UAV Quantitative Remote Sensing of Riparian Zone Vegetation for River and Lake Health Assessment: A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Documentation
2.2. Characteristics of the Issuance
2.2.1. Annual Number of Publications
2.2.2. Nation
2.2.3. Keyword Analysis
3. RLHA
3.1. Progress in RLHA Research
3.2. Indicators for RLHA
4. Riparian Zone Vegetation
4.1. Riparian Zone and Riparian Zone Vegetation
4.2. Ecological Functions of Riparian Zone Vegetation
4.2.1. Stabilizing Riverbanks
4.2.2. Purifying Water Quality
4.2.3. Regulating Water Temperature
4.2.4. Providing Food
4.2.5. Replenishing Recharge
4.2.6. Providing Biological Habitats
4.2.7. Beautifying Human Habitats
4.3. Correlation between the Ecological Function of Riparian Zone Vegetation and Indicators for RLHA
5. UAV Quantitative Remote Sensing of Vegetation in Riparian Zone
5.1. UAV Remote Sensing
5.2. Riparian Zone Vegetation and UAV Quantitative Remote Sensing Monitoring Content
5.2.1. Riparian Zone Extent Delineation
5.2.2. Vegetation Type and Distribution
5.2.3. Influence of Vegetation on Changes in River Floodplain
5.2.4. Vegetation Cover
5.2.5. Plant Diversity
5.2.6. Influence of Vegetation Distribution on the Biological Habitat
5.3. Indicators for Quantitative Remote Sensing Monitoring of Vegetation in Riparian Zone by UAV
6. Challenges and Prospects
6.1. Existing Challenges
6.1.1. Insufficient Research on RLH
6.1.2. Limitations of UAV Platforms and Sensors
- Insufficient stability.When UAVs fly in complex environments, they are susceptible to interference from external factors such as airflow and precipitation, which leads to unstable flight attitudes and affects the quality of remote sensing data collection [178]. The riparian zone vegetation, located near rivers and lakes, often lies in complex terrains like mountains and hills. In such areas, UAV flights demand that pilots maintain clear visibility of the UAV or equip the UAV with obstacle avoidance sensors. Pilots must navigate carefully, striving to maintain a safe distance from the ground to ensure the safety of the flight.
- Shorter range.The limited battery capacity of a UAV results in a short single flight time, making it difficult to meet the demand for long-duration, wide-area remote sensing monitoring [179]. The riparian zone generally stretches from the upstream to the downstream of a river, spanning from a few to thousands of kilometers. For effective monitoring of riparian zone vegetation, UAVs must have long endurance. Additionally, in areas of the riparian zone that are inaccessible to personnel, UAVs are also required to have a prolonged flight time to facilitate long-distance monitoring.
- Insufficient load.The limited payloads of UAVs restrict their ability to carry multiple high-precision and high-performance sensors at the same time, which restricts the efficiency of riparian zone vegetation monitoring [180]. Vegetation monitoring in the riparian zone requires visual assessments of the vegetation using RGB cameras as well as analyses of vegetation growth conditions through multiple sensors, including multispectral, hyperspectral, radar, thermal infrared technologies, and so on.
6.1.3. Complexity of Information in UAV Remote Sensing Data
- Complexity of data processing.Data obtained from UAV remote sensing monitoring need to be processed and analyzed, and for the identification of riparian zone vegetation, it is necessary to accurately identify individual vegetation and distinguish vegetation types. There are high requirements for algorithms and software.
- Data real-time.For the riparian zone, which is an area with more drastic changes and not obvious change characteristics, the lagging interpretation of remote sensing monitoring data will not be able to guide the riparian zone management and other applications in a timely manner, and it is necessary to solve the challenges associated with data transmission and the timely processing of data to realize real-time monitoring of the riparian zone vegetation. The application of real-time data for UAVs is still in its infancy [181,182,183] and will be a hotspot for UAV application research.
- Universality of algorithms and models.The spatial resolution of image data acquired by UAV remote sensing is better than 1 centimeter. Compared with satellite-based remote sensing, it can reflect more detailed and complex subsurface types and features. This poses a challenge to the universality of algorithms and models used for extracting vegetation parameter information. Most current algorithms or models are only applicable to specific research and lack stability, universality, and generality, which restricts their application and promotion across a wide range of fields. For riparian zones under different climatic conditions, the vegetation types and parameters vary. It is necessary to select and adjust the model parameters according to local conditions to achieve regional adaptability. Algorithms and models based on UAV data are now hotspots of research [101,184,185,186,187], and future research should continue in this direction.
6.2. Application Prospects
6.2.1. Improvements in UAV Flight Platforms
6.2.2. Improvements in UAV Sensors
6.2.3. Advances in UAV Information Processing Technology
6.2.4. Integrated Air-to-Ground Monitoring
6.2.5. Construction of a Platform for the Quantitative Remote Sensing of Vegetation in Riparian Zones by UAVs
7. Conclusions
7.1. RLHA System
7.2. Ecological Functions of Riparian Zone Vegetation
7.3. Indicators for Quantitative Remote Sensing Monitoring of Vegetation in Riparian Zones by UAVs
7.4. Challenges and Perspectives of Quantitative Remote Sensing of Vegetation in Riparian Zones by UAVs
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RLHA | river and lake health assessment |
RLH | river and lake health |
UAV | unmanned aerial vehicle |
MDGs | Millennium Development Goals |
SDGs | Sustainable Development Goals |
TS | Topic |
References
- Wang, J.; Zhang, J.; Wang, P.; Ma, X.; Yang, L.; Zhou, L. Progress in Ecosystem Health Research and Future Prospects. Sustainability 2022, 14, 15814. [Google Scholar] [CrossRef]
- Azha, S.F.; Sidek, L.M.; Ahmad, Z.; Zhang, J.; Basri, H.; Zawawi, M.H.; Noh, N.M.; Ahmed, A.N. Enhancing river health monitoring: Developing a reliable predictive model and mitigation plan. Ecol. Indic. 2023, 156, 111190. [Google Scholar] [CrossRef]
- Feeley, H.B.; Bradley, C.; Free, G.; Kennedy, B.; Little, R.; McDonnell, N.; Plant, C.; Trodd, W.; Wynne, C.; Boyle, S.O. A national macroinvertebrate dataset collected for the biomonitoring of Ireland’s river network, 2007–2018. Sci. Data 2020, 7, 280. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, N.; Shen, Z. Evaluation of the water quality monitoring network layout based on driving-pressure-state-response framework and entropy weight TOPSIS model: A case study of Liao River, China. J. Environ. Manag. 2024, 361, 121267. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Zhao, Y.; Wang, M.; Cheng, Z. The Implementation Effect of China’s River and Lake Chief System. Water 2024, 16, 815. [Google Scholar] [CrossRef]
- Rong, B.; Chu, C.J.; Zhang, Z.; Li, Y.T.; Yang, S.H.; Wang, Q. Assessing the Coordinate Development Between Economy and Ecological Environment in China’s 30 Provinces from 2013 to 2019. Environ. Model. Assess. 2023, 28, 303–316. [Google Scholar] [CrossRef]
- Pouya, S.; Turkoglu, H. Evaluation of the water resource plans in Turkey based on sustainable water management principles. Sustain. Water Resour. Manag. 2020, 6, 91. [Google Scholar] [CrossRef]
- Shinozaki, Y.; Shirakawa, N. A legislative framework for environmental flow implementation: 30-years operation in Japan. River Res. Appl. 2021, 37, 1323–1332. [Google Scholar] [CrossRef]
- Chen, Y. Real time data monitoring of water resources environment based on computer remote data collection and image analysis. Opt. Quantum Electron. 2024, 56, 618. [Google Scholar] [CrossRef]
