Potential of 3D Printing for Heat Exchanger Heat Transfer Optimization—Sustainability Perspective
Abstract
:1. Introduction
- Greater efficiency. Traditional manufacturing methods often waste materials due to the need for cutting and forming. Three-dimensional printing allows materials to be applied precisely in layers, minimizing waste. The 3D printing process can be faster than traditional manufacturing methods, resulting in shorter production cycles [21].
- Shorter supply chains. AM makes it possible to reduce the need to transport products over long distances and streamline the supply chain by reducing the need for large inventories. Instead, parts can be produced on demand, minimizing inventory costs and waste. This is particularly beneficial for the maintenance of spare parts in the energy industry. Additive manufacturing is widely used in the production of components for renewable energy systems such as wind turbines and solar panels. This includes the manufacture of turbine blades, housing structures, and specialized components that improve the overall performance of renewable energy systems. Local manufacturing helps to reduce transportation-related greenhouse gas emissions [21].
- Greater design freedom. Three-dimensional printing enables the creation of complex structures and geometries that are difficult or impossible to achieve with traditional manufacturing methods [22,23], thus providing a high degree of customization [24,25]. Lightweight components that can be used in a variety of energy applications, including aerospace, renewable energy, and transportation, thus contributing to improved energy efficiency, particularly in sectors such as aviation and electric vehicles.
- The ability to easily print replacement parts [26]. Producing custom and complex components tailored to specific energy applications. This is particularly valuable for developing parts for energy systems with unique requirements.
- Three-dimensional printing often has lower production costs per part, especially for low volumes [27]. Three-dimensional printing facilitates rapid and low-cost prototyping, allowing engineers to test and refine designs faster and more cost effectively than with traditional manufacturing methods. This supports the design and innovation process.
- The potential of relevant open source technology [33].
Designing for 3D Printing
2. The Promises of 3D Printing to Optimize Heat Transfer
2.1. Better/Worse Heat Transfer Due to Complex Geometries and Internal Structures
Complex Geometries for Better Heat Transfer
2.2. Selecting Materials
2.3. Lightweight Design and Geometry Optimization
2.4. Localized Production
2.5. Heat Exchangers Using 3D Printing Technology
2.6. Integration with Renewable Energy Systems
3. Challenges of 3D Printing Technology in the Context of Sustainability
- Many current 3D printing materials are based on plastics, which can cause pollution and are difficult to recycle. There is an urgent need to develop more sustainable materials, such as those that are biodegradable or based on renewable resources. Recycling processes for these materials must be made more efficient and widely available to minimize their negative impact on the environment.
- The generation of excessive waste and energy consumption during the 3D printing process can be detrimental to sustainability. Research into new methods and technologies that minimize waste and energy consumption is essential.
- Future research should focus on improving the sustainability of AM technology by developing lower-energy powder manufacturing technologies, analyzing the impact of key parameters (such as specific energy consumption, build rate, powder yield, etc.) on the life cycle assessment of the AM process, optimizing key parameters for an efficient result, and increasing the production speed of the AM process. This will also improve the economics of the AM process by reducing the cost of producing the required parts [277].
- As 3D printing grows in popularity, there is a need to ensure the scalability of manufacturing processes and the availability of suitable raw materials. It is important to ensure that raw materials are ethical, sustainable and do not lead to the depletion of natural resources.
- The use of 3D printing in some sectors, such as medicine or aerospace, may require compliance with strict safety standards and norms, posing a challenge for the technology.
- Many people, both consumers and businesses, may not be aware of the potential benefits and challenges of 3D printing in the context of sustainability. Education and awareness are key to the sustainable adoption of 3D printing technology.
- The lack of consistent standards and regulations for 3D printing can make it difficult to control the technology’s environmental impact. Establishing consistent standards for sustainable 3D printing is essential. Developing 3D printing with these challenges in mind can help to create more sustainable and environmentally friendly practices in the manufacturing industry. Separately, research into additive manufacturing applied to process/chemical engineering is a rapidly growing field. As technology advances and environmental awareness increases, it is expected that these challenges will be addressed and contribute to the further development of sustainable solutions in the field of 3D printing.
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
AM | Additive manufacturing |
CAD | Computer-aided design |
CAM | Computer-aided manufacturing |
CGDS | Cold gas dynamic spray |
DMLS | Direct metal laser sintering |
FDM | Fused deposition modeling |
LCM | Lithography-based ceramic manufacturing |
LIGA | Lithography, electroplating, and molding |
LOM | Laminated object manufacturing |
LPBF | Laser powder bed fusion |
LPW | Laser polymer welding |
SLM | Selective laser melting |
SLS | Selective laser sintering |
UAM | Ultrasonic additive manufacturing |
SLA | Stereolithography |
DIW | Direct inkjet writing |
R2R | Roll-to-roll |
IL | Imprint lithography |
EFF | Extrusion free forming |
DED | Directed energy deposition |
References
- Tsangas, M.; Papamichael, I.; Zorpas, A.A. Sustainable Energy Planning in a New Situation. Energies 2023, 16, 1626. [Google Scholar] [CrossRef]
- Tsangas, M.; Zorpas, A.A.; Jeguirim, M. Sustainable renewable energy policies and regulations, recent advances, and challenges. In Renewable Energy Production and Distribution; Elsevier: Amsterdam, The Netherlands, 2022; pp. 449–465. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Atems, B.; Hotaling, C. The effect of renewable and nonrenewable electricity generation on economic growth. Energy Policy 2018, 112, 111–118. [Google Scholar] [CrossRef]
- Muth, J.; Klunker, A.; Völlmecke, C. Putting 3D printing to good use—Additive Manufacturing and the Sustainable Development Goals. Front. Sustain. 2023, 4, 1196228. [Google Scholar] [CrossRef]
- Shanmugam, V.; Das, O.; Neisiany, R.E.; Babu, K.; Singh, S.; Hedenqvist, M.S.; Berto, F.; Ramakrishna, S. Polymer Recycling in Additive Manufacturing: An Opportunity for the Circular Economy. Mater. Circ. Econ. 2020, 2, 11. [Google Scholar] [CrossRef]
- Anwajler, B.; Zdybel, E.; Tomaszewska-Ciosk, E. Innovative Polymer Composites with Natural Fillers Produced by Additive Manufacturing (3D Printing)—A Literature Review. Polymers 2023, 15, 3534. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Sun, J.; Yao, Q.; Ji, C.; Liu, J.; Zhu, Q. 3D printing with cellulose materials. Cellulose 2018, 25, 4275–4301. [Google Scholar] [CrossRef]
- Sudamrao Getme, A.; Patel, B. A Review: Bio-fiber’s as reinforcement in composites of polylactic acid (PLA). Mater. Today Proc. 2020, 26, 2116–2122. [Google Scholar] [CrossRef]
- Arefin, A.M.E.; Khatri, N.R.; Kulkarni, N.; Egan, P.F. Polymer 3D Printing Review: Materials, Process, and Design Strategies for Medical Applications. Polymers 2021, 13, 1499. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Fu, Y.; Liu, C.; Li, Y.; Wang, P.; He, Y. 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 2019, 39, 661–687. [Google Scholar] [CrossRef]
- Buchanan, C.; Gardner, L. Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges. Eng. Struct. 2019, 180, 332–348. [Google Scholar] [CrossRef]
- Nehme, S.; Abeidi, A. 3D concrete printing: Review. Epitoanyag-J. Silic. Based Compos. Mater. 2022, 74, 183–187. [Google Scholar] [CrossRef]
- Fratello, V.S.; Rael, R. Innovating materials for large scale additive manufacturing: Salt, soil, cement and chardonnay. Cem. Concr. Res. 2020, 134, 106097. [Google Scholar] [CrossRef]
- Richards, D.J.; Tan, Y.; Jia, J.; Yao, H.; Mei, Y. 3D Printing for Tissue Engineering. Isr. J. Chem. 2013, 53, 805–814. [Google Scholar] [CrossRef] [PubMed]
- ISO/ASTM 52900:2021; Additive Manufacturing—General Principles—Fundamentals and Vocabulary. Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ISO: Geneva, Switzerland, 2021.
