Mechanical and Microstructural Characterization of AISI 316L Stainless Steel Superficially Modified by Solid Nitriding Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Synthesis
2.2. Metallographic Evaluation
2.3. Mechanical Testing
3. Results and Discussion
3.1. SEM Characterization
Nitrogen Diffusion and Line Scan Characterization
3.2. X-ray Diffraction Analyses
3.3. Mechanical Properties
3.3.1. Microhardness Evaluation
3.3.2. Wear Behavior
Weight Loss Analyses
Worn Surfaces Analyses
Wear Factor Analyses
4. Conclusions
- The layer thickness consisting of different nitrides increases as a function of the nitriding time.
- The γN, γ′-Fe4N, Cr2N and Fe2–3N phases were produced in the diffusion layer in most of the different nitriding times. Although at 12 and 24 h, the γN phase decreases due to the reduction in nitrogen concentration.
- The samples treated for 24 h exhibited the highest surface hardness values. This hardness increment is attributed to the presence of the γN phase, which is one of the main factors responsible for the hardness increase, followed by the lattice distortion of an interstitial mechanism.
- Wear evaluation indicates an increase in wear resistance in the samples treated at 12 and 24 h exposure times, clearly evidenced and supported by the wear factor results, with the different nitrided phases being responsible for this increase in wear resistance, and the produced oxide layers due to intrinsic frictional heating. Hence, they suffered a small depletion due to the low residual stresses in the nitrided layer.
- A disadvantage of applying this method is that the pieces obtained have a rough surface finish after the solid nitriding treatment. However, with a polishing treatment, an acceptable surface finish is obtained without affecting the modified layer.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christiansen, T.; Somers, M.A.J. Characterization of low temperature surface hardened stainless steel. Struers J. Metallogr. 2006, 9, 2–17. [Google Scholar]
- Munz, W.D.; Hofmann, D.; Harting, K. A high rate sputtering process for the formation of hard-reducing TiN coatings of tools. Thin Solid Films 1982, 96, 79–86. [Google Scholar] [CrossRef]
- Devaraju, A.; Elayaperumal, A.; Alphonsa, J.; Kailas, S.V.; Venugopal, S. Microstructure and dry sliding wear resistance evaluation of plasma nitrided austenitic stainless steel type AISI 316LN against different sliders. Surf. Coat. Technol. 2012, 207, 406–412. [Google Scholar] [CrossRef]
- Lin, N.; Liu, Q.; Zou, J.; Guo, J.; Li, D.; Yuan, S.; Ma, Y.; Wang, Z.; Wang, Z.; Tang, B. Surface Texturing-Plasma Nitriding Duplex Treatment for Improving Tribological Performance of AISI 316 Stainless Steel. Materials 2016, 9, 875. [Google Scholar] [CrossRef]
- De Almeida, E.A.D.S.; Da Costa, C.E.; Milan, J.C.G. Study of the nitrided layer obtained by different nitriding methods. Matéria 2015, 20, 460–465. [Google Scholar] [CrossRef]
- Günzel, R.; Betzl, M.; Alphonsa, I.; Ganguly, B.; John, P.; Mukherjee, S. Plasma-source ion implantation compared with glow-discharge plasma nitriding of stainless steel. Surf. Coat. Technol. 1999, 112, 307–309. [Google Scholar] [CrossRef]
- Liang, W.; Juncai, S.; Xiaolei, X. Low pressure plasma arc source ion nitriding compared with glow-discharge plasma nitriding of stainless steel. Surf. Coat. Technol. 2001, 145, 31–37. [Google Scholar] [CrossRef]