- Sang, J.; Liu, Z.; Wang, H.; Ding, X.; Feng, R. A new assessment method for water environment safety and its application. Sci. Total Environ. 2024, 917, 170056. [Google Scholar] [CrossRef]
- Luan, G.; Hou, J.; Wang, T.; Lv, J.; Li, Y.; Gao, X.; Sun, X.; Liu, Y. Research on Hydrodynamic and Water Quality Optimization Scheduling Based on Optimization Technology for Complex of River Network Structures. Water Resour. Manag. 2024, 38, 1339–1358. [Google Scholar] [CrossRef]
- Majumdar, A.; Avishek, K. Riparian Zone Assessment and Management: An Integrated Review Using Geospatial Technology. Water Air Soil Pollut. 2023, 234, 319. [Google Scholar] [CrossRef]
- Stutter, M.; Baggaley, N.; Ó hUallacháin, D.; Wang, C. The utility of spatial data to delineate river riparian functions and management zones: A review. Sci. Total Environ. 2021, 757, 143982. [Google Scholar] [CrossRef]
- Tolkkinen, M.J.; Heino, J.; Ahonen, S.H.; Lehosmaa, K.; Mykrä, H. Streams and riparian forests depend on each other: A review with a special focus on microbes. For. Ecol. Manag. 2020, 462, 117962. [Google Scholar] [CrossRef]
- Larsen-Gray, A.L.; Loehle, C. Relationship Between Riparian Buffers and Terrestrial Wildlife in the Eastern United States. J. For. 2022, 120, 336–357. [Google Scholar] [CrossRef]
- Ansari, J.; Bardhan, S.; Davis, M.P.; Anderson, S.H.; Al-Awwal, N. Greenhouse gas emissions from riparian systems as affected by hydrological extremes: A mini-review. Cogent Food Agric. 2024, 10, 2321658. [Google Scholar] [CrossRef]
- Wang, P.; Ding, J.; He, Y.; Wang, D.; Cao, C.; Huang, M. Ecological revetments for enhanced interception of nonpoint source pollutants: A review. Environ. Rev. 2020, 28, 262–268. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, B.; Sun, X.; Yang, L. Hot spots and hot moments of nitrogen removal from hyporheic and riparian zones: A review. Sci. Total Environ. 2021, 762, 144168. [Google Scholar] [CrossRef]
- Wu, S.; Bashir, M.A.; Raza, Q.U.A.; Rehim, A.; Geng, Y.; Cao, L. Application of riparian buffer zone in agricultural non-point source pollution control—A review. Front. Sustain. Food Syst. 2023, 7, 985870. [Google Scholar] [CrossRef]
- Cai, Y.; Feng, M.; Zhang, T. Review of distribution of nitrogen and phosphorus in riparian zones of Chinese inland water bodies. Acta Ecol. Sin. 2022, 42, 583–592. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Zhou, H.; Hao, X.; Zhu, C.; Fu, A.; Yang, Y.; Li, W. Research Advances in Plant Physiology and Ecology of Desert Riparian Forests under Drought Stress. Forests 2022, 13, 619. [Google Scholar] [CrossRef]
- Hoppenreijs, J.H.T.; Eckstein, R.L.; Lind, L. Pressures on Boreal Riparian Vegetation: A Literature Review. Front. Ecol. Evol. 2022, 9, 806130. [Google Scholar] [CrossRef]
- Prado, R.B.; Damasceno, G.M.S.; Aquino, F.D.G. Overview of studies on ecosystem services in riparian zones: A systematic review. Acta Limnol. Bras. 2022, 34, e19. [Google Scholar] [CrossRef]
- Singh, R.; Tiwari, A.K.; Singh, G.S. Managing riparian zones for river health improvement: An integrated approach. Landsc. Ecol. Eng. 2021, 17, 195–223. [Google Scholar] [CrossRef]
- Scheuerell, R.P.; LeRoy, C.J. Plant sex influences on riparian communities and ecosystems. Ecol. Evol. 2023, 13, e10308. [Google Scholar] [CrossRef]
- Rusnák, M.; Goga, T.; Michaleje, L.; Šulc Michalková, M.; Máčka, Z.; Bertalan, L.; Kidová, A. Remote Sensing of Riparian Ecosystems. Remote Sens. 2022, 14, 2645. [Google Scholar] [CrossRef]
- Chen, C. Visualizing and Exploring Scientific Literature with CiteSpace: An Introduction. In Proceedings of the 2018 Conference on Human Information Interaction&Retrieval—CHIIR ’18, New Brunswick, NJ, USA, 11–15 March 2018; pp. 369–370. [Google Scholar] [CrossRef]
- Mechal, A.; Fekadu, D.; Abadi, B. Multivariate and Water Quality Index Approaches for Spatial Water Quality Assessment in Lake Ziway, Ethiopian Rift. Water Air Soil Pollut. 2024, 235, 78. [Google Scholar] [CrossRef]
- Bruckerhoff, L.A.; Wheeler, K.; Dibble, K.L.; Mihalevich, B.A.; Neilson, B.T.; Wang, J.; Yackulic, C.B.; Schmidt, J.C. Water Storage Decisions and Consumptive Use May Constrain Ecosystem Management under Severe Sustained Drought. JAWRA J. Am. Water Resour. Assoc. 2022, 58, 654–672. [Google Scholar] [CrossRef]
- Urbanič, G.; Politti, E.; Rodríguez-González, P.M.; Payne, R.; Schook, D.; Alves, M.H.; Anđelković, A.; Bruno, D.; Chilikova-Lubomirova, M.; Di Lonardo, S.; et al. Riparian Zones—From Policy Neglected to Policy Integrated. Front. Environ. Sci. 2022, 10, 868527. [Google Scholar] [CrossRef]
- Feng, J.; Shao, D.; Gu, W.; Liu, L.; Dong, W.; Miao, D. Surface Water–Groundwater Transformation Patterns in the Jianghan Plain after the Impoundment of the Three Gorges Project and the Opening of the Yangtze-to-Hanjiang Water Transfer Project. Water 2023, 15, 2952. [Google Scholar] [CrossRef]
- Noviandi, T.U.Z.; Kaswanto, R.L.; Arifin, H.S. Riparian landscape management in the midstream of Ciliwung River as supporting Water Sensitive Cities program with priority of productive landscape. IOP Conf. Ser. Earth Environ. Sci. 2017, 91, 012033. [Google Scholar] [CrossRef]
- Rafa, N.; Ahmed, B.; Zohora, F.; Bakya, J.; Ahmed, S.; Ahmed, S.F.; Mofijur, M.; Chowdhury, A.A.; Almomani, F. Microplastics as carriers of toxic pollutants: Source, transport, and toxicological effects. Environ. Pollut. 2024, 343, 123190. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Pérez, K.; Avilés-Castrillo, J.; Ruiz-Pulido, G.; Medina, D.I.; Parra-Saldivar, R.; Iqbal, H.M. Nanoadsorbents in focus for the remediation of environmentally-related contaminants with rising toxicity concerns. Sci. Total Environ. 2021, 779, 146465. [Google Scholar] [CrossRef] [PubMed]
- Han, P.; Hu, H.; Zhou, J.; Wang, M.; Zhou, Z. Integrating key ecosystem services to study the spatio-temporal dynamics and determinants of ecosystem health in Wuhan’s central urban area. Ecol. Indic. 2024, 166, 112352. [Google Scholar] [CrossRef]
- Luo, Y.; Jin, X.; Zhao, J.; Xie, H.; Guo, X.; Huang, D.; Giesy, J.; Xu, J. Ecological implications and drivers of emerging contaminants in Dongting Lake of Yangtze River Basin, China: A multi-substance risk analysis. J. Hazard. Mater. 2024, 472, 134519. [Google Scholar] [CrossRef]
- Fu, C.; Liu, Y.; Li, F.; Huang, H.; Zheng, S. Response of hydrological ecosystem services to land-use change and risk assessment in Jiangxi Province, China. Heliyon 2024, 10, e24911. [Google Scholar] [CrossRef]
- Cejudo, E.; Bravo-Mendoza, M.; Gomez-Ramírez, J.J.; Acosta-González, G. Water retention and soil organic carbon storage in tropical karst wetlands in Quintana Roo, Mexico. Wetl. Ecol. Manag. 2024. [Google Scholar] [CrossRef]
- Tang, S.; Gong, J.; Song, B.; Li, J.; Cao, W.; Zhao, J. Co-influence of biochar-supported effective microorganisms and seasonal changes on dissolved organic matter and microbial activity in eutrophic lake. Sci. Total Environ. 2024, 923, 171476. [Google Scholar] [CrossRef]
- Wu, J.; He, Y.; Zhao, Y.; Chen, K.; Cui, Y.; Wang, H. A Simple Index of Lake Ecosystem Health Based on Species-Area Models of Macrobenthos. Int. J. Environ. Res. Public Health 2022, 19, 9678. [Google Scholar] [CrossRef]
- Nichols, S.J.; Reynoldson, T.B.; Harrison, E.T. Evaluating AUSRIVAS predictive model performance for detecting simulated eutrophication effects on invertebrate assemblages. Freshw. Sci. 2014, 33, 1212–1224. [Google Scholar] [CrossRef]
- Copetti, D.; Erba, S. A bibliometric review on the Water Framework Directive twenty years after its birth. Ambio 2024, 53, 95–108. [Google Scholar] [CrossRef] [PubMed]
- EPA 841-R-22-004; National Rivers and Streams Assessment: The Third Collaborative Survey. Technical Report; U.S. Environmental Protection Agency, Office of Water and Office of Research and Development: Washington, DC, USA, 2023.