- Jafferson, J.M.; Sabareesh, M.C.; Sidharth, B.S. 3D printed fabrics using generative and material Driven design. Mater. Today Proc. 2021, 46, 1319–1327. [Google Scholar] [CrossRef]
- Ryan, K.R.; Down, M.P.; Banks, C.E. Future of additive manufacturing: Overview of 4D and 3D printed smart and advanced materials and their applications. Chem. Eng. J. 2021, 403, 126162. [Google Scholar] [CrossRef]
- King, D.L.; Babasola, A.; Rozario, J.; Pearce, J.M. Mobile Open-Source Solar-Powered 3-D Printers for Distributed Manufacturing in Off-Grid Communities. Chall. Sustain. 2014, 2, 18–27. [Google Scholar] [CrossRef]
- Ford, S.; Minshall, T. Invited review article: Where and how 3D printing is used in teaching and education. Addit. Manuf. 2019, 25, 131–150. [Google Scholar] [CrossRef]
- Gebler, M.; Schoot Uiterkamp, A.J.M.; Visser, C. A global sustainability perspective on 3D printing technologies. Energy Policy 2014, 74, 158–167. [Google Scholar] [CrossRef]
- Olsson, A.; Hellsing, M.S.; Rennie, A.R. New possibilities using additive manufacturing with materials that are difficult to process and with complex structures. Phys. Scr. 2017, 92, 053002. [Google Scholar] [CrossRef]
- Li, C.; Pisignano, D.; Zhao, Y.; Xue, J. Advances in Medical Applications of Additive Manufacturing. Engineering 2020, 6, 1222–1231. [Google Scholar] [CrossRef]
- Attaran, M. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus. Horiz. 2017, 60, 677–688. [Google Scholar] [CrossRef]
- Srinivasan, R.; Giannikas, V.; McFarlane, D.; Thorne, A. Customising with 3D printing: The role of intelligent control. Comput. Ind. 2018, 103, 38–46. [Google Scholar] [CrossRef]
- Ford, S.; Despeisse, M. Additive manufacturing and sustainability: An exploratory study of the advantages and challenges. J. Clean. Prod. 2016, 137, 1573–1587. [Google Scholar] [CrossRef]
- Hopkinson, N.; Hague, R.J.M.; Dickens, P.M. (Eds.) Rapid Manufacturing; Wiley: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, B.; Chan, K.; Lupoi, R.; Yin, S.; Xie, Y.; Ye, S.; Yu, P.; Ke, H.; Wang, W. Enhancement on mechanical properties of CoCrNi medium entropy alloy via cold spray additive manufacturing associated with sintering. J. Manuf. Process. 2023, 94, 413–423. [Google Scholar] [CrossRef]
- Zou, B.; Wang, L.; Zhang, Y.; Liu, Y.; Ouyang, Q.; Jin, S.; Zhang, D.; Yan, W.; Li, Z. Enhanced strength and ductility of metal composites with intragranularly dispersed reinforcements by additive manufacturing. Mater. Res. Lett. 2023, 11, 360–366. [Google Scholar] [CrossRef]
- Zheng, X.; Williams, C.; Spadaccini, C.M.; Shea, K. Perspectives on multi-material additive manufacturing. J. Mater. Res. 2021, 36, 3549–3557. [Google Scholar] [CrossRef]
- Zhang, R.; Jiang, F.; Xue, L.; Yu, J. Review of Additive Manufacturing Techniques for Large-Scale Metal Functionally Graded Materials. Crystals 2022, 12, 858. [Google Scholar] [CrossRef]
- Wang, F.; Liu, C.; Yang, H.; Wang, H.; Zhang, H.; Zeng, X.; Wang, C.; Zhang, W.; Lv, W.; Zhu, P.; et al. 4D printing of ceramic structures. Addit. Manuf. 2023, 63, 103411. [Google Scholar] [CrossRef]
- Pearce, J.M.; Blair, C.M.; Laciak, K.J.; Andrews, R.; Nosrat, A.; Zelenika-Zovko, I. 3-D Printing of Open Source Appropriate Technologies for Self-Directed Sustainable Development. J. Sustain. Dev. 2010, 3, 17–21. [Google Scholar] [CrossRef]
- McDonough, J.R. A perspective on the current and future roles of additive manufacturing in process engineering, with an emphasis on heat transfer. Therm. Sci. Eng. Prog. 2020, 19, 100594. [Google Scholar] [CrossRef]
- Decker, N.; Lyu, M.; Wang, Y.; Huang, Q. Geometric Accuracy Prediction and Improvement for Additive Manufacturing Using Triangular Mesh Shape Data. J. Manuf. Sci. Eng. 2021, 143, 6. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, J.; Sabbaghi, A.; Dasgupta, T. Optimal offline compensation of shape shrinkage for three-dimensional printing processes. IIE Trans. 2015, 47, 431–441. [Google Scholar] [CrossRef]
- Bacciaglia, A.; Ceruti, A. Efficient toolpath planning for collaborative material extrusion machines. Rapid Prototyp. J. 2023, 29, 1814–1828. [Google Scholar] [CrossRef]
- Fontaine, N. Modular User-Configurable Multi-Part 3D Layering System and Hot End Assembly. U.S. Patent 14/845,803, 4 September 2015. [Google Scholar]
- Frutuoso, N.A.M.d.M. Tool path generation for hybrid additive manufacturing. In Proceedings of the Solid Freeform Fabrication Symposium—An Additive Manufacturing, Austin, TX, USA, 13–15 August 2018. [Google Scholar]
- Leite, M.; Frutuoso, N.; Soares, B.; Ventura, R. Multiple collaborative printing heads in fdm: The issues in process. In Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 13–15 August 2018. [Google Scholar]
- Leite, M. 3D printing of large parts using multiple collaborative deposition heads—A case study withFDM. In Proceedings of the 3rd International Conference on Progress in Additive Manufacturing, Singapore, 14–17 May 2018. [Google Scholar]
- Zhang, X. Large-scale 3D printing by a team of mobile robots. Autom. Constr. 2018, 95, 98–106. [Google Scholar] [CrossRef]
- McPherson, J.; Zhou, W. A chunk-based slicer for cooperative 3D printing. Rapid Prototyp. J. 2018, 24, 1436–1446. [Google Scholar] [CrossRef]
- Afsharkohan, M.S.; Dehrooyeh, S.; Sohrabian, M.; Vaseghi, M. Influence of processing parameters tuning and rheological characterization on improvement of mechanical properties and fabrication accuracy of 3D printed models. Rapid Prototyp. J. 2023, 29, 867–881. [Google Scholar] [CrossRef]
- Kaur, I.; Singh, P. State-of-the-art in heat exchanger additive manufacturing. Int. J. Heat Mass Transf. 2021, 178, 121600. [Google Scholar] [CrossRef]
- Liu, P.S.; Chen, G.F. Porous Materials; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Ashby, M.F. The properties of foams and lattices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 15–30. [Google Scholar] [CrossRef]
- Kaur, I.; Singh, P. Critical evaluation of additively manufactured metal lattices for viability in advanced heat exchangers. Int. J. Heat Mass Transf. 2021, 168, 120858. [Google Scholar] [CrossRef]
- Liu, F. Laser-Induced Graphene Enabled Additive Manufacturing of Multifunctional 3D Architectures with Freeform Structures. Adv. Sci. 2023, 10, 4. [Google Scholar] [CrossRef]
- Du Plessis, A.; Broeckhoven, C.; Yadroitsava, I.; Yadroitsev, I.; Hands, C.H.; Kunju, R.; Bhate, D. Beautiful and Functional: A Review of Biomimetic Design in Additive Manufacturing. Addit. Manuf. 2019, 27, 408–427. [Google Scholar] [CrossRef]
- Dutkowski, K.; Kruzel, M.; Rokosz, K. Review of the State-of-the-Art Uses of Minimal Surfaces in Heat Transfer. Energies 2022, 15, 7994. [Google Scholar] [CrossRef]
- Vignoles, G.L.; Rochais, D.; Chupin, S. Computation of the conducto-radiative effective heat conductivity of porous media defined by Triply Periodic Minimal Surfaces. Int. J. Therm. Sci. 2021, 159, 106598. [Google Scholar] [CrossRef]
- Fan, Z.; Gao, R.; Liu, S. A novel battery thermal management system based on P type triply periodic minimal surface. Int. J. Heat Mass Transf. 2022, 194, 123090. [Google Scholar] [CrossRef]
- Chen, L.Y.; Liang, S.X.; Liu, Y.; Zhang, L.C. Additive manufacturing of metallic lattice structures: Unconstrained design, accurate fabrication, fascinated performances, and challenges. Mater. Sci. Eng. R Rep. 2021, 146, 100648. [Google Scholar] [CrossRef]
- Genç, A.M.; Vatansever, C.; Koçak, M.; Karadeniz, Z.H. Investigation of additively manufactured triply periodic minimal surfaces as an air-to-air heat exchanger. In Proceedings of the CLIMA 2022 The 14th REHVA HVAC World Congress, Rotterdam, The Netherlands, 22–25 May 2022. [Google Scholar]
- Reynolds, B.W.; Fee, C.J.; Morison, K.R.; Holland, D.J. Characterisation of Heat Transfer within 3D Printed TPMS Heat Exchangers. Int. J. Heat Mass Transf. 2023, 212, 124264. [Google Scholar] [CrossRef]
- Alteneiji, M.; Ali, M.I.H.; Khan, K.A.; Al-Rub, R.K.A. Heat transfer effectiveness characteristics maps for additively manufactured TPMS compact heat exchangers. Energy Storage Sav. 2022, 1, 153–161. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, X.; Xu, R.; Jiang, P. Investigations on porous media customized by triply periodic minimal surface: Heat transfer correlations and strength performance. Int. Commun. Heat Mass Transf. 2021, 129, 105713. [Google Scholar] [CrossRef]
- Khalil, M.; Hassan Ali, M.I.; Khan, K.A.; Abu Al-Rub, R. Forced convection heat transfer in heat sinks with topologies based on triply periodic minimal surfaces. Case Stud. Therm. Eng. 2022, 38, 102313. [Google Scholar] [CrossRef]
- Raja, S.; Hamulczuk, D.; Dybeck Carlsson, S. Exploring a New Energy-Efficient Way to Heat Water Design of a Heat Exchanger for Laundry Machine Applications Produced Using Additive Manufacturing. Available online: https://odr.chalmers.se/handle/20.500.12380/302189?mode=full (accessed on 10 May 2024).
- Dixit, T.; Al-Hajri, E.; Paul, M.C.; Nithiarasu, P.; Kumar, S. High performance, microarchitected, compact heat exchanger enabled by 3D printing. Appl. Therm. Eng. 2022, 210, 118339. [Google Scholar] [CrossRef]
- Yun, S.; Kwon, J.; Lee, D.; Shin, H.H.; Kim, Y. Heat transfer and stress characteristics of additive manufactured FCCZ lattice channel using thermal fluid-structure interaction model. Int. J. Heat Mass Transf. 2020, 149, 119187. [Google Scholar] [CrossRef]
- Plant, R.D.; Saghir, M.Z. Numerical and experimental investigation of high concentration aqueous alumina nanofluids in a two and three channel heat exchanger. Int. J. Thermofluids 2021, 9, 100055. [Google Scholar] [CrossRef]
- Thompson, S.M.; Aspin, Z.S.; Shamsaei, N.; Elwany, A.; Bian, L. Additive manufacturing of heat exchangers: A case study on a multi-layered Ti–6Al–4V oscillating heat pipe. Addit. Manuf. 2015, 8, 163–174. [Google Scholar] [CrossRef]
- Iasiello, M.; Cunsolo, S.; Bianco, N.; Chiu, W.K.S.; Naso, V. Developing thermal flow in open-cell foams. Int. J. Therm. Sci. 2017, 111, 129–137. [Google Scholar] [CrossRef]
