; Mahlknecht, J.; Cheng, Q.; Aguilar-Hernández, I.; Ornelas-Soto, N. Optical Biosensors and Their Applications for the Detection of Water Pollutants. Biosensors 2023, 13, 370. [Google Scholar] [CrossRef]
- Liu, L.; Lai, Y.; Cao, J.; Peng, Y.; Tian, T.; Fu, W. Exploring the Antibacterial and Biosensing Applications of Peroxidase-Mimetic Ni0.1Cu0.9S Nanoflower. Biosensors 2022, 12, 874. [Google Scholar] [CrossRef]
- Radziemski, L.; Cremers, D.A. Brief History of Laser-Induced Breakdown Spectroscopy: From the Concept of Atoms to LIBS 2012. Spectrochim. Acta Part B-At. Spectrosc. 2013, 87, 3–10. [Google Scholar] [CrossRef]
- Evans, E.H.; Pisonero, J.; Smith, C.M.M.; Taylor, R.N. Atomic Spectrometry Update: Review of Advances in Atomic Spectrometry and Related Techniques. J. Anal. At. Spectrom. 2022, 37, 942–965. [Google Scholar] [CrossRef]
- Guo, Y.M.; Guo, L.B.; Li, J.M.; Liu, H.D.; Zhu, Z.H.; Li, X.Y.; Lu, Y.F.; Zeng, X.Y. Research Progress in Asia on Methods of Processing Laser-Induced Breakdown Spectroscopy Data. Front. Phys. 2016, 11, 114212. [Google Scholar] [CrossRef]
- Kim, D.; Yang, J.H.; Choi, S.; Yoh, J.J. Analytical Methods to Distinguish the Positive and Negative Spectra of Mineral and Environmental Elements Using Deep Ablation Laser-Induced Breakdown Spectroscopy (LIBS). Appl. Spectrosc. 2018, 72, 896–907. [Google Scholar] [CrossRef] [PubMed]
- Harmon, R.S. Laser-Induced Breakdown Spectroscopy in Mineral Exploration and Ore Processing. Minerals 2024, 14, 731. [Google Scholar] [CrossRef]
- Zeng, Q.D.; Chen, G.G.; Li, W.X.; Li, Z.T.; Tong, J.H.; Yuan, M.T.; Wang, B.Y.; Ma, H.H.; Liu, Y.; Guo, L.B.; et al. Classification of Steel Based on Laser-Induced Breakdown Spectroscopy Combined with Restricted Boltzmann Machine and Support Vector Machine. Plasma Sci. Technol. 2022, 24, 084009. [Google Scholar] [CrossRef]
- Stefas, D.; Gyftokostas, N.; Nanou, E.; Kourelias, P.; Couris, S. Laser-Induced Breakdown Spectroscopy: An Efficient Tool for Food Science and Technology (from the Analysis of Martian Rocks to the Analysis of Olive Oil, Honey, Milk, and Other Natural Earth Products). Molecules 2021, 26, 4981. [Google Scholar] [CrossRef]
- Yang, G.; Chen, G.Y.; Cai, Z.X.; Quan, X.Q.; Zhu, Y. Laser-Induced Breakdown Spectroscopy Instrument and Spectral Analysis for Deep-Ocean Fe-Mn Crusts. Front. Mar. Sci. 2023, 10, 1135058. [Google Scholar] [CrossRef]
- Khan, M.N.; Wang, Q.Q.; Idrees, B.S.; Teng, G.; Xiangli, W.; Cui, X.T.; Wei, K. Evaluation of Human Melanoma and Normal Formalin Paraffin-Fixed Samples Using Raman and LIBS Fused Data. Lasers Med. Sci. 2022, 37, 2489–2499. [Google Scholar] [CrossRef]
- Bukhari, M.; Awan, M.A.; Qazi, I.A.; Baig, M.A. Development of a Method for the Determination of Chromium and Cadmium in Tannery Wastewater Using Laser-Induced Breakdown Spectroscopy. J. Anal. Methods Chem. 2012, 2012, 823016. [Google Scholar] [CrossRef]
- Ewusi-Annan, E.; Surmick, D.M.; Melikechi, N.; Wiens, R.C. Simulated Laser-Induced Breakdown Spectra of Graphite and Synthetic Shergottite Glass under Martian Conditions. Spectrochim. Acta Part B At. Spectrosc. 2018, 148, 31–43. [Google Scholar] [CrossRef]
- Chen, S.H.; Li, Y.X.; Li, P.H.; Xiao, X.Y.; Jiang, M.; Li, S.S.; Zhou, W.Y.; Yang, M.; Huang, X.J.; Liu, W.-Q. Electrochemical Spectral Methods for Trace Detection of Heavy Metals: A Review. TrAC Trends Anal. Chem. 2018, 106, 139–150. [Google Scholar] [CrossRef]
- Zhu, Y.J.; Ma, S.X.; Yang, G.Y.; Tian, H.W.; Dong, D.M. Rapid Automatic Detection of Water Ca, Mg Elements Using Laser-Induced Breakdown Spectroscopy. Front. Phys. 2023, 11, 1179574. [Google Scholar] [CrossRef]
- Wang, J.M.; Li, G.; Zheng, P.C.; Shata, S.; Qazi, H.I.A.; Lu, J.S.; Liu, S.J.; Tian, H.W.; Dong, D.M. Highly Sensitive Detection of Heavy Metal Elements Using Laser-Induced Breakdown Spectroscopy Coupled with Chelating Resin Enrichment. Chemosensors 2023, 11, 228. [Google Scholar] [CrossRef]
- Ma, S.X.; Cao, F.J.; Wen, X.L.; Xu, F.H.; Tian, H.W.; Fu, X.L.; Dong, D.M. Detection of Heavy Metal Ions Using Laser-Induced Breakdown Spectroscopy Combined with Filter Paper Modified with PtAg Bimetallic Nanoparticles. J. Hazard. Mater. 2023, 443, 130188. [Google Scholar] [CrossRef] [PubMed]
- Papai, R.; Mariano, C.d.S.; Pereira, C.V.; Ferreira da Costa, P.V.; Leme, F.d.O.; Nomura, C.S.; Gaubeur, I. Matte Photographic Paper as a Low-Cost Material for Metal Ion Retention and Elemental Measurements with Laser-Induced Breakdown Spectroscopy. Talanta 2019, 205, 120167. [Google Scholar] [CrossRef] [PubMed]
- Yueh, F.-Y.; Sharma, R.C.; Singh, J.P.; Zhang, H.; Spencer, W.A. Evaluation of the Potential of Laser-Induced Breakdown Spectroscopy for Detection of Trace Element in Liquid. J. Air Waste Manag. Assoc. 2002, 52, 1307–1315. [Google Scholar] [CrossRef]
- Bhatt, C.R.; Hartzler, D.; Jain, J.; McIntyre, D.L. Determination of As, Hg, S, and Se in Liquid Jets by Laser-Based Optical Diagnostic Technique. Appl. Phys. B-Laser Opt. 2021, 127, 8. [Google Scholar] [CrossRef]
- GB/T 601-2016; Chemical Reagent Preparations of Reference Titration Solutions. National Standard of the People’s Republic of China: Beijing, China, 2016.