- E.U. International Commission for the Protection of the Rhine. Internationally Coordinated Management Plan 2022–2027 for the International River Basin District of the Rhine; Technical Report; E.U. International Commission for the Protection of the Rhine: Koblenz, Germany, 2022. [Google Scholar]
- Ministry of Ecology and Environment. Scoring Rules for Water Ecology Assessment Indicators in the Yangtze River Basin; Technical Report; Ministry of Ecology and Environment: Beijing, China, 2023.
- Maraseni, T.; Mitchell, C. An assessment of carbon sequestration potential of riparian zone of Condamine Catchment, Queensland, Australia. Land Use Policy 2016, 54, 139–146. [Google Scholar] [CrossRef]
- Tamanna, M.; Pradhanang, S.M.; Gold, A.J.; Addy, K.; Vidon, P.G. Riparian Zone Nitrogen Management through the Development of the Riparian Ecosystem Management Model (REMM) in a Formerly Glaciated Watershed of the US Northeast. Agriculture 2021, 11, 743. [Google Scholar] [CrossRef]
- Ye, C.; Cheng, X.; Zhang, K.; Du, M.; Zhang, Q. Hydrologic pulsing affects denitrification rates and denitrifier communities in a revegetated riparian ecotone. Soil Biol. Biochem. 2017, 115, 137–147. [Google Scholar] [CrossRef]
- Henriques, M.; McVicar, T.R.; Holland, K.L.; Daly, E. Riparian vegetation and geomorphological interactions in anabranching rivers: A global review. Ecohydrology 2022, 15, e2370. [Google Scholar] [CrossRef]
- Jiang, W.; Pan, H.; Yang, N.; Xiao, H. Dam inundation duration as a dominant constraint on riparian vegetation recovery. Sci. Total Environ. 2023, 904, 166427. [Google Scholar] [CrossRef]
- Baniya, M.B.; Asaeda, T.; Fujino, T.; Jayasanka, S.M.D.H.; Muhetaer, G.; Li, J. Mechanism of Riparian Vegetation Growth and Sediment Transport Interaction in Floodplain: A Dynamic Riparian Vegetation Model (DRIPVEM) Approach. Water 2019, 12, 77. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Greimann, B.; Huang, V. Application and evaluation of the HEC-RAS – riparian vegetation simulation module to the Sacramento River. Ecol. Model. 2018, 368, 158–168. [Google Scholar] [CrossRef]
- Scott, J.A.; Merritt, D.M. Riparian response guilds shift in response to flow alteration in montane streams of the southern Rocky Mountains. Ecosphere 2020, 11, e03253. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, S.; Li, X.; Li, Y.; Li, K.; Xu, Y.; Dong, L. Supporting function of vegetation in urban riparian ecological corridors for ground-dwelling faunal diversity in Beijing, China. Sci. Total Environ. 2024, 921, 171150. [Google Scholar] [CrossRef]
- Bega, J.M.; Saltarelli, W.A.; Gücker, B.; Boëchat, I.G.; Finkler, N.R.; Cunha, D.G. Effects of riparian vegetation restoration and environmental context on ecosystem functioning in tropical streams of southeastern Brazil. Sci. Total Environ. 2024, 948, 174906. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, Z.R.M.A. Analysis of the livelihood and health of internally displaced persons due to riverbank erosion in Bangladesh. J. Migr. Health 2023, 7, 100157. [Google Scholar] [CrossRef] [PubMed]
- Razali, I.H.; Mohd Taib, A.; Abd Rahman, N.; Abang Hasbollah, D.Z.; Md Dan, M.F.; Ramli, A.B.; Ibrahim, A. Slope stability analysis of riverbank in Malaysia with the effects of vegetation. Phys. Chem. Earth Parts A/B/C 2023, 129, 103334. [Google Scholar] [CrossRef]
- Yu, G.A.; Li, Z.; Yang, H.; Lu, J.; Huang, H.Q.; Yi, Y. Effects of riparian plant roots on the unconsolidated bank stability of meandering channels in the Tarim River, China. Geomorphology 2020, 351, 106958. [Google Scholar] [CrossRef]
- Capobianco, V.; Robinson, K.; Kalsnes, B.; Ekeheien, C.; Høydal, Ø. Hydro-Mechanical Effects of Several Riparian Vegetation Combinations on the Streambank Stability—A Benchmark Case in Southeastern Norway. Sustainability 2021, 13, 4046. [Google Scholar] [CrossRef]
- Dunea, D.; Bretcan, P.; Purcoi, L.; Tanislav, D.; Serban, G.; Neagoe, A.; Iordache, V.; Iordache, Ș. Effects of riparian vegetation on evapotranspiration processes and water quality of small plain streams. Ecohydrol. Hydrobiol. 2021, 21, 629–640. [Google Scholar] [CrossRef]
- González-Osorio, B.B.; Saá-Yánez, L.M.; Simba-Ochoa, L.F.; Barragán-Monrroy, R.; Cadme-Arevalo, M.L. Vegetación riparia y la calidad del recurso hídrico en la zona centro del litoral Ecuatoriano. Rev. Terra Latinoam. 2022, 40. [Google Scholar] [CrossRef]
- O’Toole, P.; Chambers, J.; Bell, R. Understanding the characteristics of riparian zones in low relief, sandy catchments that affect their nutrient removal potential. Agric. Ecosyst. Environ. 2018, 258, 182–196. [Google Scholar] [CrossRef]
- Tabacchi, E.; Lambs, L.; Guilloy, H.l.n.; Planty-Tabacchi, A.M.; Muller, E.; D camps, H. Impacts of riparian vegetation on hydrological processes. Hydrol. Process. 2000, 14, 2959–2976. [Google Scholar] [CrossRef]
- Dallas, H. Water temperature and riverine ecosystems: An overview of knowledge and approaches for assessing biotic responses, with special reference to South Africa. Water SA 2018, 34, 393. [Google Scholar] [CrossRef]
- Kazmi, S.S.U.H.; Wang, Y.Y.L.; Cai, Y.E.; Wang, Z. Temperature effects in single or combined with chemicals to the aquatic organisms: An overview of thermo-chemical stress. Ecol. Indic. 2022, 143, 109354. [Google Scholar] [CrossRef]
- Dallas, H.; Ross-Gillespie, V. Review: Sublethal effects of temperature on freshwater organisms, with special reference to aquatic insects. Water SA 2015, 41, 712. [Google Scholar] [CrossRef]
- Forster, J.; Hirst, A.G.; Atkinson, D. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl. Acad. Sci. USA 2012, 109, 19310–19314. [Google Scholar] [CrossRef] [PubMed]
- Miranda, L.M.; Correia, M.; Barraca, C.; Baylina, N.; Faria, A.M. Prolonged exposure to elevated temperature leads to severe thermal stress in the broad-nosed pipefish, Syngnathus typhle. Mar. Freshw. Behav. Physiol. 2024, 57, 1–16. [Google Scholar] [CrossRef]
- Noa-Yarasca, E.; Babbar-Sebens, M.; Jordan, C. An improved model of shade-affected stream temperature in Soil & Water Assessment Tool. Hydrol. Earth Syst. Sci. 2023, 27, 739–759. [Google Scholar] [CrossRef]
- O’Briain, R.; Shephard, S.; Matson, R.; Gordon, P.; Kelly, F.L. The efficacy of riparian tree cover as a climate change adaptation tool is affected by hydromorphological alterations. Hydrol. Process. 2020, 34, 2433–2449. [Google Scholar] [CrossRef]