- Pelanconi, M.; Zavattoni, S.; Cornolti, L.; Puragliesi, R.; Arrivabeni, E.; Ferrari, L.; Gianella, S.; Barbato, M.; Ortona, A. Application of Ceramic Lattice Structures to Design Compact, High Temperature Heat Exchangers: Material and Architecture Selection. Materials 2021, 14, 3225. [Google Scholar] [CrossRef] [PubMed]
- Aider, Y.; Kaur, I.; Cho, H.; Singh, P. Periodic heat transfer characteristics of additively manufactured lattices. Int. J. Heat Mass Transf. 2022, 189, 122692. [Google Scholar] [CrossRef]
- Butler, C.; Babu, S.; Lundy, R.; Meehan, R.R.; Punch, J.; Jeffers, N. Effects of processing parameters and heat treatment on thermal conductivity of additively manufactured AlSi10Mg by selective laser melting. Mater. Charact. 2021, 173, 110945. [Google Scholar] [CrossRef]
- Lorenzon, A.; Vaglio, E.; Casarsa, L.; Sortino, M.; Totis, G.; Saragò, G.; Lendormy, E.; Raukola, J. Heat transfer and pressure loss performances for additively manufactured pin fin arrays in annular channels. Appl. Therm. Eng. 2022, 202, 117851. [Google Scholar] [CrossRef]
- Anvari, A.; Azimi Yancheshme, A.; Kekre, K.M.; Ronen, A. State-of-the-art methods for overcoming temperature polarization in membrane distillation process: A review. J. Membr. Sci. 2020, 616, 118413. [Google Scholar] [CrossRef]
- Mousa, M.H.; Miljkovic, N.; Nawaz, K. Review of heat transfer enhancement techniques for single phase flows. Renew. Sustain. Energy Rev. 2021, 137, 110566. [Google Scholar] [CrossRef]
- Shahbazi, A.; Ashtiani, H.A.D.; Afshar, H.; Jafarkazemi, F. Optimization of the SMX static mixer types thermal and hydraulic performance by coupling CFD-Genetic Algorithm. Int. Commun. Heat Mass Transf. 2021, 126, 105388. [Google Scholar] [CrossRef]
- Sélo, R.R.J.; Catchpole-Smith, S.; Maskery, I.; Ashcroft, I.; Tuck, C. On the thermal conductivity of AlSi10Mg and lattice structures made by laser powder bed fusion. Addit. Manuf. 2020, 34, 101214. [Google Scholar] [CrossRef]
- Tiwari, R.; Andhare, R.S.; Shooshtari, A.; Ohadi, M. Development of an additive manufacturing-enabled compact manifold microchannel heat exchanger. Appl. Therm. Eng. 2019, 147, 781–788. [Google Scholar] [CrossRef]
- Jha, V.; Dessiatoun, S.; Shooshtari, A.; Al-hajri, E.S.; Ohadi, M.M. Experimental Characterization of a Nickel Alloy-Based Manifold-Microgroove Evaporator. Heat Transf. Eng. 2015, 36, 33–42. [Google Scholar] [CrossRef]
- Andhare, R.S.; Shooshtari, A.; Dessiatoun, S.V.; Ohadi, M.M. Heat transfer and pressure drop characteristics of a flat plate manifold microchannel heat exchanger in counter flow configuration. Appl. Therm. Eng. 2016, 96, 178–189. [Google Scholar] [CrossRef]
- Arie, M.A.; Shooshtari, A.H.; Dessiatoun, S.V.; Ohadi, M.M. Performance Characterization of an Additively Manufactured Titanium (Ti64) Heat Exchanger for an Air-Water Cooling Application; American Society of Mechanical Engineers: New York, NY, USA, 2016. [Google Scholar]
- Ho, J.Y.; Leong, K.C.; Wong, T.N. Experimental and numerical investigation of forced convection heat transfer in porous lattice structures produced by selective laser melting. Int. J. Therm. Sci. 2019, 137, 276–287. [Google Scholar] [CrossRef]
- Ho, J.Y.; Leong, K.C. Cylindrical porous inserts for enhancing the thermal and hydraulic performance of water-cooled cold plates. Appl. Therm. Eng. 2017, 121, 863–878. [Google Scholar] [CrossRef]
- Broughton, J.; Joshi, Y.K. Comparison of Single-Phase Convection in Additive Manufactured Versus Traditional Metal Foams. J. Heat Transf. 2020, 142, 8. [Google Scholar] [CrossRef]
- Zhai, Y.L.; Xia, G.D.; Liu, X.F.; Wang, J. Characteristics of entropy generation and heat transfer in double-layered micro heat sinks with complex structure. Energy Convers. Manag. 2015, 103, 477–486. [Google Scholar] [CrossRef]
- Dhaiban, H.T.; Hussein, M.A. The Optimal Design of Heat Sinks: A Review. J. Appl. Comput. Mech. 2020, 64, 1030–1043. [Google Scholar]
- Gradla, P.; Cervoneb, A.; Colonna, P. Integral Channel Nozzles and Heat Exchangers using Additive Manufacturing Directed Energy Deposition NASA HR-1 Alloy. In Proceedings of the 73rd International Astronautical Congress, Paris, France, 18–22 September 2022; pp. 1–14. [Google Scholar]
- Blakey-Milner, B.; Gradl, P.; Snedden, G.; Brooks, M.; Pitot, J.; Lopez, E.; Leary, M.; Berto, F.; Du Plessis, A. Metal additive manufacturing in aerospace: A review. Mater. Des. 2021, 209, 110008. [Google Scholar] [CrossRef]
- Yeranee, K.; Rao, Y.; Xu, C.; Zhang, Y.; Su, X. Turbulent Flow Heat Transfer and Thermal Stress Improvement of Gas Turbine Blade Trailing Edge Cooling with Diamond-Type TPMS Structure. Aerospace 2023, 11, 37. [Google Scholar] [CrossRef]
- Poole, S.; Phillips, R. Rapid prototyping of small wind turbine blades using additive manufacturing. In Proceedings of the 2015 Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech), Port Elizabeth, South Africa, 26–27 November 2015; pp. 189–194. [Google Scholar] [CrossRef]
- Rouway, M.; Nachtane, M.; Tarfaoui, M.; Chakhchaoui, N.; Omari, L.E.; Fraija, F.; Cherkaoui, O. 3D printing: Rapid manufacturing of a new small-scale tidal turbine blade. Int. J. Adv. Manuf. Technol. 2021, 115, 61–76. [Google Scholar] [CrossRef]
- Sobes, V.; Hiscox, B.; Popov, E.; Archibald, R.; Hauck, C.; Betzler, B.; Terrani, K. AI-based design of a nuclear reactor core. Sci. Rep. 2021, 11, 19646. [Google Scholar] [CrossRef] [PubMed]
- Shama, A.; Pouchon, M.A.; Clifford, I. Simulation of the microfluidic mixing and the droplet generation for 3D printing of nuclear fuels. Addit. Manuf. 2019, 26, 1–14. [Google Scholar] [CrossRef]
- Papadimitriou, I.; Just, M. Manufacturing of Structural Components for Internal Combustion Engine, Electric Motor and Battery Using Casting and 3D Printing. In Advances in Engine and Powertrain Research and Technology. Mechanisms and Machine Science; Springer: Cham, Switzerland, 2022; pp. 383–418. [Google Scholar] [CrossRef]
- Koca, A.; Çalışkan, C.İ.; Koç, E.; Akbal, Ö. A Novel 3D Printed Air-Cooled Fuel Cooler Heat Exchanger for Aviation Industry. Heat Transf. Eng. 2023, 44, 1350–1371. [Google Scholar] [CrossRef]
- Wei, T.W.; Oprins, H.; Cherman, V.; Beyne, E.; Baelmans, M. Experimental and numerical investigation of direct liquid jet impinging cooling using 3D printed manifolds on lidded and lidless packages for 2.5D integrated systems. Appl. Therm. Eng. 2020, 164, 114535. [Google Scholar] [CrossRef]
- Zaman, M.S.; Michalak, A.; Nasr, M.; da Silva, C.; Mills, J.K.; Amon, C.H.; Trescases, O. Multiphysics Optimization of Thermal Management Designs for Power Electronics Employing Impingement Cooling and Stereolithographic Printing. IEEE Trans. Power Electron. 2021, 36, 12769–12780. [Google Scholar] [CrossRef]
- Haertel, J.H.K.; Nellis, G.F. A fully developed flow thermofluid model for topology optimization of 3D-printed air-cooled heat exchangers. Appl. Therm. Eng. 2017, 119, 10–24. [Google Scholar] [CrossRef]
- Sabau, A.S.; Bejan, A.; Brownell, D.; Gluesenkamp, K.; Murphy, B.; List, I.I.I.F.; Carver, K.; Schaich, C.R.; Klett, J.W. Design, additive manufacturing, and performance of heat exchanger with a novel flow-path architecture. Appl. Therm. Eng. 2020, 180, 115775. [Google Scholar] [CrossRef]
- Manaserh, Y.A.; Gharaibeh, A.R.; Tradat, M.I.; Rangarajan, S.; Sammakia, B.G.; Alissa, H.A. Multi-objective optimization of 3D printed liquid cooled heat sink with guide vanes for targeting hotspots in high heat flux electronics. Int. J. Heat Mass Transf. 2022, 184, 122287. [Google Scholar] [CrossRef]
- Wits, W.W.; Jafari, D.; Jeggels, Y.; Van De Velde, S.; Jeggels, D.; Engelberts, N. Freeform-Optimized Shapes for Natural-Convection Cooling. In Proceedings of the 2018 24rd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), Stockholm, Sweden, 26–28 September 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Palumbo, J.; Tayyara, O.; Amon, C.H.; Chandra, S. Topologically optimized mini-channel heat sinks for reduced temperature non-uniformity. Int. J. Heat Mass Transf. 2023, 214, 124421. [Google Scholar] [CrossRef]
- Degenstein, L.M.; Sameoto, D.; Hogan, J.D.; Asad, A.; Dolez, P.I. Smart Textiles for Visible and IR Camouflage Application: State-of-the-Art and Microfabrication Path Forward. Micromachines 2021, 12, 773. [Google Scholar] [CrossRef] [PubMed]
- Mondal, K. Recent Advances in Soft E-Textiles. Inventions 2018, 3, 23. [Google Scholar] [CrossRef]
- Chatterjee, K.; Ghosh, T.K. 3D Printing of Textiles: Potential Roadmap to Printing with Fibers. Adv. Mater. 2020, 32, 1902086. [Google Scholar] [CrossRef] [PubMed]
- Katrycz, C.W.; Hatton, B.D. Bioinspired Microfluidic Cooling. In Bioinspired Engineering of Thermal Materials; Wiley: New York, NY, USA, 2018; pp. 129–158. [Google Scholar] [CrossRef]
- Safdar, A.; He, H.Z.; Wei, L.; Snis, A.; Chavez de Paz, L.E. Effect of process parameters settings and thickness on surface roughness of EBM produced Ti-6Al-4V. Rapid Prototyp. J. 2012, 18, 401–408. [Google Scholar] [CrossRef]
- Reis, N.C.; Vasco, J.C.; Barreiros, F.M. Conformal cooling by SLM to improve injection moulding. In Proceedings of the Polymers and Moulds Innovations, Guimarães, Portugal, 19–21 September 2018. [Google Scholar]
- Brandner, J.J.; Hansjosten, E.; Anurjew, E.; Pfleging, W.; Schubert, K. Microstructure devices generation by selective laser melting. In Proceedings Volume 6459, Laser-Based Micro- and Nanopackaging and Assembly; 645911; Pfleging, W., Lu, Y., Washio, K., Bachmann, F.G., Hoving, W., Eds.; SPIE: Bellingham, WA, USA, 2007. [Google Scholar] [CrossRef]
- Wei, X.; Li, D.; Jiang, W.; Gu, Z.; Wang, X.; Zhang, Z.; Sun, Z. 3D Printable Graphene Composite. Sci. Rep. 2015, 5, 11181. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, Y.; Fan, Z.; Wang, W.; Wang, B.; Guo, Z. Ink-based 3D printing technologies for graphene-based materials: A review. Adv. Compos. Hybrid Mater. 2019, 2, 1–33. [Google Scholar] [CrossRef]
- Guo, H.; Lv, R.; Bai, S. Recent advances on 3D printing graphene-based composites. Nano Mater. Sci. 2019, 1, 101–115. [Google Scholar] [CrossRef]
- Rinaldi, M.; Ferrara, M.; Pigliaru, L.; Allegranza, C.; Nanni, F. Additive manufacturing of polyether ether ketone-based composites for space application: A mini-review. CEAS Space J. 2023, 15, 77–87. [Google Scholar] [CrossRef]