- Qayyum, A.; Naveed, M.A.; Zeb, S.; Murtaza, G.; Zakaullah, M. Glow Discharge Plasma Nitriding of AISI 304 Stainless Steel. Plasma Sci. Technol. 2007, 9, 463–468. [Google Scholar] [CrossRef]
- Grigoriev, S.; Metel, A.; Volosova, M.; Melnik, Y.; Ney, H.A.; Mustafaev, E. Surface Hardening of Massive Steel Products in the Low-pressure Glow Discharge Plasma. Technologies 2019, 7, 62. [Google Scholar] [CrossRef]
- Ashrafizadeh, F. Influence of plasma and gas nitriding on fatigue resistance of plain carbon (Ck45) steel. Surf. Coat. Technol. 2003, 173–174, 1196–1200. [Google Scholar] [CrossRef]
- Foadian, F.; Feyzi, F.; Haghighat, S.; Aghajani, H. Nitrogen diffusion in different microstructures of plasma nitrided CK45 steel. Mater. Sci. Technol. 2013, 30, 86–90. [Google Scholar] [CrossRef]
- Yamada, Y.; Hirohito, E.; Takahashi, K. Influence of Crystal Structure of Nitride Compound Layer on Torsion Fatigue Strength of Alloy Steel. Metals 2019, 9, 1352. [Google Scholar] [CrossRef]
- Allen, C.; Li, C.X.; Bell, Y.; Sun, Y. The effect of fretting on the fatigue behaviour of plasma nitrided stainless steels. Wear 2003, 254, 1106–1112. [Google Scholar] [CrossRef]
- Yıldız, F.; Yetim, A.; Alsaran, A.; Çelik, A.; Kaymaz, İ. Fretting fatigue properties of plasma nitrided AISI 316L stainless steel: Experiments and finite element analysis. Tribol. Int. 2011, 44, 1979–1986. [Google Scholar] [CrossRef]
- Gokcekaya, O.; Ergun, C.; Gulmez, T.; Nakano, T.; Yilmaz, S. Structural Characterization of Ion Nitrided 316L Austenitic Stainless Steel: Influence of Treatment Temperature and Time. Metals 2022, 12, 306. [Google Scholar] [CrossRef]
- Oliveira, R.M.; Ueda, M.; Silva, L.L.G.; Reuther, H.; Lepienski, C.M. Characteristics of austenitic stainless steel nitrided in a hybrid glow discharge plasma. Braz. J. Phys. 2009, 39, 554–558. [Google Scholar] [CrossRef]
- Li, G.Y.; Lei, M.K. Microstructure and Properties of Plasma Source Nitrided AISI 316 Austenitic Stainless Steel. J. Mater. Eng Perform 2017, 26, 418–423. [Google Scholar] [CrossRef]
- Dos Santos de Almeida, E.A.; Giubilei Milan, J.C.; Edil da Costa, C. Acquired Properties Comparison of Solid Nitriding, Gas Nitriding and Plasma Nitriding in Tool Steels. Mater. Res. 2015, 18, 27–35. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Bell, T. Structure and corrosion resistance of plasma nitrided stainless steel. Surf. Eng. 1985, 1, 131–136. [Google Scholar] [CrossRef]
- Baranowska, J. Characteristic of the nitrided layers on the stainless steel at low temperature. Surf. Coat. Technol. 2004, 180–181, 145–149. [Google Scholar] [CrossRef]
- Drouet, M.; Stinville, J.C.; Villechaise, P.; Rivière, J.P.; Templier, C. Surface evolution during low temperature plasma assisted nitriding of austenitic stainless steel. Eur. Phys. J. Appl. Phys. 2008, 43, 349–351. [Google Scholar] [CrossRef]
- Wei, R.; Vajo, J.J.; Matossian, J.N.; Wilbur, P.J.; Davis, J.A.; Williamson, D.L.; Collins, G.A. A comparative study of beam ion implantation, plasma ion implantation and nitriding of AISI 304 stainless steel. Surf. Coat. Technol. 1996, 83, 235–242. [Google Scholar] [CrossRef]
- Liang, W. Surface modification of AISI 304 austenitic stainless Steel by plasma nitriding. Appl. Surf. Sci. 2003, 211, 308–314. [Google Scholar] [CrossRef]