- Carmo, R.S.; Fares, A.L.B.L.; Pereira, G.F.M.; Michelan, T.S. Does the structure of riparian vegetation affect the diversity of macrophytes in eastern amazonian streams? Biologia 2022, 78, 79–89. [Google Scholar] [CrossRef]
- Ferreira, V.; Castela, J.; Rosa, P.; Tonin, A.M.; Boyero, L.; Graça, M.A.S. Aquatic hyphomycetes, benthic macroinvertebrates and leaf litter decomposition in streams naturally differing in riparian vegetation. Aquat. Ecol. 2016, 50, 711–725. [Google Scholar] [CrossRef]
- Junk, W.J.; Piedade, M.T.F.; Schöngart, J.; Da Cunha, C.N.; Goncalves, S.R.A.; Wantzen, K.M.; Wittmann, F. Riparian wetlands of low-order streams in Brazil: Extent, hydrology, vegetation cover, interactions with streams and uplands, and threats. Hydrobiologia 2024, 851, 1657–1678. [Google Scholar] [CrossRef]
- Hamilton, B.T.; Roeder, B.L.; Hatch, K.A.; Eggett, D.L.; Tingey, D. Why is small mammal diversity higher in riparian areas than in uplands? J. Arid. Environ. 2015, 119, 41–50. [Google Scholar] [CrossRef]
- Solins, J.P.; Cadenasso, M.L. Urban runoff and stream channel incision interact to influence riparian soils and understory vegetation. Ecol. Appl. 2022, 32, e2556. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, Y.; Yang, C.; Chen, Y. Effects of vegetation types on water-extracted soil organic matter (WSOM) from riparian wetland and its impacts on riverine water quality: Implications for riparian wetland management. Sci. Total Environ. 2018, 628–629, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Rezende, R.D.S.; Cararo, E.R.; Bernardi, J.P.; Chimello, V.; Lima-Rezende, C.A.; Albeny-Simões, D.; Dal Magro, J.; Gonçalves, J.F. Land cover affects the breakdown of Pinus elliottii needles litter by microorganisms in soil and stream systems of subtropical riparian zones. Limnologica 2021, 90, 125905. [Google Scholar] [CrossRef]
- Stormont, J.C.; Farfan, E.; Coonrod, J.E.A. Total Soil Water Evaporation in a Riparian Environment: Model Development and Application. J. Hydrol. Eng. 2009, 14, 904–912. [Google Scholar] [CrossRef]
- Simões, S.; Martínez, A.; Gonçalves, A.L.; Capela, N.; Alves, J.; Da Silva, A.A.; Jones, T.H.; Sousa, J.P.; Canhoto, C. Annual patterns of litter decomposition in the channel and riparian areas of an intermittent stream. Aquat. Ecol. 2021, 55, 519–526. [Google Scholar] [CrossRef]
- Cabette, H.S.; Souza, J.R.; Shimano, Y.; Juen, L. Effects of changes in the riparian forest on the butterfly community (Insecta: Lepidoptera) in Cerrado areas. Rev. Bras. Entomol. 2017, 61, 43–50. [Google Scholar] [CrossRef]
- Viegas, G.; Stenert, C.; Schulz, U.H.; Maltchik, L. Dung beetle communities as biological indicators of riparian forest widths in southern Brazil. Ecol. Indic. 2014, 36, 703–710. [Google Scholar] [CrossRef]
- McClure, C.J.; Korte, A.C.; Heath, J.A.; Barber, J.R. Pavement and riparian forest shape the bird community along an urban river corridor. Glob. Ecol. Conserv. 2015, 4, 291–310. [Google Scholar] [CrossRef]
- Santos, M.J.; Matos, H.M.; Palomares, F.; Santos-Reis, M. Factors affecting mammalian carnivore use of riparian ecosystems in Mediterranean climates. J. Mammal. 2011, 92, 1060–1069. [Google Scholar] [CrossRef]
- Fremier, A.K.; Kiparsky, M.; Gmur, S.; Aycrigg, J.; Craig, R.K.; Svancara, L.K.; Goble, D.D.; Cosens, B.; Davis, F.W.; Scott, J.M. A riparian conservation network for ecological resilience. Biol. Conserv. 2015, 191, 29–37. [Google Scholar] [CrossRef]
- Phoebus, I.; Segelbacher, G.; Stenhouse, G.B. Do large carnivores use riparian zones? Ecological implications for forest management. For. Ecol. Manag. 2017, 402, 157–165. [Google Scholar] [CrossRef]
- Brost, B.M.; Beier, P. Comparing Linkage Designs Based on Land Facets to Linkage Designs Based on Focal Species. PLoS ONE 2012, 7, e48965. [Google Scholar] [CrossRef] [PubMed]
- Gray, C.; Simmons, B.; Fayle, T.; Mann, D.; Slade, E. Are riparian forest reserves sources of invertebrate biodiversity spillover and associated ecosystem functions in oil palm landscapes? Biol. Conserv. 2016, 194, 176–183. [Google Scholar] [CrossRef]
- Xu, J.; Qiu, B.; Zhang, F.; Zhang, J. Restorative Effects of Pocket Parks on Mental Fatigue among Young Adults: A Comparative Experimental Study of Three Park Types. Forests 2024, 15, 286. [Google Scholar] [CrossRef]
- Politti, E. Feedbacks between the riparian Salicaceae and hydrogeomorphic processes—A quantitative review. Earth-Sci. Rev. 2018, 176, 147–165. [Google Scholar] [CrossRef]
- Mitchell, R.L.; Kenrick, P.; Pressel, S.; Duckett, J.; Strullu-Derrien, C.; Davies, N.; McMahon, W.J.; Summerfield, R. Terrestrial surface stabilisation by modern analogues of the earliest land plants: A multi-dimensional imaging study. Geobiology 2023, 21, 454–473. [Google Scholar] [CrossRef]
- Licci, S.; Marmonier, P.; Wharton, G.; Delolme, C.; Mermillod-Blondin, F.; Simon, L.; Vallier, F.; Bouma, T.J.; Puijalon, S. Scale-dependent effects of vegetation on flow velocity and biogeochemical conditions in aquatic systems. Sci. Total Environ. 2022, 833, 155123. [Google Scholar] [CrossRef]
- O’Briain, R.; Corenblit, D.; Gurnell, A. Interacting effects of climate change and invasions by alien plant species on the morphodynamics of temperate rivers. WIREs Water 2023, 10, e1649. [Google Scholar] [CrossRef]
- Corenblit, D.; Piégay, H.; Arrignon, F.; González-Sargas, E.; Bonis, A.; Davies, N.S.; Ebengo, D.M.; Garófano-Gómez, V.; Gurnell, A.M.; Henry, A.L.; et al. Interactions between vegetation and river morphodynamics. Part I: Research clarifications and challenges. Earth-Sci. Rev. 2024, 253, 104769. [Google Scholar] [CrossRef]
- Holzapfel, G.; Weihs, P.; Rauch, H.P. Use of the Shade-a-lator 6.2 model to assess the shading potential of riparian purple willow (Salix purpurea) coppices on small to medium sized rivers. Ecol. Eng. 2013, 61, 697–705. [Google Scholar] [CrossRef]
- He, J.; Chu, A.; Ryan, M.C.; Valeo, C.; Zaitlin, B. Abiotic influences on dissolved oxygen in a riverine environment. Ecol. Eng. 2011, 37, 1804–1814. [Google Scholar] [CrossRef]
- Bateman, H.L.; Ostoja, S.M. Invasive woody plants affect the composition of native lizard and small mammal communities in riparian woodlands. Anim. Conserv. 2012, 15, 294–304. [Google Scholar] [CrossRef]