- Ritter, T.; McNiffe, E.; Higgins, T.; Sam-Daliri, O.; Flanagan, T.; Walls, M.; Ghabezi, P.; Finnegan, W.; Mitchell, S.; Harrison, N.M. Design and Modification of a Material Extrusion 3D Printer to Manufacture Functional Gradient PEEK Components. Polymers 2023, 15, 3825. [Google Scholar] [CrossRef] [PubMed]
- Jayaraghul, T.K.; Karthik, K.; Yaswanth, A.; Venkatesan, M. Nozzle flow characteristics of P.E.E.K (Poly-ether ether ketone) material used in 3D-printing. Mater Today Proc. 2021, 44, 2963–2967. [Google Scholar] [CrossRef]
- Chen, H.; Wang, K.; Chen, Y.; Le, H. Mechanical and Thermal Properties of Multilayer-Coated 3D-Printed Carbon Fiber Reinforced Nylon Composites. J. Compos. Sci. 2023, 7, 297. [Google Scholar] [CrossRef]
- Wojtyła, S.; Klama, P.; Baran, T. Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon. J. Occup. Environ. Hyg. 2017, 14, D80–D85. [Google Scholar] [CrossRef] [PubMed]
- Guessasma, S.; Belhabib, S.; Nouri, H. Effect of printing temperature on microstructure, thermal behavior and tensile properties of 3D printed nylon using fused deposition modeling. J. Appl. Polym. Sci. 2021, 138, 50162. [Google Scholar] [CrossRef]
- Reizabal, A.; Devlin, B.L.; Paxton, N.C.; Saiz, P.G.; Liashenko, I.; Luposchainsky, S.; Woodruff, M.A.; Lanceros-Mendez, S.; Dalton, P.D. Melt Electrowriting of Nylon-12 Microfibers with an Open-Source 3D Printer. Macromol. Rapid Commun. 2023, 44, 2300424. [Google Scholar] [CrossRef] [PubMed]
- Tsopanos, S.; Sutcliffe, C.J.; Owen, I. The manufacture of micro cross-flow heat exchangers by selective laser melting. In Proceedings of the 5th Internal Conference on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology, Hoboken, NJ, USA, 11–16 September 2005. [Google Scholar]
- Lind, A.; Vistad, Ø.; Sunding, M.F.; Andreassen, K.A.; Cavka, J.H.; Grande, C.A. Multi-purpose structured catalysts designed and manufactured by 3D printing. Mater. Des. 2020, 187, 108377. [Google Scholar] [CrossRef]
- Dreier, T.; Riaz, A.; Ahrend, A.; Polley, C.; Bode, S.; Milkereit, B.; Seitz, H. 3D printing of aluminum oxide via composite extrusion modeling using a ceramic injection molding feedstock. Mater. Des. 2023, 227, 111806. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, H.; Wu, J.; McCarthy, E.D. Fibre flow and void formation in 3D printing of short-fibre reinforced thermoplastic composites: An experimental benchmark exercise. Addit. Manuf. 2021, 37, 101686. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Mori, K.; Yoshino, M. Laser-assisted 3D printing of carbon fibre reinforced plastic parts. J. Manuf. Processes 2022, 73, 375–384. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Elkholy, A.; Schofield, J.S.; Melenka, G.W.; Kempers, R. Effective thermal conductivity of 3D-printed continuous fiber polymer composites. Adv. Manuf. Polym. Compos. Sci. 2020, 6, 17–28. [Google Scholar] [CrossRef]
- Ji, J.; Chiang, S.W.; Liu, M.; Liang, X.; Li, J.; Gan, L.; He, Y.; Li, B.; Kang, F.; Du, H. Enhanced thermal conductivity of alumina and carbon fibre filled composites by 3-D printing. Thermochim. Acta 2020, 690, 178649. [Google Scholar] [CrossRef]
- Laureto, J.; Tomasi, J.; King, J.A.; Pearce, J.M. Thermal properties of 3-D printed polylactic acid-metal composites. Prog. Addit. Manuf. 2017, 2, 57–71. [Google Scholar] [CrossRef]
- Kailkhura, G.; Mandel, R.K.; Shooshtari, A.; Ohadi, M. Numerical and Experimental Study of a Novel Additively Manufactured Metal-Polymer Composite Heat-Exchanger for Liquid Cooling Electronics. Energies 2022, 15, 598. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Kempers, R. Effective thermal conductivity of 3D-printed continuous wire polymer composites. Prog. Addit. Manuf. 2022, 7, 699–712. [Google Scholar] [CrossRef]
- Deisenroth, D.C.; Moradi, R.; Shooshtari, A.H.; Singer, F.; Bar-Cohen, A.; Ohadi, M. Review of Heat Exchangers Enabled by Polymer and Polymer Composite Additive Manufacturing. Heat Transf. Eng. 2018, 39, 1648–1664. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Heer, B. Additive manufacturing of multi-material structures. Mater. Sci. Eng. R Rep. 2018, 129, 1–16. [Google Scholar] [CrossRef]
- Yap, C.Y. Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2015, 2, 4. [Google Scholar] [CrossRef]
- Onuike, B.; Heer, B.; Bandyopadhyay, A. Additive manufacturing of Inconel 718—Copper alloy bimetallic structure using laser engineered net shaping (LENSTM). Addit. Manuf. 2018, 21, 133–140. [Google Scholar]
- Heer, B.; Bandyopadhyay, A. Compositionally graded magnetic-nonmagnetic bimetallic structure using laser engineered net shaping. Mater. Lett. 2018, 216, 16–19. [Google Scholar] [CrossRef]
- Scheithauer, U. Potentials and Challenges of Additive Manufacturing Technologies for Heat Exchanger. In Advances in Heat Exchangers; IntechOpens: London, UK, 2019. [Google Scholar]
- Kamal, M.; Rizza, G. Design for metal additive manufacturing for aerospace applications. In Additive Manufacturing for the Aerospace Industry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 67–86. [Google Scholar]
- Bacellar, D.; Aute, V.; Huang, Z.; Radermacher, R. Design optimization and validation of high-performance heat exchangers using approximation assisted optimization and additive manufacturing. Sci. Technol. Built Environ. 2017, 23, 896–911. [Google Scholar] [CrossRef]
- Alshare, A.A.; Calzone, F.; Muzzupappa, M. Hydraulic manifold design via additive manufacturing optimized with CFD and fluid-structure interaction simulations. Rapid Prototyp. J. 2019, 25, 1516–1524. [Google Scholar] [CrossRef]
- Gutmann, B. Design and 3D printing of a stainless steel reactor for continuous difluoromethylations using fluoroform. React. Chem. Eng. 2017, 2, 919–927. [Google Scholar] [CrossRef]
- McGlen, R.J. An introduction to additive manufactured heat pipe technology and advanced thermal management products. Therm. Sci. Eng. Prog. 2021, 25, 100941. [Google Scholar] [CrossRef]
- Kong, D.; Zhang, Y.; Liu, S. Convective heat transfer enhancement by novel honeycomb-core in sandwich panel exchanger fabricated by additive manufacturing. Appl. Therm. Eng. 2019, 163, 114408. [Google Scholar] [CrossRef]
- Da Silva, R.P.; Mortean, M.V.; de Paiva, K.V.; Beckedorff, L.E.; Oliveira, J.L.; Brandão, F.G.; Monteiro, A.S.; Carvalho, C.S.; Oliveira, H.R.; Borges, D.G.; et al. Thermal and hydrodynamic analysis of a compact heat exchanger produced by additive manufacturing. Appl. Therm. Eng. 2021, 193, 116973. [Google Scholar] [CrossRef]
- Scheithauer, U.; Schwarzer, E.; Moritz, T.; Michaelis, A. Additive Manufacturing of Ceramic Heat Exchanger: Opportunities and Limits of the Lithography-Based Ceramic Manufacturing (LCM). J. Mater. Eng. Perform. 2018, 27, 14–20. [Google Scholar] [CrossRef]
- Pelanconi, M.; Barbato, M.; Zavattoni, S.; Vignoles, G.L.; Ortona, A. Thermal design, optimization and additive manufacturing of ceramic regular structures to maximize the radiative heat transfer. Mater. Des. 2019, 163, 107539. [Google Scholar] [CrossRef]
- Niknam, S.A.; Mortazavi, M.; Li, D. Additively manufactured heat exchangers: A review on opportunities and challenges. Int. J. Adv. Manuf. Technol. 2021, 112, 601–618. [Google Scholar] [CrossRef]
- Careri, F.; Khan, R.H.U.; Todd, C.; Attallah, M.M. Additive manufacturing of heat exchangers in aerospace applications: A review. Appl. Therm. Eng. 2023, 235, 121387. [Google Scholar] [CrossRef]
- Gulia, V.; Sur, A. A comprehensive review on microchannel heat exchangers, heat sink, and polymer heat exchangers: Current state of the art. Front. Heat Mass Transf. 2022, 18, 1–10. [Google Scholar] [CrossRef]
- Kwon, B.; Liebenberg, L.; Jacobi, A.M.; King, W.P. Heat transfer enhancement of internal laminar flows using additively manufactured static mixers. Int. J. Heat Mass Transf. 2019, 137, 292–300. [Google Scholar] [CrossRef]
- Kirsch, K.L.; Thole, K.A. Pressure loss and heat transfer performance for additively and conventionally manufactured pin fin arrays. Int. J. Heat Mass Transf. 2017, 108, 2502–2513. [Google Scholar] [CrossRef]
- Du, L.; Hu, W. An overview of heat transfer enhancement methods in microchannel heat sinks. Chem. Eng. Sci. 2023, 280, 119081. [Google Scholar] [CrossRef]
- Ventola, L.; Robotti, F.; Dialameh, M.; Calignano, F.; Manfredi, D.; Chiavazzo, E.; Asinari, P. Rough surfaces with enhanced heat transfer for electronics cooling by direct metal laser sintering. Int. J. Heat Mass Transf. 2014, 75, 58–74. [Google Scholar] [CrossRef]
- Yu, H.; Li, T.; Zeng, X.; He, T.; Mao, N. A Critical Review on Geometric Improvements for Heat Transfer Augmentation of Microchannels. Energies 2022, 15, 9474. [Google Scholar] [CrossRef]
- Huang, C.; Cai, W.; Wang, Y.; Liu, Y.; Li, Q.; Li, B. Review on the characteristics of flow and heat transfer in printed circuit heat exchangers. Appl. Therm. Eng. 2019, 153, 190–205. [Google Scholar] [CrossRef]
- T’Joen, C.; Park, Y.; Wang, Q.; Sommers, A.; Han, X.; Jacobi, A. A review on polymer heat exchangers for HVAC&R applications. Int. J. Refrig. 2009, 32, 763–779. [Google Scholar]
- Greiciunas, E.; Borman, D.; Summers, J.; Smith, S.J. Experimental and numerical study of the additive layer manufactured inter-layer channel heat exchanger. Appl. Therm. Eng. 2021, 188, 116501. [Google Scholar] [CrossRef]
- Szymanski, P.; Mikielewicz, D. Additive Manufacturing as a Solution to Challenges Associated with Heat Pipe Production. Materials 2022, 15, 1609. [Google Scholar] [CrossRef]
- Kappe, K.; Bihler, M.; Morawietz, K.; Hügenell, P.P.; Pfaff, A.; Hoschke, K. Design Concepts and Performance Characterization of Heat Pipe Wick Structures by LPBF Additive Manufacturing. Materials 2022, 15, 8930. [Google Scholar] [CrossRef] [PubMed]
- Tsopanos, S.; Wong, M.; Owen, I.; Sutcliffe, C.J. Manufacturing novel heat transfer devices by selective laser melting. In Manufacturing; Begell House Inc.: Danbury, CT, USA, 2006. [Google Scholar] [CrossRef]
- Wong, M.; Tsopanos, S.; Sutcliffe, C.J.; Owen, I. Selective laser melting of heat transfer devices. Rapid Prototyp. J. 2007, 13, 291–297. [Google Scholar] [CrossRef]