- Zhang, D.C.; Hu, Z.Q.; Su, Y.B.; Hai, B.; Zhu, X.L.; Zhu, J.F.; Ma, X. Simple Method for Liquid Analysis by Laser-Induced Breakdown Spectroscopy (LIBS). Opt. Express 2018, 26, 18794. [Google Scholar] [CrossRef]
- Zheng, Y.; Ban, D.; Li, N.; Song, J.; Zhang, J.; Luo, Y.; Guan, J.; Zhang, C.; Xue, C. Performance Improvement of Underwater LIBS Qualitative and Quantitative Analysis by Irradiating with Long Nanosecond Pulses. Analyst 2024, 149, 768–777. [Google Scholar] [CrossRef]
Sample Number | Ca (mg/L) | Mg (mg/L) | Sample Number | Ca (mg/L) | Mg (mg/L) |
---|---|---|---|---|---|
No. 1 | 1000 | 1000 | No. 7 | 100 | 100 |
No. 2 | 750 | 750 | No. 8 | 80 | 80 |
No. 3 | 500 | 500 | No. 9 | 60 | 60 |
No. 4 | 300 | 300 | No. 10 | 40 | 40 |
No. 5 | 200 | 200 | No. 11 | 20 | 20 |
No. 6 | 150 | 150 |
Type | Sample No. | Element (ICP-MS) | Add (mg/L) | Predict (mg/L) | Recovery Rate |
---|---|---|---|---|---|
Pond | 1 | Mg (16.814 mg/L) | 0 | 17.13 | 101.87% |
2 | 20 | 35.88 | 95.33% | ||
3 | 40 | 58.62 | 104.52% | ||
4 | 60 | 76.69 | 99.79% | ||
5 | 80 | 98.57 | 102.20% | ||
6 | Ca (14.097 mg/L) | 0 | 13.95 | 98.95% | |
7 | 40 | 53.57 | 98.68% | ||
8 | 80 | 91.61 | 96.89% | ||
9 | 120 | 136.18 | 101.74% | ||
10 | 160 | 173.60 | 99.69% | ||
River | 11 | Mg (8.293 mg/L) | 0 | 8.56 | 103.21% |
12 | 20 | 30.04 | 108.74% | ||
13 | 40 | 48.85 | 101.39% | ||
14 | 60 | 67.38 | 98.47% | ||
15 | 80 | 83.04 | 93.43% | ||
16 | Ca (27.537 mg/L) | 0 | 26.89 | 97.65% | |
17 | 40 | 63.87 | 90.83% | ||
18 | 80 | 108.71 | 101.47% | ||
19 | 120 | 149.32 | 101.49% | ||
20 | 160 | 187.47 | 99.96% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, Y.; Ma, S.; Zheng, P.; Zhao, X.; Xing, Z.; Jiao, L.; Tian, H.; Dong, D. On-Site Detection of Ca and Mg in Surface Water Using Portable Laser-Induced Breakdown Spectroscopy. Chemosensors 2025, 13, 16. https://doi.org/10.3390/chemosensors13010016
Wan Y, Ma S, Zheng P, Zhao X, Xing Z, Jiao L, Tian H, Dong D. On-Site Detection of Ca and Mg in Surface Water Using Portable Laser-Induced Breakdown Spectroscopy. Chemosensors. 2025; 13(1):16. https://doi.org/10.3390/chemosensors13010016
Chicago/Turabian StyleWan, Yuanxin, Shixiang Ma, Peichao Zheng, Xiande Zhao, Zhen Xing, Leizi Jiao, Hongwu Tian, and Daming Dong. 2025. "On-Site Detection of Ca and Mg in Surface Water Using Portable Laser-Induced Breakdown Spectroscopy" Chemosensors 13, no. 1: 16. https://doi.org/10.3390/chemosensors13010016
APA StyleWan, Y., Ma, S., Zheng, P., Zhao, X., Xing, Z., Jiao, L., Tian, H., & Dong, D. (2025). On-Site Detection of Ca and Mg in Surface Water Using Portable Laser-Induced Breakdown Spectroscopy. Chemosensors, 13(1), 16. https://doi.org/10.3390/chemosensors13010016