- Duan, Y.; Bai, H.; Yang, L.; Li, S.; Zhu, Q. Impact of seasonal changes in urban green spaces with diverse vegetation structures on college students’ physical and mental health. Sci. Rep. 2024, 14, 16277. [Google Scholar] [CrossRef] [PubMed]
- Abdelmajeed, A.Y.A.; Juszczak, R. Challenges and Limitations of Remote Sensing Applications in Northern Peatlands: Present and Future Prospects. Remote Sens. 2024, 16, 591. [Google Scholar] [CrossRef]
- Xie, H.; Ma, W. Remote Sensing Image Change Detection Based on Multi-Level Diversity Feature Fusion. IEEE Access 2024, 12, 81495–81505. [Google Scholar] [CrossRef]
- Langhorst, T.; Andreadis, K.M.; Allen, G.H. Global Cloud Biases in Optical Satellite Remote Sensing of Rivers. Geophys. Res. Lett. 2024, 51, e2024GL110085. [Google Scholar] [CrossRef]
- Niu, X.; Chen, B.; Sun, W.; Feng, T.; Yang, X.; Liu, Y.; Liu, W.; Fu, B. Estimation of Coastal Wetland Vegetation Aboveground Biomass by Integrating UAV and Satellite Remote Sensing Data. Remote Sens. 2024, 16, 2760. [Google Scholar] [CrossRef]
- Liao, X.; Zhang, Y.; Su, F.; Yue, H.; Ding, Z.; Liu, J. UAVs surpassing satellites and aircraft in remote sensing over China. Int. J. Remote Sens. 2018, 39, 7138–7153. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, L. A Review on Unmanned Aerial Vehicle Remote Sensing: Platforms, Sensors, Data Processing Methods, and Applications. Drones 2023, 7, 398. [Google Scholar] [CrossRef]
- Nex, F.; Armenakis, C.; Cramer, M.; Cucci, D.; Gerke, M.; Honkavaara, E.; Kukko, A.; Persello, C.; Skaloud, J. UAV in the advent of the twenties: Where we stand and what is next. ISPRS J. Photogramm. Remote Sens. 2022, 184, 215–242. [Google Scholar] [CrossRef]
- Mesa, L.M. Influence of riparian quality on macroinvertebrate assemblages in subtropical mountain streams. J. Nat. Hist. 2014, 48, 1153–1167. [Google Scholar] [CrossRef]
- Huylenbroeck, L.; Laslier, M.; Dufour, S.; Georges, B.; Lejeune, P.; Michez, A. Using remote sensing to characterize riparian vegetation: A review of available tools and perspectives for managers. J. Environ. Manag. 2020, 267, 110652. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Effect of river channel planar complexity on riparian vegetation-river flow relationships in arid environments. Sci. Total Environ. 2024, 912, 168988. [Google Scholar] [CrossRef] [PubMed]
- Donovan, M.; Belmont, P.; Notebaert, B.; Coombs, T.; Larson, P.; Souffront, M. Accounting for uncertainty in remotely-sensed measurements of river planform change. Earth-Sci. Rev. 2019, 193, 220–236. [Google Scholar] [CrossRef]
- Holmes, K.L.; Goebel, P.C. A Functional Approach to Riparian Area Delineation Using Geospatial Methods. J. For. 2011, 109, 233–241. [Google Scholar] [CrossRef]
- Pu, G.; Quackenbush, L.J.; Stehman, S.V. Identifying Factors That Influence Accuracy of Riparian Vegetation Classification and River Channel Delineation Mapped Using 1 m Data. Remote Sens. 2021, 13, 4645. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, S.; Stanislawski, L.V.; Jiang, Z.; Jaroenchai, N.; Sainju, A.M.; Shavers, E.; Usery, E.L.; Chen, L.; Li, Z.; et al. An attention U-Net model for detection of fine-scale hydrologic streamlines. Environ. Model. Softw. 2021, 140, 104992. [Google Scholar] [CrossRef]
- Williams, R.D.; Brasington, J.; Vericat, D.; Hicks, D.M. Hyperscale terrain modelling of braided rivers: Fusing mobile terrestrial laser scanning and optical bathymetric mapping. Earth Surf. Process. Landf. 2014, 39, 167–183. [Google Scholar] [CrossRef]
- Flener, C.; Vaaja, M.; Jaakkola, A.; Krooks, A.; Kaartinen, H.; Kukko, A.; Kasvi, E.; Hyyppä, H.; Hyyppä, J.; Alho, P. Seamless Mapping of River Channels at High Resolution Using Mobile LiDAR and UAV-Photography. Remote Sens. 2013, 5, 6382–6407. [Google Scholar] [CrossRef]
- Basumatary, H.; Devi, H.S.; Borah, S.B.; Das, A.K. Land cover dynamics and their driving factors in a protected floodplain ecosystem. River Res. Appl. 2021, 37, 627–643. [Google Scholar] [CrossRef]
- Demissie, B.; Nyssen, J.; Billi, P.; Haile, M.; Vaneetvelde, V.; Frankl, A. Land-use/cover changes in relation to stream dynamics in a marginal graben along the northern Ethiopian Rift Valley. Phys. Geogr. 2019, 40, 71–90. [Google Scholar] [CrossRef]
- Müllerová, J.; Gago, X.; Bučas, M.; Company, J.; Estrany, J.; Fortesa, J.; Manfreda, S.; Michez, A.; Mokroš, M.; Paulus, G.; et al. Characterizing vegetation complexity with unmanned aerial systems (UAS)—A framework and synthesis. Ecol. Indic. 2021, 131, 108156. [Google Scholar] [CrossRef]
- Laslier, M.; Hubert-Moy, L.; Corpetti, T.; Dufour, S. Monitoring the colonization of alluvial deposits using multitemporal UAV RGB-imagery. Appl. Veg. Sci. 2019, 22, 561–572. [Google Scholar] [CrossRef]
- Milani, G.; Volpi, M.; Tonolla, D.; Doering, M.; Robinson, C.; Kneubühler, M.; Schaepman, M. Robust quantification of riverine land cover dynamics by high-resolution remote sensing. Remote Sens. Environ. 2018, 217, 491–505. [Google Scholar] [CrossRef]
- Carbonneau, P.E.; Dugdale, S.J.; Breckon, T.P.; Dietrich, J.T.; Fonstad, M.A.; Miyamoto, H.; Woodget, A.S. Adopting deep learning methods for airborne RGB fluvial scene classification. Remote Sens. Environ. 2020, 251, 112107. [Google Scholar] [CrossRef]
- Yousefi, S.; Moradi, H.R.; Pourghasemi, H.R.; Khatami, R. Assessment of floodplain landuse and channel morphology within meandering reach of the Talar River in Iran using GIS and aerial photographs. Geocarto Int. 2018, 33, 1367–1380. [Google Scholar] [CrossRef]
- Bhunia, G.S.; Shit, P.K.; Pal, D.K. Channel dynamics associated with land use/cover change in Ganges river, India, 1989–2010. Spat. Inf. Res. 2016, 24, 437–449. [Google Scholar] [CrossRef]
- Cienciala, P.; Nelson, A.D.; Haas, A.D.; Xu, Z. Lateral geomorphic connectivity in a fluvial landscape system: Unraveling the role of confinement, biogeomorphic interactions, and glacial legacies. Geomorphology 2020, 354, 107036. [Google Scholar] [CrossRef]
- Yousefi, S.; Pourghasemi, H.R.; Hooke, J.; Navratil, O.; Kidová, A. Changes in morphometric meander parameters identified on the Karoon River, Iran, using remote sensing data. Geomorphology 2016, 271, 55–64. [Google Scholar] [CrossRef]
- Surian, N.; Barban, M.; Ziliani, L.; Monegato, G.; Bertoldi, W.; Comiti, F. Vegetation turnover in a braided river: Frequency and effectiveness of floods of different magnitude. Earth Surf. Process. Landf. 2015, 40, 542–558. [Google Scholar] [CrossRef]
