Optimization-Based Construction of Quadrilateral Table Cartograms
Abstract
:1. Introduction
2. Previous Studies on Table Cartograms
2.1. Table Cartogram, A Special Form of Area Cartograms
2.2. Construction Methods of Table Cartograms
2.3. Construction of Contiguous Area Cartograms based on Optimization
3. Proposal of Construction of Quadrilateral Table Cartograms
- To represent data precisely: the size of each cell should be close to its attribute value as much as possible.
- To make each row and column recognizable on quadrilateral table cartograms: the direction of horizontal and vertical edges should be kept as much as possible.
- To create a table-like figures: the outline border should be fixed.
3.1. Construction
3.1.1. First step: Adjustment of Heights of Rows and Widths of Columns of Tables
3.1.2. Second Step: Deformation of Cells to Increase the Data Representation Precision
3.2. Sorting of Rows and Columns
4. Evaluation and Discussion
4.1. Evaluation of a Quadrilateral Table Cartogram Construction Method
4.1.1. Initial Values of Weight μ
4.1.2. Comparison with Inoue and Shimizu (2006)
4.1.3. Comparison with Evans et al. (2018)
4.2. Evaluation of Sorting Based on the Similarity of Data
4.3. Discussion on the Applicability of Visualization by Quadrilateral Table Cartograms
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tobler, W.R. Thirty-five years of computer cartograms. Ann. Am. Assoc. Geogr. 2004, 94, 58–73. [Google Scholar] [CrossRef]
- Nusrat, S.; Kobourov, S. The state of the art in cartograms. Comput. Graph. Forum 2016, 35, 619–642. [Google Scholar] [CrossRef] [Green Version]
- Sheehan, W.F. Periodic table of elements with emphasis. Chemistry 1976, 49, 17–18. [Google Scholar]
- Winter, M.J. Diffusion cartogram for the display of periodic table data. J. Chem. Educ. 2011, 88, 1507–1510. [Google Scholar] [CrossRef]
- Evans, W.; Felsner, S.; Kaufmann, M.; Kobourov, S.G.; Mondal, D.; Nishat, R.I.; Verbeek, K. Table cartogram. Comput. Geom. 2018, 68, 174–185. [Google Scholar] [CrossRef] [Green Version]
- Element Scarcity—EuChemS Periodic Table. Available online: https://www.euchems.eu/euchems-periodic-table/ (accessed on 30 October 2019).
- Gastner, M.T.; Newman, M.E.J. Diffusion-based method for producing density-equalizing maps. Proc. Natl. Acad. Sci. USA 2004, 101, 7499–7504. [Google Scholar] [CrossRef] [Green Version]
- Inoue, R.; Shimizu, E. A new algorithm for continuous area cartogram construction with triangulation of regions and restriction on bearing changes of edges. Cartogr. Geogr. Inf. Sci. 2006, 33, 115–125. [Google Scholar] [CrossRef]
- Li, M.; Inoue, R. Table cartogram generation as an optimization problem. Abstr. Int. Cartogr. Assoc. 2019, 1, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Dorling, D. Area Cartograms: Their Use and Creation, 1st ed.; Department of Geography, University of Bristol: Bristol, UK, 1996. [Google Scholar]
- Inoue, R. A new construction method for circle cartograms. Cartogr. Geogr. Inf. Sci. 2011, 38, 146–152. [Google Scholar] [CrossRef]
- Rasiz, E. The rectangular statistical cartogram. Geogr. Rev. 1934, 24, 292–296. [Google Scholar] [CrossRef]
- Upton, G.J.G. Rectangular cartograms, spatial autocorrelation, and interpolation. J. Reg. Sci. Assoc. Int. 1991, 70, 287–302. [Google Scholar] [CrossRef]
- Inoue, R. Generalized approach to construction of simple-shaped non-contiguous area cartograms. In Proceedings of the 25th International Cartographic Conference, Paris, France, 3–8 July 2011; p. CO-272. [Google Scholar]
- Inoue, R. An approach to the construction of simple-shaped non-contiguous area cartograms. Theory Appl. GIS 2012, 20, 11–22. (In Japanese) [Google Scholar] [CrossRef]
- Olson, J.M. Noncontiguous area cartogram. Prof. Geogr. 1976, 28, 371–380. [Google Scholar] [CrossRef]
- Tobler, W.R. A continuous transformation useful for districting. Ann. N. Y. Acad. Sci. 1973, 219, 215–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobler, W.R. Pseudo-cartograms. Am. Cartogr. 1986, 13, 43–50. [Google Scholar] [CrossRef]
- Dougenik, J.A.; Chrisman, N.R.; Niemeyer, D.R. An algorithm to construct continuous area cartograms. Prof. Geogr. 1985, 37, 75–81. [Google Scholar] [CrossRef]