- Krawczyńska, A.T.; Zdunek, J.; Sitek, R.; Lewandowska, M. Formation of the Nitrided Layers on an Austenitic Stainless Steel with Different Grain Structures. Adv. Eng. Mater. 2017, 20, 1701049. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Wang, L. Surface properties of nitrided layer on AISI 316L austenitic stainless steel produced by high temperature plasma nitriding in short time. Appl. Surf. Sci. 2014, 298, 243–250. [Google Scholar] [CrossRef]
- Díaz-Guillén, J.C.; Granda-Gutiérrez, E.E.; Vargas-Gutiérrez, G.; Díaz-Guillén, M.R.; Aguilar-Martínez, J.A.; Álvarez-Contreras, L. Effect of Nitriding Current Density on the Surface Properties and Crystallite Size of Pulsed Plasma-Nitrided AISI 316L. J. Mater. Sci. Chem. Eng. 2015, 03, 45–51. [Google Scholar] [CrossRef]
- Kochmański, P.; Długozima, M.; Baranowska, J. Structure and Properties of Gas-Nitrided, Precipitation-Hardened Martensitic Stainless Steel. Materials 2022, 15, 907. [Google Scholar] [CrossRef]
- Gorbachev, I.; Popov, V.V.; Pasynkov, A.Y. Thermodynamic Simulation of the Formation of Carbonitrides in Steels with Nb and Ti. Phys. Met. Metallogr. 2012, 113–117, 687–695. [Google Scholar] [CrossRef]
- Binder, C.; Bendo, T.; Hammes, G.; Klein, A.N.; de Mello, J.D.B. Effect of nature of nitrided phases on sliding wear of plasma nitrided sintered iron. Wear 2015, 332–333, 995–1005. [Google Scholar] [CrossRef]
- Wang, L.; Ji, S.; Sun, J. Effect of nitriding time on the nitrided layer of AISI 304 austenitic stainless steel. Surf. Coat. Technol. 2006, 200, 5067–5070. [Google Scholar] [CrossRef]
- Xu, X.; Yu, Z.; Wang, L.; Qiang, J.; Hei, Z. Phase depth distribution characteristics of the plasma nitrided layer on AISI 304 stainless steel. Surf. Coat. Technol. 2003, 162, 242–247. [Google Scholar] [CrossRef]
- Mittemeijer, E.J.; Vogels, A.B.P.; Van Der Schaaf, P.J. Morphology and lattice distortions of nitrided iron and iron-chromium alloys and steels. J. Mater. Sci. 1980, 15, 3129–3140. [Google Scholar] [CrossRef]
- Tang, D.; Zhang, C.; Zhan, H.; Huang, W.; Ding, Z.; Chen, D.; Cui, G. High-Efficient Gas Nitridation of AISI 316L Austenitic Stainless Steel by a Novel Critical Temperature Nitriding Process. Coatings 2023, 13, 1708. [Google Scholar] [CrossRef]
C | Si | Mn | Cr | Ni | Mo | Fe |
---|---|---|---|---|---|---|
0.08 | 1.0 | 2.0 | 18.0 | 11.50 | 2.30 | Bal. |
Treatment Time [h] | Surface Roughness Before Solid Nitriding [µm] | Surface Roughness After Solid Nitriding [µm] |
---|---|---|
2 | 0.030 | 0.113 |
4 | 0.032 | 0.127 |
6 | 0.027 | 0.145 |
8 | 0.031 | 0.157 |
12 | 0.027 | 0.194 |
24 | 0.026 | 0.216 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guardian-Tapia, R.; Rosales-Cadena, I.; Roman-Zubillaga, J.L.; Gonzaga-Segura, S.R. Mechanical and Microstructural Characterization of AISI 316L Stainless Steel Superficially Modified by Solid Nitriding Technique. Coatings 2024, 14, 1167. https://doi.org/10.3390/coatings14091167
Guardian-Tapia R, Rosales-Cadena I, Roman-Zubillaga JL, Gonzaga-Segura SR. Mechanical and Microstructural Characterization of AISI 316L Stainless Steel Superficially Modified by Solid Nitriding Technique. Coatings. 2024; 14(9):1167. https://doi.org/10.3390/coatings14091167
Chicago/Turabian StyleGuardian-Tapia, Rene, Isai Rosales-Cadena, Jose Luis Roman-Zubillaga, and Sergio Ruben Gonzaga-Segura. 2024. "Mechanical and Microstructural Characterization of AISI 316L Stainless Steel Superficially Modified by Solid Nitriding Technique" Coatings 14, no. 9: 1167. https://doi.org/10.3390/coatings14091167