- Philipsen, L.J.; Romuld, M.A.; Rood, S.B. Floodplain forest dynamics: Half-century floods enable pulses of geomorphic disturbance and cottonwood colonization along a prairie river. River Res. Appl. 2021, 37, 64–77. [Google Scholar] [CrossRef]
- Rusnák, M.; Sládek, J.; Pacina, J.; Kidová, A. Monitoring of avulsion channel evolution and river morphology changes using UAV photogrammetry: Case study of the gravel bed Ondava River in Outer Western Carpathians. Area 2019, 51, 549–560. [Google Scholar] [CrossRef]
- Magdaleno, F.; Fernández, J.A. Hydromorphological alteration of a large Mediterranean river: Relative role of high and low flows on the evolution of riparian forests and channel morphology. River Res. Appl. 2011, 27, 374–387. [Google Scholar] [CrossRef]
- Casado, A.; Peiry, J.L.; Campo, A.M. Geomorphic and vegetation changes in a meandering dryland river regulated by a large dam, Sauce Grande River, Argentina. Geomorphology 2016, 268, 21–34. [Google Scholar] [CrossRef]
- Sanchis-Ibor, C.; Segura-Beltrán, F.; Navarro-Gómez, A. Channel forms and vegetation adjustment to damming in a Mediterranean gravel-bed river (Serpis River, Spain). River Res. Appl. 2019, 35, 37–47. [Google Scholar] [CrossRef]
- Westoby, M.; Brasington, J.; Glasser, N.; Hambrey, M.; Reynolds, J. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic structure from motion: A new development in photogrammetric measurement. Earth Surf. Process. Landf. 2013, 38, 421–430. [Google Scholar] [CrossRef]
- Tamminga, A.D.; Eaton, B.C.; Hugenholtz, C.H. UAS-based remote sensing of fluvial change following an extreme flood event. Earth Surf. Process. Landf. 2015, 40, 1464–1476. [Google Scholar] [CrossRef]
- Miřijovský, J.; Langhammer, J. Multitemporal Monitoring of the Morphodynamics of a Mid-Mountain Stream Using UAS Photogrammetry. Remote Sens. 2015, 7, 8586–8609. [Google Scholar] [CrossRef]
- Van Iersel, W.; Straatsma, M.; Addink, E.; Middelkoop, H. Monitoring height and greenness of non-woody floodplain vegetation with UAV time series. ISPRS J. Photogramm. Remote Sens. 2018, 141, 112–123. [Google Scholar] [CrossRef]
- Michez, A.; Piégay, H.; Lisein, J.; Claessens, H.; Lejeune, P. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system. Environ. Monit. Assess. 2016, 188, 146. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Mastrorocco, G.; Salvini, R.; Oliveti, M.; Starita, P. Application of UAV photogrammetry for the multi-temporal estimation of surface extent and volumetric excavation in the Sa Pigada Bianca open-pit mine, Sardinia, Italy. Environ. Earth Sci. 2017, 76, 103. [Google Scholar] [CrossRef]
- Cook, K.L. An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology 2017, 278, 195–208. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef]
- Audet, J.; Baattrup-Pedersen, A.; Andersen, H.E.; Andersen, P.M.; Hoffmann, C.C.; Kjaergaard, C.; Kronvang, B. Environmental controls of plant species richness in riparian wetlands: Implications for restoration. Basic Appl. Ecol. 2015, 16, 480–489. [Google Scholar] [CrossRef]
- Mata-González, R.; McLendon, T.; Martin, D.W.; Trlica, M.J.; Pearce, R.A. Vegetation as affected by groundwater depth and microtopography in a shallow aquifer area of the Great Basin. Ecohydrology 2012, 5, 54–63. [Google Scholar] [CrossRef]
- Stromberg, J.C.; Tluczek, M.G.; Hazelton, A.F.; Ajami, H. A century of riparian forest expansion following extreme disturbance: Spatio-temporal change in Populus/Salix/Tamarix forests along the Upper San Pedro River, Arizona, USA. For. Ecol. Manag. 2010, 259, 1181–1189. [Google Scholar] [CrossRef]
- Zhu, H.; Huang, Y.; Li, Y.; Yu, F.; Zhang, G.; Fan, L.; Zhou, J.; Li, Z.; Yuan, M. Predicting plant diversity in beach wetland downstream of Xiaolangdi reservoir with UAV and satellite multispectral images. Sci. Total Environ. 2022, 819, 153059. [Google Scholar] [CrossRef]
- Bejarano, M.D.; Sordo-Ward, Á.; Alonso, C.; Jansson, R.; Nilsson, C. Hydropeaking affects germination and establishment of riverbank vegetation. Ecol. Appl. 2020, 30, e02076. [Google Scholar] [CrossRef]
- Yi, S.; Wu, P.; Bai, F.; Zhou, D.; Peng, X.; Zhang, W.; Guo, W. Environmental Filtering Drives Plant Community Assembly Processes in the Riparian Marsh of Downstream Yellow River, China. Wetlands 2020, 40, 287–298. [Google Scholar] [CrossRef]
- Hu, Y.; Qi, C.; Liu, X.; Zhang, C.; Gao, J.; Wu, Y.; Yang, J.; Zhao, Q.; Li, J.; Wang, X.; et al. Malignant ascites-derived exosomes promote peritoneal tumor cell dissemination and reveal a distinct miRNA signature in advanced gastric cancer. Cancer Lett. 2019, 457, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Chen, L.; Lu, M.; Xu, B. Wetland mapping by fusing fine spatial and hyperspectral resolution images. Ecol. Model. 2017, 353, 95–106. [Google Scholar] [CrossRef]
- Polley, H.W.; Yang, C.; Wilsey, B.J.; Fay, P.A. Spectral Heterogeneity Predicts Local-Scale Gamma and Beta Diversity of Mesic Grasslands. Remote Sens. 2019, 11, 458. [Google Scholar] [CrossRef]
- Wei, T.; Shangguan, D.; Yi, S.; Ding, Y. Characteristics and controls of vegetation and diversity changes monitored with an unmanned aerial vehicle (UAV) in the foreland of the Urumqi Glacier No. 1, Tianshan, China. Sci. Total Environ. 2021, 771, 145433. [Google Scholar] [CrossRef]
- Li, Q.S.; Wong, F.K.K.; Fung, T. Assessing the Utility of Uav-Borne Hyperspectral Image and Photogrammetry Derived 3D Data for Wetland Species Distribution Quick Mapping. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W6, 209–215. [Google Scholar] [CrossRef]
- Fundisi, E.; Musakwa, W.; Ahmed, F.B.; Tesfamichael, S.G. Estimation of woody plant species diversity during a dry season in a savanna environment using the spectral and textural information derived from WorldView-2 imagery. PLoS ONE 2020, 15, e0234158. [Google Scholar] [CrossRef]
- Rocchini, D.; Boyd, D.S.; Féret, J.; Foody, G.M.; He, K.S.; Lausch, A.; Nagendra, H.; Wegmann, M.; Pettorelli, N. Satellite remote sensing to monitor species diversity: Potential and pitfalls. Remote Sens. Ecol. Conserv. 2016, 2, 25–36. [Google Scholar] [CrossRef]
- Wang, R.; Gamon, J.A. Remote sensing of terrestrial plant biodiversity. Remote Sens. Environ. 2019, 231, 111218. [Google Scholar] [CrossRef]