- Gusein-Zade, S.M.; Tikunov, V.S. A new technique for constructing continuous cartograms. Cartogr. Geogra. Inf. Syst. 1993, 20, 167–173. [Google Scholar] [CrossRef]
- House, D.H.; Kocmoud, C.J. Continuous cartogram construction. Proc. IEEE Symp. Inf. Vis. 1998, 197–204. [Google Scholar] [CrossRef]
- Keim, D.A.; North, S.C.; Panse, C. CartoDraw: A fast algorithm for generating contiguous cartograms. IEEE Trans. Vis. Comput. Graph. 2004, 10, 95–110. [Google Scholar] [CrossRef]
- Sun, S. A fast, free-form rubber-sheet algorithm for contiguous area cartograms. Int. J. Geogr. Inf. Sci. 2013, 27, 567–593. [Google Scholar] [CrossRef]
- Sun, S. An optimized rubber-sheet algorithm for continuous area cartograms. Prof. Geogr 2013, 65, 16–30. [Google Scholar] [CrossRef]
- Gastner, M.T.; Seguy, V.; More, P. Fast flow-based algorithm for creating density-equalizing map projections. Proc. Natl. Acad. Sci. USA 2018, 115, E2156–E2164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heilmann, R.; Keim, D.A.; Panse, C.; Sips, M. RecMap: Rectangular map approximations. Proc. IEEE Inf. Vis. 2004, 33–40. [Google Scholar] [CrossRef]
- Speckmann, B.; van Kreveld, M.; Florisson, S. A linear programming approach to rectangular cartograms. In Progress in Spatial Data Handling; Riedl, A., Kainz, W., Elmes, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 529–546. [Google Scholar]
- van Kreveld, M.; Speckmann, B. On rectangular cartograms. Comput. Geom. 2007, 37, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Inoue, R.; Kitaura, K.; Shimizu, E. New solution for construction of rectilinear area cartogram. In Proceedings of the 24th International Cartographic Conference, Santiago, Chile, 15–21 November 2009; p. 20_3:1-10. [Google Scholar]
- Shimizu, E.; Inoue, R. A new algorithm for distance cartogram construction. Int. J. Geogr. Inf. Sci. 2009, 23, 1453–1470. [Google Scholar] [CrossRef]
- Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
μ | RMSE between Values and Sizes of Cells | Maximal Inner Angle (Degree) | Minimal Inner Angle (Degree) | RMSE of Bearing Angles of Edges between on Table Cartogram and original Table (Degree) | RMSE between Inner Angles and Right Angles (Degree) |
---|---|---|---|---|---|
0.005 | 5.05e-04 | 147.45 | 40.92 | 12.69 | 22.74 |
0.01 | 4.02e-04 | 141.58 | 41.74 | 11.71 | 21.44 |
0.05 | 3.32e-04 | 141.99 | 51.95 | 11.01 | 20.78 |
0.1 | 3.78e-04 | 133.68 | 50.54 | 10.81 | 20.29 |
Methods | RMSE between GDP and Sizes of Cells (10 billion Current USD) | Maximal Inner Angle (Degree) | Minimal Inner Angle (Degree) | RMSE of Bearing Angles of Edges between on Table Cartogram and Original Table (Degree) | RMSE between Inner Angles and Right Angles (Degree) |
---|---|---|---|---|---|
Proposed method | 2.93e-05 | 113.10 | 68.65 | 3.35 | 5.74 |
Inoue and Shimizu (2006) | 3.72e-05 | 130.07 | 50.90 | 10.31 | 15.15 |
Data | RMSE between Values and Sizes of Cells | Maximal Inner Angle (Degree) | Minimal Inner Angle (Degree) | RMSE of Bearing Angles of Edges between on Table Cartogram and Original Table (Degree) | RMSE between Inner Angles and Right Angles (Degree) | Calculation Time (Sec) |
---|---|---|---|---|---|---|
Thermal conductivity | 2.43e-05 (W·cm−1·K−1) | 175.49 | 11.04 | 15.92 | 25.51 | 1.84 |
Boiling point | 0.0618 (°C) | 117.51 | 66.40 | 5.32 | 9.63 | 3.79 |
Dataset | RMSE between Death Rates and Sizes of Cells (%) | Maximal Inner Angle (Degree) | Minimal Inner Angle (Degree) | RMSE of Bearing Angles of Edges between on Table Cartogram and Original Table (Degree) | RMSE between Inner Angles and Right Angles (Degree) |
---|---|---|---|---|---|
Sorted by proposed method | 1.44e-04 | 129.05 | 57.15 | 6.12 | 11.32 |
Alphabetical order of country names | 1.35e-04 | 140.45 | 50.88 | 5.37 | 8.49 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inoue, R.; Li, M. Optimization-Based Construction of Quadrilateral Table Cartograms. ISPRS Int. J. Geo-Inf. 2020, 9, 43. https://doi.org/10.3390/ijgi9010043
Inoue R, Li M. Optimization-Based Construction of Quadrilateral Table Cartograms. ISPRS International Journal of Geo-Information. 2020; 9(1):43. https://doi.org/10.3390/ijgi9010043
Chicago/Turabian StyleInoue, Ryo, and Mao Li. 2020. "Optimization-Based Construction of Quadrilateral Table Cartograms" ISPRS International Journal of Geo-Information 9, no. 1: 43. https://doi.org/10.3390/ijgi9010043