- Wong, M.; Owen, I.; Sutcliffe, C.J. Pressure Loss and Heat Transfer Through Heat Sinks Produced by Selective Laser Melting. Heat Transf. Eng. 2009, 30, 1068–1076. [Google Scholar] [CrossRef]
- Wong, M.; Owen, I.; Sutcliffe, C.J.; Puri, A. Convective heat transfer and pressure losses across novel heat sinks fabricated by Selective Laser Melting. Int. J. Heat Mass Transf. 2009, 52, 281–288. [Google Scholar] [CrossRef]
- Pakkanen, J.; Calignano, F.; Trevisan, F.; Lorusso, M.; Ambrosio, E.P.; Manfredi, D.; Fino, P. Study of Internal Channel Surface Roughnesses Manufactured by Selective Laser Melting in Aluminum and Titanium Alloys. Metall. Mater. Trans. A 2016, 47, 3837–3844. [Google Scholar] [CrossRef]
- Garde, K.; Davidson, J.; Mantell, S. Design and Manufacturing of an Oil Cooler by Additive Manufacturing; University of Minnesota: Minneapolis, MN, USA, 2017. [Google Scholar]
- Korinko, P.S.; Bobbitt, J.; McKee, H.; List, F.; Carver, K. Characterization of Additively Manufactured Heat Exchanger Tubing. In Volume 6A: Materials and Fabrication; American Society of Mechanical Engineers: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Hathaway, B.J.; Garde, K.; Mantell, S.C.; Davidson, J.H. Design and characterization of an additive manufactured hydraulic oil cooler. Int. J. Heat Mass Transf. 2018, 117, 188–200. [Google Scholar] [CrossRef]
- Yan, C.; Hao, L.; Hussein, A.; Bubb, S.L.; Young, P.; Raymont, D. Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering. J. Mater. Process. Technol. 2014, 214, 856–864. [Google Scholar] [CrossRef]
- Arie, M.A.; Shooshtari, A.H.; Rao, V.V.; Dessiatoun, S.V.; Ohadi, M.M. Air-Side Heat Transfer Enhancement Utilizing Design Optimization and an Additive Manufacturing Technique. J. Heat Transf. 2017, 139, 031901. [Google Scholar] [CrossRef]
- Stimpson, C.K.; Snyder, J.C.; Thole, K.A.; Mongillo, D. Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels. J. Turbomach. 2016, 138, 051008. [Google Scholar] [CrossRef]
- Kirsch, K.L.; Thole, K.A. Heat Transfer and Pressure Loss Measurements in Additively Manufactured Wavy Microchannels. J. Turbomach. 2017, 139, 011007. [Google Scholar] [CrossRef]
- Snyder, J.C.; Stimpson, C.K.; Thole, K.A.; Mongillo, D. Build Direction Effects on Additively Manufactured Channels. J. Turbomach. 2016, 138, 051006. [Google Scholar] [CrossRef]
- Bernardin, J.D.; Ferguson, K.; Sattler, D.; Kim, S.-J. The Design, Analysis, and Fabrication of an Additively Manufactured Twisted Tube Heat Exchanger; American Society of Mechanical Engineers: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Gerstler, W.D.; Erno, D. Introduction of an additively manufactured multi-furcating heat exchanger. In Proceedings of the 2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 30 May–2 June 2017; pp. 624–633. [Google Scholar] [CrossRef]
- Arie, M.A.; Shooshtari, A.H.; Ohadi, M.M. Experimental characterization of an additively manufactured heat exchanger for dry cooling of power plants. Appl. Therm. Eng. 2018, 129, 187–198. [Google Scholar] [CrossRef]
- Ibrahim, O.T.; Monroe, J.G.; Thompson, S.M.; Shamsaei, N.; Bilheux, H.; Elwany, A.; Bian, L. An investigation of a multi-layered oscillating heat pipe additively manufactured from Ti-6Al-4V powder. Int. J. Heat Mass Transf. 2017, 108, 1036–1047. [Google Scholar] [CrossRef]
- Jazi, H.R.S.; Mostaghimi, J.; Chandra, S.; Pershin, L.; Coyle, T. Spray-Formed, Metal-Foam Heat Exchangers for High Temperature Applications. J. Therm. Sci. Eng. Appl. 2009, 1, 031008. [Google Scholar] [CrossRef]
- Cormier, Y.; Dupuis, P.; Jodoin, B.; Corbeil, A. Net Shape Fins for Compact Heat Exchanger Produced by Cold Spray. J. Therm. Spray Technol. 2013, 22, 1210–1221. [Google Scholar] [CrossRef]
- Cormier, Y.; Dupuis, P.; Farjam, A.; Corbeil, A.; Jodoin, B. Additive manufacturing of pyramidal pin fins: Height and fin density effects under forced convection. Int. J. Heat Mass Transf. 2014, 75, 235–244. [Google Scholar] [CrossRef]
- Dupuis, P.; Cormier, Y.; Farjam, A.; Jodoin, B.; Corbeil, A. Performance evaluation of near-net pyramidal shaped fin arrays manufactured by cold spray. Int. J. Heat Mass Transf. 2014, 69, 34–43. [Google Scholar] [CrossRef]
- Farjam, A.; Cormier, Y.; Dupuis, P.; Jodoin, B.; Corbeil, A. Influence of Alumina Addition to Aluminum Fins for Compact Heat Exchangers Produced by Cold Spray Additive Manufacturing. J. Therm. Spray Technol. 2015, 24, 1256–1268. [Google Scholar] [CrossRef]
- Cormier, Y.; Dupuis, P.; Jodoin, B.; Corbeil, A. Pyramidal Fin Arrays Performance Using Streamwise Anisotropic Materials by Cold Spray Additive Manufacturing. J. Therm. Spray Technol. 2016, 25, 170–182. [Google Scholar] [CrossRef]
- Dupuis, P.; Cormier, Y.; Fenech, M.; Corbeil, A.; Jodoin, B. Flow structure identification and analysis in fin arrays produced by cold spray additive manufacturing. Int. J. Heat Mass Transf. 2016, 93, 301–313. [Google Scholar] [CrossRef]
- Dupuis, P.; Cormier, Y.; Fenech, M.; Jodoin, B. Heat transfer and flow structure characterization for pin fins produced by cold spray additive manufacturing. Int. J. Heat Mass Transf. 2016, 98, 650–661. [Google Scholar] [CrossRef]
- Harris, C.; Despa, M.; Kelly, K. Design and fabrication of a cross flow micro heat exchanger. J. Microelectromech. Syst. 2000, 9, 502–508. [Google Scholar] [CrossRef]
- Arie, M.A.; Shooshtari, A.H.; Tiwari, R.; Dessiatoun, S.V.; Ohadi, M.M.; Pearce, J.M. Experimental characterization of heat transfer in an additively manufactured polymer heat exchanger. Appl. Therm. Eng. 2017, 113, 575–584. [Google Scholar] [CrossRef]
- Rua, Y.; Muren, R.; Reckinger, S. Limitations of Additive Manufacturing on Microfluidic Heat Exchanger Components. J. Manuf. Sci. Eng. 2015, 137, 034504. [Google Scholar] [CrossRef]
- Felber, R.A.; Nellis, G.; Rudolph, N. Design and Modeling of 3D-Printed Air-Cooled Heat Exchangers. In Proceedings of the International Refrigeration and Air Conditioning Conference, West Lafayette, IN, USA, 11–14 July 2016. [Google Scholar]
- Cevallos, J.; Bar-Cohen, A.; Deisenroth, D.C. Thermal performance of a polymer composite webbed-tube heat exchanger. Int. J. Heat Mass Transf. 2016, 98, 845–856. [Google Scholar] [CrossRef]
- Shulman, H.; Ross, N. Additive Manufacturing for Cost Efficient Production of Compact Ceramic Heat Exchangers and Recuperators; Ceralink Incorporated: Troy, NY, USA, 2015. [Google Scholar] [CrossRef]
- Schwarzer, E.; Götz, M.; Markova, D.; Stafford, D.; Scheithauer, U.; Moritz, T. Lithography-based ceramic manufacturing (LCM)—Viscosity and cleaning as two quality influencing steps in the process chain of printing green parts. J. Eur. Ceram. Soc. 2017, 37, 5329–5338. [Google Scholar] [CrossRef]
- Tarancón, A. 2022 roadmap on 3D printing for energy. J. Phys. Energy 2022, 4, 011501. [Google Scholar] [CrossRef]
- Kim, F.; Kwon, B.; Eom, Y.; Lee, J.E.; Park, S.; Jo, S.; Park, S.H.; Kim, B.S.; Im, H.J.; Lee, M.H.; et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nat. Energy 2018, 3, 301–309. [Google Scholar] [CrossRef]
- Pesce, A.; Hornés, A.; Núñez, M.; Morata, A.; Torrell, M.; Tarancón, A. 3D printing the next generation of enhanced solid oxide fuel and electrolysis cells. J. Mater. Chem. A Mater. 2020, 8, 16926–16932. [Google Scholar] [CrossRef]
- Trogadas, P.; Cho, J.I.; Neville, T.P.; Marquis, J.; Wu, B.; Brett, D.J.; Coppens, M.O. A lung-inspired approach to scalable and robust fuel cell design. Energy Environ. Sci. 2018, 11, 136–143. [Google Scholar] [CrossRef]
- Breitwieser, M.; Klingele, M.; Vierrath, S.; Zengerle, R.; Thiele, S. Tailoring the Membrane-Electrode Interface in PEM Fuel Cells: A Review and Perspective on Novel Engineering Approaches. Adv. Energy Mater. 2018, 8, 1701257. [Google Scholar] [CrossRef]
- Han, G.D.; Bae, K.; Kang, E.H.; Choi, H.J.; Shim, J.H. Inkjet Printing for Manufacturing Solid Oxide Fuel Cells. ACS Energy Lett. 2020, 5, 1586–1592. [Google Scholar] [CrossRef]
- Sukeshini, M.A.; Cummins, R.; Reitz, T.L.; Miller, R.M. Ink-Jet Printing: A Versatile Method for Multilayer Solid Oxide Fuel Cells Fabrication. J. Am. Ceram. Soc. 2009, 92, 2913–2919. [Google Scholar] [CrossRef]
- Klingele, M.; Breitwieser, M.; Zengerle, R.; Thiele, S. Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells. J. Mater. Chem. A Mater. 2015, 3, 11239–11245. [Google Scholar] [CrossRef]
- Esposito, V.; Gadea, C.; Hjelm, J.; Marani, D.; Hu, Q.; Agersted, K.; Ramousse, S.; Jensen, S.H. Fabrication of thin yttria-stabilized-zirconia dense electrolyte layers by inkjet printing for high performing solid oxide fuel cells. J. Power Sources 2015, 273, 89–95. [Google Scholar] [CrossRef]
- Hornés, A.; Pesce, A.; Hernández-Afonso, L.; Morata, A.; Torrell, M.; Tarancón, A. 3D Printing of Fuel Cells and Electrolyzers. In 3D Printing for Energy Applications; Wiley: New York, NY, USA, 2021; pp. 273–306. [Google Scholar] [CrossRef]
- Andersen, T.R.; Dam, H.F.; Hösel, M.; Helgesen, M.; Carlé, J.E.; Larsen-Olsen, T.T.; Gevorgyan, S.A.; Andreasen, J.W.; Adams, J.; Li, N.; et al. Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules. Energy Environ. Sci. 2014, 7, 2925. [Google Scholar] [CrossRef]
- Knott, A.; Makarovskiy, O.; O’Shea, J.; Wu, Y.; Tuck, C. Scanning photocurrent microscopy of 3D printed light trapping structures in dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2018, 180, 103–109. [Google Scholar] [CrossRef]
- Van Dijk, L.; Marcus, E.A.P.; Oostra, A.J.; Schropp, R.E.I.; Di Vece, M. 3D-printed concentrator arrays for external light trapping on thin film solar cells. Sol. Energy Mater. Sol. Cells 2015, 139, 19–26. [Google Scholar] [CrossRef]
- Huang, Q.Z.; Zhu, Y.Q.; Shi, J.F.; Wang, L.L.; Zhong, L.W.; Xu, G. Dye-sensitized solar cell module realized photovoltaic and photothermal highly efficient conversion via three-dimensional printing technology. Chin. Phys. B 2017, 26, 038401. [Google Scholar] [CrossRef]
- Bernardi, M.; Ferralis, N.; Wan, J.H.; Villalon, R.; Grossman, J.C. Solar energy generation in three dimensions. Energy Environ. Sci. 2012, 5, 6880. [Google Scholar] [CrossRef]