- Dakin Kuiper, S.; Coops, N.C.; Tompalski, P.; Hinch, S.G.; Nonis, A.; White, J.C.; Hamilton, J.; Davis, D.J. Characterizing stream morphological features important for fish habitat using airborne laser scanning data. Remote Sens. Environ. 2022, 272, 112948. [Google Scholar] [CrossRef]
- Whited, D.C.; Kimball, J.S.; Lorang, M.S.; Stanford, J.A. Estimation of Juvenile Salmon Habitat in Pacific Rim Rivers Using Multiscalar Remote Sensing and Geospatial Analysis. River Res. Appl. 2013, 29, 135–148. [Google Scholar] [CrossRef]
- Tomlinson, M.J.; Gergel, S.E.; Beechie, T.J.; McClure, M.M. Long-term changes in river–floodplain dynamics: Implications for salmonid habitat in the Interior Columbia Basin, USA. Ecol. Appl. 2011, 21, 1643–1658. [Google Scholar] [CrossRef] [PubMed]
- Keller, D.L.; Laub, B.G.; Birdsey, P.; Dean, D.J. Effects of Flooding and Tamarisk Removal on Habitat for Sensitive Fish Species in the San Rafael River, Utah: Implications for Fish Habitat Enhancement and Future Restoration Efforts. Environ. Manag. 2014, 54, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Arantes, C.C.; Winemiller, K.O.; Petrere, M.; Castello, L.; Hess, L.L.; Freitas, C.E.C. Relationships between forest cover and fish diversity in the Amazon River floodplain. J. Appl. Ecol. 2018, 55, 386–395. [Google Scholar] [CrossRef]
- Mollot, L.A.; Bilby, R.E. The Use of Geographic Information Systems, Remote Sensing, and Suitability Modeling to Identify Conifer Restoration Sites with High Biological Potential for Anadromous Fish at the Cedar River Municipal Watershed in Western Washington, U.S.A. Restor. Ecol. 2008, 16, 336–347. [Google Scholar] [CrossRef]
- Van Der Most, M.; Hudson, P.F. The influence of floodplain geomorphology and hydrologic connectivity on alligator gar (Atractosteus spatula) habitat along the embanked floodplain of the Lower Mississippi River. Geomorphology 2018, 302, 62–75. [Google Scholar] [CrossRef]
- Villamarín, F.; Marioni, B.; Thorbjarnarson, J.B.; Nelson, B.W.; Botero-Arias, R.; Magnusson, W.E. Conservation and management implications of nest-site selection of the sympatric crocodilians Melanosuchus niger and Caiman crocodilus in Central Amazonia, Brazil. Biol. Conserv. 2011, 144, 913–919. [Google Scholar] [CrossRef]
- Bateman, H.; Nagler, P.; Glenn, E. Plot- and landscape-level changes in climate and vegetation following defoliation of exotic saltcedar (Tamarix sp.) from the biocontrol agent Diorhabda carinulata along a stream in the Mojave Desert (USA). J. Arid. Environ. 2013, 89, 16–20. [Google Scholar] [CrossRef]
- Lafage, D.; Secondi, J.; Georges, A.; Bouzillé, J.; Pétillon, J. Satellite-derived vegetation indices as surrogate of species richness and abundance of ground beetles in temperate floodplains. Insect Conserv. Divers. 2014, 7, 327–333. [Google Scholar] [CrossRef]
- Mcfarland, T.; Van Riper, C.; Johnson, G. Evaluation of NDVI to assess avian abundance and richness along the upper San Pedro River. J. Arid. Environ. 2012, 77, 45–53. [Google Scholar] [CrossRef]
- Christie, K.S.; Gilbert, S.L.; Brown, C.L.; Hatfield, M.; Hanson, L. Unmanned aircraft systems in wildlife research: Current and future applications of a transformative technology. Front. Ecol. Environ. 2016, 14, 241–251. [Google Scholar] [CrossRef]
- Gonzalez, L.; Montes, G.; Puig, E.; Johnson, S.; Mengersen, K.; Gaston, K. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation. Sensors 2016, 16, 97. [Google Scholar] [CrossRef] [PubMed]
- Fortuna, J.; Ferreira, F.; Gomes, R.; Ferreira, S.; Sousa, J. Using low cost open source UAVs for marine wild life monitoring—Field Report. IFAC Proc. Vol. 2013, 46, 291–295. [Google Scholar] [CrossRef]
- Chabot, D.; Bird, D.M. Wildlife research and management methods in the 21st century: Where do unmanned aircraft fit in? J. Unmanned Veh. Syst. 2015, 3, 137–155. [Google Scholar] [CrossRef]
- Rey, N.; Volpi, M.; Joost, S.; Tuia, D. Detecting animals in African Savanna with UAVs and the crowds. Remote Sens. Environ. 2017, 200, 341–351. [Google Scholar] [CrossRef]
- Weissensteiner, M.H.; Poelstra, J.W.; Wolf, J.B.W. Low-budget ready-to-fly unmanned aerial vehicles: An effective tool for evaluating the nesting status of canopy-breeding bird species. J. Avian Biol. 2015, 46, 425–430. [Google Scholar] [CrossRef]
- Sardà-Palomera, F.; Bota, G.; Viñolo, C.; Pallarés, O.; Sazatornil, V.; Brotons, L.; Gomáriz, S.; Sardà, F. Fine-scale bird monitoring from light unmanned aircraft systems. Ibis 2012, 154, 177–183. [Google Scholar] [CrossRef]
- Scholten, C.N. Real-time thermal imagery from an unmanned aerial vehicle can locate ground nests of a grassland songbird at rates similar to traditional methods. Biol. Conserv. 2019, 233, 241–246. [Google Scholar] [CrossRef]
- Chabot, D.; Craik, S.R.; Bird, D.M. Population Census of a Large Common Tern Colony with a Small Unmanned Aircraft. PLoS ONE 2015, 10, e0122588. [Google Scholar] [CrossRef]
- Drever, M.C.; Chabot, D.; O’Hara, P.D.; Thomas, J.D.; Breault, A.; Millikin, R.L. Evaluation of an unmanned rotorcraft to monitor wintering waterbirds and coastal habitats in British Columbia, Canada. J. Unmanned Veh. Syst. 2015, 3, 256–267. [Google Scholar] [CrossRef]
- Bussières, S.; Kinnard, C.; Clermont, M.; Campeau, S.; Dubé-Richard, D.; Bordeleau, P.A.; Roy, A. Monitoring Water Turbidity in a Temperate Floodplain Using UAV: Potential and Challenges. Can. J. Remote Sens. 2022, 48, 565–574. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, X.; Zhang, Y. Vegetation extraction in riparian zones based on UAV visible light images and marked watershed algorithm. Front. Earth Sci. 2024, 12, 1363571. [Google Scholar] [CrossRef]
- Peng, X.; Chen, Z.; Chen, Y.; Chen, Q.; Liu, H.; Wang, J.; Li, H. Modelling of the biodiversity of tropical forests in China based on unmanned aerial vehicle multispectral and light detection and ranging data. Int. J. Remote Sens. 2021, 42, 8858–8877. [Google Scholar] [CrossRef]
- Tamminga, A.; Hugenholtz, C.; Eaton, B.; Lapointe, M. Hyperspatial Remote Sensing of Channel Reach Morphology and Hydraulic Fish Habitat Using an Unmanned Aerial Vehicle (UAV): A First Assessment in the Context of River Research and Management. River Res. Appl. 2015, 31, 379–391. [Google Scholar] [CrossRef]
- Hu, C. Attitude stability control of UAV gyroscope based on neutral statistics for smart cities. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 281–290. [Google Scholar] [CrossRef]