- Ahn, B.Y.; Lorang, D.J.; Duoss, E.B.; Lewis, J.A. Direct-write assembly of microperiodic planar and spanning ITO microelectrodes. Chem. Commun. 2010, 46, 7118. [Google Scholar] [CrossRef] [PubMed]
- Mathies, F.; Eggers, H.; Richards, B.S.; Hernandez-Sosa, G.; Lemmer, U.; Paetzold, U.W. Inkjet-Printed Triple Cation Perovskite Solar Cells. ACS Appl. Energy Mater. 2018, 1, 1834–1839. [Google Scholar] [CrossRef]
- Di Giacomo, F.; Fakharuddin, A.; Jose, R.; Brown, T.M. Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ. Sci. 2016, 9, 3007–3035. [Google Scholar] [CrossRef]
- Wang, G.; Adil, M.A.; Zhang, J.; Wei, Z. Large-Area Organic Solar Cells: Material Requirements, Modular Designs, and Printing Methods. Adv. Mater. 2019, 31, 1805089. [Google Scholar] [CrossRef]
- Jo, S.; Choo, S.; Kim, F.; Heo, S.H.; Son, J.S. Ink Processing for Thermoelectric Materials and Power-Generating Devices. Adv. Mater. 2019, 31, 1804930. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Zhao, Y.; Wang, B.; Xi, Q.; Zhou, J.; Liang, Z. 3D Printing Fabrication of Amorphous Thermoelectric Materials with Ultralow Thermal Conductivity. Small 2015, 11, 5889–5894. [Google Scholar] [CrossRef] [PubMed]
- Oztan, C.; Ballikaya, S.; Ozgun, U.; Karkkainen, R.; Celik, E. Additive manufacturing of thermoelectric materials via fused filament fabrication. Appl. Mater. Today 2019, 15, 77–82. [Google Scholar] [CrossRef]
- Qiu, J.; Yan, Y.; Luo, T.; Tang, K.; Yao, L.; Zhang, J.; Zhang, M.; Su, X.; Tan, G.; Xie, H.; et al. 3D Printing of highly textured bulk thermoelectric materials: Mechanically robust BiSbTe alloys with superior performance. Energy Environ. Sci. 2019, 12, 3106–3117. [Google Scholar] [CrossRef]
- Shi, J.; Chen, H.; Jia, S.; Wang, W. 3D printing fabrication of porous bismuth antimony telluride and study of the thermoelectric properties. J. Manuf. Processes 2019, 37, 370–375. [Google Scholar] [CrossRef]
- Saeidi-Javash, M.; Kuang, W.; Dun, C.; Zhang, Y. 3D Conformal Printing and Photonic Sintering of High-Performance Flexible Thermoelectric Films Using 2D Nanoplates. Adv. Funct. Mater. 2019, 29, 1901930. [Google Scholar] [CrossRef]
- Burton, M.R.; Mehraban, S.; Beynon, D.; McGettrick, J.; Watson, T.; Lavery, N.P.; Carnie, M.J. 3D Printed SnSe Thermoelectric Generators with High Figure of Merit. Adv. Energy Mater. 2019, 9, 1900201. [Google Scholar] [CrossRef]
- Eom, Y.; Kim, F.; Yang, S.E.; Son, J.S.; Chae, H.G. Rheological design of 3D printable all-inorganic inks using BiSbTe-based thermoelectric materials. J. Rheol. 2019, 63, 291–304. [Google Scholar] [CrossRef]
- Dolzhnikov, D.S.; Zhang, H.; Jang, J.; Son, J.S.; Panthani, M.G.; Shibata, T.; Chattopadhyay, S.; Talapin, D.V. Composition-matched molecular “solders” for semiconductors. Science (1979) 2015, 347, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Reyes, C.; Somogyi, R.; Niu, S.; Cruz, M.A.; Yang, F.; Catenacci, M.J.; Rhodes, C.P.; Wiley, B.J. Three-Dimensional Printing of a Complete Lithium Ion Battery with Fused Filament Fabrication. ACS Appl. Energy Mater. 2018, 1, 5268–5279. [Google Scholar] [CrossRef]
- Chang, P.; Mei, H.; Zhou, S.; Dassios, K.G.; Cheng, L. 3D printed electrochemical energy storage devices. J. Mater. Chem. A Mater. 2019, 7, 4230–4258. [Google Scholar] [CrossRef]
- Wei, M.; Zhang, F.; Wang, W.; Alexandridis, P.; Zhou, C.; Wu, G. 3D direct writing fabrication of electrodes for electrochemical storage devices. J. Power Sources 2017, 354, 134–147. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, T.; Qian, F.; Chen, W.; Chandrasekaran, S.; Yao, B.; Song, Y.; Duoss, E.B.; Kuntz, J.D.; Spadaccini, C.M.; et al. 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 2017, 15, 107–120. [Google Scholar] [CrossRef]
- Deiner, L.J.; Bezerra, C.A.G.; Howell, T.G.; Powell, A.S. Digital Printing of Solid-State Lithium-Ion Batteries. Adv. Eng. Mater. 2019, 21, 1900737. [Google Scholar] [CrossRef]
- Zhang, F.; Wei, M.; Viswanathan, V.V.; Swart, B.; Shao, Y.; Wu, G.; Zhou, C. 3D printing technologies for electrochemical energy storage. Nano Energy 2017, 40, 418–431. [Google Scholar] [CrossRef]
- Costa, C.M.; Gonçalves, R.; Lanceros-Méndez, S. Recent advances and future challenges in printed batteries. Energy Storage Mater. 2020, 28, 216–234. [Google Scholar] [CrossRef]
- Fu, K.; Wang, Y.; Yan, C.; Yao, Y.; Chen, Y.; Dai, J.; Lacey, S.; Wang, Y.; Wan, J.; Li, T.; et al. Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries. Adv. Mater. 2016, 28, 2587–2594. [Google Scholar] [CrossRef]
- Yoshima, K.; Munakata, H.; Kanamura, K. Fabrication of micro lithium-ion battery with 3D anode and 3D cathode by using polymer wall. J. Power Sources 2012, 08, 404–408. [Google Scholar] [CrossRef]
- Sun, K.; Wei, T.S.; Ahn, B.Y.; Seo, J.Y.; Dillon, S.J.; Lewis, J.A. 3D Printing of Interdigitated Li-Ion Microbattery Architectures. Adv. Mater. 2013, 25, 4539–4543. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Chandrasekaran, S.; Zhang, J.; Xiao, W.; Qian, F.; Zhu, C.; Duoss, E.B.; Spadaccini, C.M.; Worsley, M.A.; Li, Y. Efficient 3D Printed Pseudocapacitive Electrodes with Ultrahigh MnO2 Loading. Joule 2019, 3, 459–470. [Google Scholar] [CrossRef]
- Yao, B.; Chandrasekaran, S.; Zhang, H.; Ma, A.; Kang, J.; Zhang, L.; Lu, X.; Qian, F.; Zhu, C.; Duoss, E.B.; et al. 3D-Printed Structure Boosts the Kinetics and Intrinsic Capacitance of Pseudocapacitive Graphene Aerogels. Advanced Materials 2020, 32, 1906652. [Google Scholar] [CrossRef]
- Shen, K.; Ding, J.; Yang, S. 3D Printing Quasi-Solid-State Asymmetric Micro-Supercapacitors with Ultrahigh Areal Energy Density. Adv. Energy Mater. 2018, 8, 1800408. [Google Scholar] [CrossRef]
- Park, S.H.; Goodall, G.; Kim, W.S. Perspective on 3D-designed micro-supercapacitors. Mater. Des. 2020, 193, 108797. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Wang, Y.; Cheng, T.; Yao, L.Q.; Li, X.; Lai, W.Y.; Huang, W. Printed supercapacitors: Materials, printing and applications. Chem. Soc. Rev. 2019, 48, 3229–3264. [Google Scholar] [CrossRef]
- Huang, C.; Dontigny, M.; Zaghib, K.; Grant, P.S. Low-tortuosity and graded lithium ion battery cathodes by ice templating. J. Mater. Chem A Mater. 2019, 7, 21421–21431. [Google Scholar] [CrossRef]
- Fieber, L.; Evans, J.D.; Huang, C.; Grant, P.S. Single-operation, multi-phase additive manufacture of electro-chemical double layer capacitor devices. Addit. Manuf. 2019, 28, 344–353. [Google Scholar] [CrossRef]
- Maurel, A.; Grugeon, S.; Fleutot, B.; Courty, M.; Prashantha, K.; Tortajada, H.; Armand, M.; Panier, S.; Dupont, L. Three-Dimensional Printing of a LiFePO4/Graphite Battery Cell via Fused Deposition Modeling. Sci. Rep. 2019, 9, 18031. [Google Scholar] [CrossRef] [PubMed]
- Pandolfo, T.; Ruiz, V.; Sivakkumar, S.; Nerkar, J. General Properties of Electrochemical Capacitors. Supercapacitors 2013, 2, 69–109. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, F.; Huang, Z.; Jia, M.; Chen, G.; Ye, Y.; Lin, Y.; Liu, W.; Chen, B.; Shen, Q.; et al. Additive manufacturing of functionally graded materials: A review. Mater. Sci. Eng. A 2019, 764, 138209. [Google Scholar] [CrossRef]
- Tan, L.; Wang, G.; Guo, Y.; Fang, Q.; Liu, Z.; Xiao, X.; He, W.; Qin, Z.; Zhang, Y.; Liu, F.; et al. Additively manufactured oxide dispersion strengthened nickel-based superalloy with superior high temperature properties. Virtual Phys. Prototyp. 2020, 15, 555–569. [Google Scholar] [CrossRef]
- Fricke, K.; Gierlings, S.; Ganser, P.; Venek, T.; Bergs, T. Geometry Model and Approach for Future Blisk LCA. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1024, 012067. [Google Scholar] [CrossRef]
- Wittig, N. Digitalization: Laser Metal Deposition—The Future of Spare Parts and Repairs for Industrial Steam Turbines. In Volume 8: Microturbines, Turbochargers, and Small Turbomachines; Steam Turbines; American Society of Mechanical Engineers: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Kelbassa, I.; Wohlers, T.; Caffrey, T. Quo vadis, laser additive manufacturing? J. Laser Appl. 2012, 24, 050101. [Google Scholar] [CrossRef]
- Li, X.; Li, H.; Fan, X.; Shi, X.; Liang, J. 3D-Printed Stretchable Micro-Supercapacitor with Remarkable Areal Performance. Adv. Energy Mate.r 2020, 10, 1903794. [Google Scholar] [CrossRef]
- Cuoci, A.; Frassoldati, A.; Faravelli, T.; Ranzi, E. OpenSMOKE++: An object-oriented framework for the numerical modeling of reactive systems with detailed kinetic mechanisms. Comput. Phys. Commun. 2015, 192, 237–264. [Google Scholar] [CrossRef]
- Hurt, C.; Brandt, M.; Priya, S.S.; Bhatelia, T.; Patel, J.; Selvakannan, P.R.; Bhargava, S. Combining additive manufacturing and catalysis: A review. Catal. Sci. Technol. 2017, 7, 3421–3439. [Google Scholar] [CrossRef]
- Huang, F.; Wang, S.; Yi, W.; Zou, S.; Chen, C.; Xiao, L.; Liu, X.; Fan, J. Mix and print: Fast optimization of mesoporous CuCeZrOw for catalytic oxidation of n-hexane. Chem. Commun. 2015, 51, 8157–8160. [Google Scholar] [CrossRef] [PubMed]
- Kuang, X.; Wu, J.; Chen, K.; Zhao, Z.; Ding, Z.; Hu, F.; Fang, D.; Qi, H.J. Grayscale digital light processing 3D printing for highly functionally graded materials. Sci. Adv. 2019, 5, eaav5790. [Google Scholar] [CrossRef] [PubMed]
- Achenbach, E. Heat and flow characteristics of packed beds. In Experimental Heat Transfer, Fluid Mechanics and Thermodynamics; Elsevier: Amsterdam, The Netherlands, 1993; pp. 283–293. [Google Scholar] [CrossRef]
- Busse, C.; Freund, H.; Schwieger, W. Intensification of heat transfer in catalytic reactors by additively manufactured periodic open cellular structures (POCS). Chem. Eng. Process.-Process Intensif. 2018, 124, 199–214. [Google Scholar] [CrossRef]
- Stuecker, J.N.; Miller, J.E.; Ferrizz, R.E.; Mudd, J.E.; Cesarano, J. Advanced Support Structures for Enhanced Catalytic Activity. Ind. Eng. Chem. Res. 2004, 43, 51–55. [Google Scholar] [CrossRef]
- Lazarov, B.S.; Sigmund, O.; Meyer, K.E.; Alexandersen, J. Experimental validation of additively manufactured optimized shapes for passive cooling. Appl. Energy 2018, 226, 330–339. [Google Scholar] [CrossRef]