- Pan, Y.; Li, S.; Chen, Q.; Zhang, N.; Cheng, T.; Li, Z.; Guo, B.; Han, Q.; Zhu, T. Efficient Schedule of Energy-Constrained UAV Using Crowdsourced Buses in Last-Mile Parcel Delivery. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2021, 5, 1–23. [Google Scholar] [CrossRef]
- Jing, X. Research on key technologies of UAV cluster cooperative system for Internet of Things applications. J. Control. Decis. 2024, 11, 26–35. [Google Scholar] [CrossRef]
- Cao, Z.; Kooistra, L.; Wang, W.; Guo, L.; Valente, J. Real-Time Object Detection Based on UAV Remote Sensing: A Systematic Literature Review. Drones 2023, 7, 620. [Google Scholar] [CrossRef]
- Heracleous, C.; Kolios, P.; Panayiotou, C.G. UAV-based system for real-time wildfire perimeter propagation tracking. In Proceedings of the 2023 31st Mediterranean Conference on Control and Automation (MED), Limassol, Cyprus, 26–29 June 2023; pp. 13–18. [Google Scholar] [CrossRef]
- Sun, S.; Chen, C.; Wang, Z.; Zhou, J.; Li, L.; Yang, B.; Cong, Y.; Wang, H. REAL-TIME UAV 3D IMAGE POINT CLOUDS MAPPING. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, X-1/W1-2023, 1097–1104. [Google Scholar] [CrossRef]
- Sun, J.; Yuan, G.; Song, L.; Zhang, H. Unmanned Aerial Vehicles (UAVs) in Landslide Investigation and Monitoring: A Review. Drones 2024, 8, 30. [Google Scholar] [CrossRef]
- Henn, K.A.; Peduzzi, A. Surface Heat Monitoring with High-Resolution UAV Thermal Imaging: Assessing Accuracy and Applications in Urban Environments. Remote Sens. 2024, 16, 930. [Google Scholar] [CrossRef]
- Hütt, C.; Isselstein, J.; Komainda, M.; Schöttker, O.; Sturm, A. UAV LiDAR-based grassland biomass estimation for precision livestock management. J. Appl. Remote Sens. 2024, 18, 017502. [Google Scholar] [CrossRef]
- Tanaka, T.S.T.; Wang, S.; Jørgensen, J.R.; Gentili, M.; Vidal, A.Z.; Mortensen, A.K.; Acharya, B.S.; Beck, B.D.; Gislum, R. Review of Crop Phenotyping in Field Plot Experiments Using UAV-Mounted Sensors and Algorithms. Drones 2024, 8, 212. [Google Scholar] [CrossRef]
Countries and Organizations | Implementation Program | Primary Indicators | Secondary Indicators |
---|---|---|---|
United States | National Rivers and Streams Assessment | Biological indicators | Benthic macroinvertebrate community |
Fish community | |||
Chemical indicators | Nutrients | ||
Acidification | |||
Salinity | |||
Physical indicators | In-stream fish habitat | ||
Riparian disturbance | |||
Riparian vegetation cover | |||
Streambed sediments | |||
Human health | Algal toxins | ||
indicators | Enterococci bacteria | ||
Mercury in fish tissue plugs | |||
Fish tissue contamination in rivers | |||
European Union | Internationally Coordinated | Ecological Status | |
Management plan 2022–2027 for the International River Basin District of the Rhine | Ecological potential | ||
Chemical status | |||
Quantitative status | |||
China | Scoring rules for water ecology | Water ecosystem | Number of fish species |
Assessment indicators in the Yangtze River Basin. (River water ecology assessment indicators) | health | Number of aquatic organisms under priority protection | |
Number of macrobenthic species | |||
Aquatic habitat | Natural shoreline ratio | ||
protection | Water column connectivity | ||
Aquatic Habitat Anthropogenic Impact Index | |||
Quality of ecosystems in water-holding areas | |||
Water environmental | Combined pollution status | ||
protection | Pollution intensity during flood season | ||
Water security | Ecological flow compliance rate | ||
Scoring Rules for water ecology | Water ecosystem | Number of fish species | |
Assessment indicators in the Yangtze River Basin. (Lake water ecology assessment indicators) | health | Number of aquatic organisms under priority protection | |
Number of macrobenthic species | |||
Proportion of area covered by water bloom | |||
Percentage of aquatic vegetation cover | |||
zooplankton community structure | |||
Aquatic habitat | Natural shoreline ratio | ||
protection | Aquatic Habitat Anthropogenic Impact Index | ||
Quality of ecosystems in water-holding areas | |||
Water environmental protection | Integrated Nutritional Status | ||
Water security | Ecological flow compliance rate |
Ecosystem Services of Riparian Zone Vegetation | RLHA |
---|---|
Stabilizing riverbanks | Water space |
Purifying water quality | Water environment |
Regulating water temperature | |
Providing food | Water ecology |
Providing biological habitats | |
Replenishing groundwater | Water resources |
Beautifying human habitats | Water services |
Monitoring Content | Monitoring Indicators | Sensor Type | |
---|---|---|---|
Riparian zone | Direct indicators | River Boundary | RGB |
Topography around the river | Lidar | ||
River landscape | RGB, Multispectral, Hyperspectral | ||
Indirect indicators | Riparian zone extent | —— | |
Riparian zone vegetation | Direct indicators | Individual vegetation | RGB, Multispectral, Hyperspectral |
Vegetation type | RGB, Multispectral, Hyperspectral | ||
Indirect indicators | Vegetation cover | —— | |
Plant diversity | —— | ||
Biomass | —— | ||
River floodplain | Direct indicators | Channel topography | Ground penetrating radar |
Water depth | Ground penetrating radar | ||
Turbidity and suspended sediment | RGB, Multispectral, Hyperspectral | ||
Indirect indicators | Channel change | —— | |
Land cover | —— | ||
Biological habitats | Direct indicators | Water velocity | RGB, Lidar |
Water temperature | Thermal infrared | ||
Indirect indicators | Biological Habitat | —— |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, F.; Zhang, W.; Yuan, T.; Ji, Z.; Cao, Z.; Xu, B.; Lu, L.; Zou, S. UAV Quantitative Remote Sensing of Riparian Zone Vegetation for River and Lake Health Assessment: A Review. Remote Sens. 2024, 16, 3560. https://doi.org/10.3390/rs16193560
Song F, Zhang W, Yuan T, Ji Z, Cao Z, Xu B, Lu L, Zou S. UAV Quantitative Remote Sensing of Riparian Zone Vegetation for River and Lake Health Assessment: A Review. Remote Sensing. 2024; 16(19):3560. https://doi.org/10.3390/rs16193560
Chicago/Turabian StyleSong, Fei, Wenyong Zhang, Tenggang Yuan, Zhenqing Ji, Zhiyu Cao, Baorong Xu, Lei Lu, and Songbing Zou. 2024. "UAV Quantitative Remote Sensing of Riparian Zone Vegetation for River and Lake Health Assessment: A Review" Remote Sensing 16, no. 19: 3560. https://doi.org/10.3390/rs16193560