- Hou, H.; Simsek, E.; Ma, T.; Johnson, N.S.; Qian, S.; Cissé, C.; Stasak, D.; Al Hasan, N.; Zhou, L.; Hwang, Y.; et al. Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing. Science (1979) 2019, 366, 1116–1121. [Google Scholar] [CrossRef] [PubMed]
- Klinar, K.; Kitanovski, A. Thermal control elements for caloric energy conversion. Renew. Sustain. Energy Rev. 2020, 118, 109571. [Google Scholar] [CrossRef]
- Navickaitė, K.; Liang, J.; Bahl, C.; Wieland, S.; Buchenau, T.; Engelbrecht, K. Experimental characterization of active magnetic regenerators constructed using laser beam melting technique. Appl. Therm. Eng. 2020, 174, 115297. [Google Scholar] [CrossRef]
- Moore, J.D.; Klemm, D.; Lindackers, D.; Grasemann, S.; Träger, R.; Eckert, J.; Löber, L.; Scudino, S.; Katter, M.; Barcza, A.; et al. Selective laser melting of La(Fe,Co,Si)13 geometries for magnetic refrigeration. J. Appl. Phys. 2013, 114, 043907. [Google Scholar] [CrossRef]
- Hou, H.; Finkel, P.; Staruch, M.; Cui, J.; Takeuchi, I. Ultra-low-field magneto-elastocaloric cooling in a multiferroic composite device. Nat. Commun. 2018, 9, 4075. [Google Scholar] [CrossRef]
- Bjørk, R.; Bahl, C.R.H.; Smith, A.; Christensen, D.V.; Pryds, N. An optimized magnet for magnetic refrigeration. J. Magn. Magn. Mater. 2010, 322, 3324–3328. [Google Scholar] [CrossRef]
- Hou, X.; Li, H.; Shimada, T.; Kitamura, T.; Wang, J. Effect of geometric configuration on the electrocaloric properties of nanoscale ferroelectric materials. J. Appl. Phys. 2018, 123, 124103. [Google Scholar] [CrossRef]
- Miramontes, E.; Jiang, E.A.; Love, L.J.; Lai, C.; Sun, X.; Tsouris, C. Process intensification of CO2 absorption using a 3D printed intensified packing device. AIChE J. 2020, 66, e16285. [Google Scholar] [CrossRef]
- Stec, M.; Tatarczuk, A.; Więcław-Solny, L.; Krótki, A.; Ściążko, M.; Tokarski, S. Pilot plant results for advanced CO2 capture process using amine scrubbing at the Jaworzno II Power Plant in Poland. Fuel 2015, 151, 50–56. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, Y.F. Additive Manufacturing-Enabled Part Count Reduction: A Lifecycle Perspective. J. Mech. Des. 2018, 140, 031702. [Google Scholar] [CrossRef]
- Knudsen, J.N.; Andersen, J.; Jensen, J.N.; Biede, O. Evaluation of process upgrades and novel solvents for the post combustion CO2 capture process in pilot-scale. Energy Procedia 2011, 4, 1558–1565. [Google Scholar] [CrossRef]
- Yeh, J.T.; Pennline, H.W.; Resnik, K.P. Study of CO2 Absorption and Desorption in a Packed Column. Energy Fuels 2001, 15, 274–278. [Google Scholar] [CrossRef]
- Wang, M.; Joel, A.S.; Ramshaw, C.; Eimer, D.; Musa, N.M. Process intensification for post-combustion CO2 capture with chemical absorption: A critical review. Appl. Energy 2015, 158, 275–291. [Google Scholar] [CrossRef]
- Fernandez, E.S.; Goetheer, E.L.; Manzolini, G.; Macchi, E.; Rezvani, S.; Vlugt, T.J. Thermodynamic assessment of amine based CO2 capture technologies in power plants based on European Benchmarking Task Force methodology. Fuel 2014, 129, 318–329. [Google Scholar] [CrossRef]
- Alexandersen, J.; Andreasen, C.S. A Review of Topology Optimisation for Fluid-Based Problems. Fluids 2020, 5, 29. [Google Scholar] [CrossRef]
- Collins, I.L.; Weibel, J.A.; Pan, L.; Garimella, S.V. A permeable-membrane microchannel heat sink made by additive manufacturing. Int. J. Heat Mass Transf. 2019, 131, 1174–1183. [Google Scholar] [CrossRef]
- Guo, H. Highly Thermally Conductive 3D Printed Graphene Filled Polymer Composites for Scalable Thermal Management Applications. ACS Nano 2021, 15, 6917–6928. [Google Scholar] [CrossRef]
- Collins, I.L.; Weibel, J.A.; Pan, L.; Garimella, S.V. Evaluation of Additively Manufactured Microchannel Heat Sinks. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 9, 446–457. [Google Scholar] [CrossRef]
- Dede, E.M.; Joshi, S.N.; Zhou, F. Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink. J. Mech. Des. 2015, 137, 111403. [Google Scholar] [CrossRef]
- Iradukunda, A.C.; Huitink, D.R.; Luo, F. A Review of Advanced Thermal Management Solutions and the Implications for Integration in High-Voltage Packages. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 256–271. [Google Scholar] [CrossRef]
- Garimella, S.V.; Persoons, T.; Weibel, J.A.; Gektin, V. Electronics Thermal Management in Information and Communications Technologies: Challenges and Future Directions. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 7, 1191–1205. [Google Scholar] [CrossRef]
- Sohrabian, M.; Vaseghi, M.; Khaleghi, H.; Dehrooyeh, S.; Kohan, M.S.A. Structural Investigation of Delicate-Geometry Fused Deposition Modeling Additive Manufacturing Scaffolds: Experiment and Analytics. J. Mater. Eng. Perform. 2021, 30, 6529–6541. [Google Scholar] [CrossRef]
- Belfi, F.; Iorizzo, F.; Galbiati, C.; Lepore, F. Space Structures with Embedded Flat Plate Pulsating Heat Pipe Built by Additive Manufacturing Technology: Development, Test and Performance Analysis. J. Heat Transf. 2019, 141, 9. [Google Scholar] [CrossRef]
- Comotti, C.; Regazzoni, D.; Rizzi, C.; Vitali, A. Additive Manufacturing to Advance Functional Design: An Application in the Medical Field. J. Comput. Inf. Sci. Eng. 2017, 17, 3. [Google Scholar] [CrossRef]
- Meisel, N.A.; Woods, M.R.; Simpson, T.W.; Dickman, C.J. Redesigning a Reaction Control Thruster for Metal-Based Additive Manufacturing: A Case Study in Design for Additive Manufacturing. J. Mech. Des. 2017, 139, 10. [Google Scholar] [CrossRef]
- Stephenson, K. A Detailed Five-Year Review of Medical Device Additive Manufacturing Research and its Potential for Translation to Clinical Practice. In Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, MA, USA, 2–5 August 2015; American Society of Mechanical Engineers: New York, NY, USA, 2015. [Google Scholar]
- Wang, Y. Applications of additive manufacturing (AM) in sustainable energy generation and battle against COVID-19 pandemic: The knowledge evolution of 3D printing. J. Manuf. Syst. 2021, 60, 709–733. [Google Scholar] [CrossRef]
- Ali Saqib, M.; Abbas, M.S.; Tanaka, H. Sustainability and innovation in 3D printing: Outlook and trends. Clean Technol. Recycl. 2024, 4, 1–21. [Google Scholar] [CrossRef]
- Oláh, J.; Aburumman, N.; Popp, J.; Khan, M.A.; Haddad, H.; Kitukutha, N. Impact of Industry 4.0 on Environmental Sustainability. Sustainability 2020, 12, 4674. [Google Scholar] [CrossRef]
- Elbadawi, M.; Basit, A.W.; Gaisford, S. Energy consumption and carbon footprint of 3D printing in pharmaceutical manufacture. Int. J. Pharm. 2023, 639, 122926. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.; Gallegos, S.; Rezaie, B.; Azarmi, F. Present and Future Sustainability Development of 3D Metal Printing. Eur. J. Sustain. Dev. Res. 2021, 5, em0168. [Google Scholar] [CrossRef]
Names Structures | Equation | Visualization |
---|---|---|
Gyroid [52] | sin(x)cos(y) + sin(y)cos(z) + sin(z)cos(x) | |
Schwarz [53] | cos(x) + cos(y) + cos(z) | |
Neovilius [54] | 3 × cos(x) + cos(y) + cos(z) + 4 × cos(x) × cos(y) × cos(z) | |
Diamond [55] | sin(x) × sin(y) × sin(z) + sin(x) × cos(y) × cos(z) + cos(x) × sin(y) × cos(z) + cos(x) × cos(y) × sin(z) | |
Lidinoid [54] | sin(2 × x) × cos(y) × sin(z) + sin(2 × y) × cos(z) × sin(x) + sin(2 × z) × cos(x) × sin(y) − cos(2 × x) × cos(2 × y) − cos(2 × y) × cos(2 × z) − cos(2 × z) × cos(2 × x) + 0.3 | |
Split P [55] | 1.1 × (sin(2 × x) × sin(z) × cos(y) + sin(2 × y) × sin(x) × cos(z) + sin(2 × z) × sin(y) × cos(x)) − 0.2 × (cos(2 × x) × cos(2 × y) + cos(2 × y) × cos(2 × z) + cos(2 × z) × cos(2 × x)) − 0.4 × (cos(2 × x) + cos(2 × y) + cos(2 × z)) |
Sector | Application | Optimization of Heat Flow | References |
---|---|---|---|
Electronics cooling | Heat sinks with complex structure | Microchannels or fins—heat dissipation. | [73,81,82] |
Aerospace Industry | Components with integrated cooling channels | Internal cooling channels in the aerospace structures of components, improving resistance to high temperatures | [83,84,85] |
Production of wind turbines | Optimization of the blades | Optimizing the shape of wind turbine blades to increase efficiency and minimize drag | [86,87] |
Nuclear Energy | Components for optimizing heat flow in reactors | Internal moderator components for heat transfer improvement in nuclear reactors. | [88,89] |
Automotive Industry: | Engine Cooling | Designing engine radiators with a more complex structure to increase cooling efficiency. | [90,91] |
Liquid cooling in electronics | Custom Cooling Channels | Custom cooling channels for liquid cooling systems tailored to specific electronics configurations | [92,93] |
Production of heat exchangers: | Channel geometry optimization | Design and manufacture heat exchangers with optimal channel geometry that improves heat transfer efficiency | [61,94,95] |
Heatsink design optimization | Custom radiators with complex shapes | Design heatsinks with custom geometry, tailored to the specific application and mounting space | [96,97,98] |
Cooling in the Apparel Industry | Microchannels in textiles | Creation of microchannel structures that improve ventilation and cooling in sports or specialty apparel | [99,100,101,102] |
Type | Material | Characteristic | Application | References |
---|---|---|---|---|
Heat conductive materials | Copper, aluminum, steel | Excellent thermal conductivity | Manufacture of heat sinks or cooling components | [34,103,104,105] |
Graphene | Excellent thermal conductivity properties | Graphene nanoparticles or graphene composites added to other 3D-printed materials to improve their thermal conductivity. | [106,107,108] | |
Engineering polymers | PEEK Polyetheretherketone | A thermoplastic polymer with high mechanical strength and chemical resistance | Manufacture of industrial components where both thermal and mechanical properties are important | [109,110,111] |
Nylon | Good mechanical properties, relatively light | Production of components where the balance between mechanical strength and thermal conductivity efficiency is important | [112,113,114,115] | |
Metallic materials | Aluminum alloy | Lightweight metal with good thermal conductivity | Production of cooling components such as heat sinks | [103,104,105] |
Aluminum with addition of other materials | Components with special thermal properties | [116] | ||
Ceramics | Aluminum oxide | High heat resistance and excellent thermal properties | Manufacturing components that require efficient heat transfer under extreme conditions | [117,118] |
Hybrid materials | Carbon fiber composites | The lightness of polymers with the high thermal conductivity of carbon fibers | Both thermal and mechanical properties are important | [119,120,121,122] |
Metal–polymer composites | A combination of thermal conductivity and flexibility | Advantageous in certain applications | [123,124,125,126] |
3D Printing | Materials | Advantages | References |
---|---|---|---|
SLM | 316L stainless steel, 6061 aluminum | -The complex ribbed surface of the micro heat exchanger -The exchangers performed consistently. | [154] |
-Experimental determination of the heat transfer characteristics and pressure drops of the four heat sinks. -The study showed an increase in the performance of the studied exchangers. | [155] | ||
Aluminum 6061, stainless steel 316L | -Three heat sinks with a ribbed structure -Better performance than conventional heatsinks -New geometries result in lower pressure drop | [156,157] | |
AlSi10Mg Ti6Al4V | -Cylindrical geometry for internal channels built at different angles -Surface roughness of internal channels varies with angle of construction | [158] | |
-Oil Cooler -Structure will transfer 15 kW of heat under design conditions | [159] | ||
Stainless steel 316, stainless steel 316L | Type 316 stainless steel printed tubes have higher mechanical strength and lower ductility than annealed Type 316L stainless steel. | [160] | |
-Oil cooler fabricated. -Unique features include lenticular tubes with offset strip fins and angled plate-fins. | [161] | ||
DMLS | AlSi10Mg | -DMLS can be used with a new type of alloy to create porous lattice structures. | [162] |
-Rough surfaces and ribbed surfaces had an average of 63% and 35% better convective heat transfer, respectively, than smooth surfaces. | [147] | ||
-Collector–microchannel heat exchanger -The collector–microchannel geometry offers a significant improvement over the state of the art. | [163] | ||
Titanium alloy | -Air-to-water heat exchangers using a microchannel collector design have shown a 45–100% increase in base conductivity and a 15% increase in heat transfer coefficient for the same pressure drop compared to corrugated surfaces. | [77] | |
-Friction coefficients increased due to the higher ratio of roughness to hydraulic diameter. -Machined channels have relatively comparable thermal performance to grooved channels. | [164] | ||
-Three samples of corrugated channels, each containing channels of different wavelengths, were designed and additively fabricated to evaluate the pressure loss and heat transfer performance of the channels. | [165] | ||
-Cylindrical channels were built in three different orientations, while teardrop and rhombic channels were built horizontally. -Channels built vertically had the lowest coefficient of friction, while channels built diagonally had the highest coefficient of friction. | [166] | ||
-A heat transfer correlation is presented that translates the Nusselt number of flow through DMLS microchannels based on predictions or friction coefficient measurements. | [164] | ||
-The process of improving the thermal performance of a twisted shell-and-tube heat exchanger using CFD modeling and extended AM fabrication space is presented. -A 40% increase in heat transfer coefficient was modeled. | [167] | ||
-Oil cooler -The weight and volume of the heat exchanger is 66% and 50% less, respectively, than a fuel-cooled oil cooler of similar capacity and performance. | [168] | ||
Stainless steel, titanium alloy, aluminum | -Three prototype air-to-water heat exchangers in a power plant -Improved gravimetric heat transfer density compared to a corrugated fin heat exchanger. | [169] | |
LPBF | -Bare tube heat exchanger. -Achieves a ~20% reduction in size, a ~20% reduction in air pressure, a ~40% reduction in material volume, and a ~2% reduction in surface area compared to a micro-channel heat exchanger. | [133] | |
Ti-6Al-4V | -L-PBF used to fabricate a Ti-6Al-4V multilayer oscillating heat pipe (ML-OHP) -The thermal performance of ML-OHP is characterized. | [170] | |
Wire-Arc Spraying | -Dense 625 alloy was deposited on the surface of 10 pores per inch (PPI) and 20 PPI nickel foam sheets to produce compact heat exchangers. | [171] | |
CGDS | aluminum nickel stainless steel 34 | -The 20 PPI foam exhibited higher flow resistance and heat transfer than the 10 PPI foam due to its smaller pore size and larger internal surface area. | [172] |
-The effect of changing the fin height and density of the pyramidal fins has been studied. -Increasing the height or density of the fins also increases the overall thermal conductivity at the expense of higher pressure drop. at the expense of higher pressure drop. | [173] | ||
-Two new fin geometries were created; pyramidal and trapezoidal. -The two new geometries have better heat transfer performance than traditional rectangular fins, but higher pressure drop. | [174] | ||
-Pyramidal rib arrays were fabricated with varying volume fractions of aluminum and alumina. -The use of aluminum-alumina powder as an alternative to pure aluminum eliminates the need for expensive polymer nozzles that wear out quickly. | [175] | ||
-Produces near-net-shape pyramidal fin arrays in a variety of materials, including aluminum, nickel and Class 34 stainless steel. | [176] | ||
-Pyramidal Ribs -Classic double recirculation and flow bypass structures observed in areas of trailing ribs. | [177] | ||
-Pressure drops and convection coefficients for square, round, and diamond fins. -Alternating configurations produce higher convection coefficients and higher pressure drop.. | [178] | ||
LIGA | -The cross-flow micro heat exchanger was developed to provide a function similar to that of a car radiator. -The micro heat exchanger demonstrated a good ratio of heat transfer rate to volume. | [179] | |
LPW | -Air-to-water heat exchanger -The polymer heat exchanger required 85% less weight but 35% more volume than a corrugated metal heat exchanger of the same capacity. -COP increased by 27%. | [126] | |
-Microfluidic channels in the fins of the liquid-liquid heat exchanger. -The walls, which were 0.032 mm to 0.1 mm thick, could be carefully cleaned, but they deformed slightly under pressure. | [180] | ||
Polyjet | -Air–water heat exchanger. -The thin wall (150 μm) reduces the thermal resistance of the wall to only 3% of the total thermal resistance. | [181] | |
FDM | -Air-to-water heat exchanger -Improving the thermal conductivity of the printed polymer directly affects the performance of the heat exchanger, but the relationship is non-linear. | [182] | |
-A polymer composite heat exchanger called a belt-and-tube heat exchanger. -The design is shown to perform similarly to a plate-and-rib heat exchanger, but uses less material. | [183] | ||
LOM | -Complex ceramic heat exchangers can be built using LOM processes. -The ceramic heat exchanger can be manufactured at a reasonable cost. | [184] | |
LCM | -The creation of complex designs using LCM was demonstrated. -Components with over 99% post-sinter density were obtained | [185] | |
-LCM has enabled the production of alumina and zirconia components. -A heat transfer area of more than 3500 mm2 and holes as small as 0.2 mm in diameter can be achieved. | [139] |
Application | 3D Printing | Materials | Reference |
---|---|---|---|
Fuel cells and electrolyzers | SLA, EFF, DIW | Electrode materials, stabilized zirconium electrolytes (lanthanum-based perovskite oxides and nickel-based composites), glass sealants | [187,188,189,190,191,192,193,194,195] |
DIW, SLS | Polymer electrolytes (nafion) and electrodes (precious metals), metallic metallics (stainless steel) | ||
Solar cells | DIW, R2R, IL | Current collectors (silver, copper, tin, indium), carriers (polymers), cells (P3HT: PCBM, organic perovskites, CIGS) | [196,197,198,199,200,201,202,203,204] |
Thermoelectric cells | EFF, DIW, SLS, SLA | Bi2Te3, BiSbTe, Cu2Se, PbTe | [205,206,207,208,209,210,211,212,213] |
Batteries | DIW, EFF | Polymer electrolytes (PVDF-co-HFP), electrodes (LiFePO4-LPF, Li4Ti5O12-LTO, graphene oxide composites) | [214,215,216,217,218,219,220,221,222,223] |
Supercapacitors | DIW, EFF | Polymer electrolyte (KOH/polyvinyl alcohol), electrodes (activated carbon, Ti3C2Tx MXene nanosheets, manganese dioxide nanowires, silver nanowires, and fullerene), current collector (Ag nanoparticles), package (polypropylene) | [224,225,226,227,228,229,230,231,232] |
Rotating Machines | DED, SLS | Ti alloys, Ni-based superalloys, high-temperature Fe-based alloys, Ti or Fe-based intermetallic materials | [233,234,235,236,237] |
Chemical reactors | DIW, DLP, EFF | Reactor (stainless steel, aluminum oxide), catalyst carrier (metal oxides), catalyst (precious metals) | [238,239,240,241,242,243,244,244,245] |
Solid-state refrigerators | SLS, DED, EFF, DIW, SLA | Ferroelectric/ferromagnetic/ferroelastic caloric materials | [246,247,248,249,250,251,252,253] |
CO2 capture and separation | SLS | Metals or alloys with high thermal conductivity (Aluminum AlSi10Mg) | [254,255,256,257,258,259,260] |
Electronics Cooling | SLS | Metals or alloys with high thermal conductivity (Al-Si10Mg, Al 6061, CuNi2SiCr) and polymer composites | [261,262,263,264,265,266,267] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anwajler, B. Potential of 3D Printing for Heat Exchanger Heat Transfer Optimization—Sustainability Perspective. Inventions 2024, 9, 60. https://doi.org/10.3390/inventions9030060
Anwajler B. Potential of 3D Printing for Heat Exchanger Heat Transfer Optimization—Sustainability Perspective. Inventions. 2024; 9(3):60. https://doi.org/10.3390/inventions9030060
Chicago/Turabian StyleAnwajler, Beata. 2024. "Potential of 3D Printing for Heat Exchanger Heat Transfer Optimization—Sustainability Perspective" Inventions 9, no. 3: 60. https://doi.org/10.3390/inventions9030060