Future Wireless Communication Technology towards 6G IoT: An Application-Based Analysis of IoT in Real-Time Location Monitoring of Employees Inside Underground Mines by Using BLE
Abstract
:1. Introduction
Related Work and Key Contributions
- We present the vision of the IoT with the technologies impacting it with their key features
- We review several applications and challenges of the IoT in different domains.
- We present different connectivity standards of the IoT and a rigorous review of these technological standards
- We present a comparative analysis between 5G and 6G.
- We present the vision and key features of 6G with its different aspects.
- We present a brief review of several challenges of 6G.
- We propose a BLE-based real-time location monitoring system by using the IoT
2. Visions, Applications and Challenges of the IoT
2.1. Vison of the IoT
2.2. Applications of the IoT
2.3. The IoT Challenges
2.4. IoT Connectivity Standards
3. Vision, Key Features and Challenges of 6G
3.1. Vision and Key Features of 6G
3.1.1. Intelligent Network
3.1.2. Decentralized Network
3.1.3. Green Network
3.1.4. Superfast Network
3.1.5. Human-Centric
3.2. Challenges of 6G
4. An IoT-Based Real-Time Location Monitoring System by Using BLE
4.1. State-of-Art
4.2. Proposed System Architecture and Workflow
4.3. Simulation Result and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3GPP | 3rd Generation Partnership Project |
ABC | Ambient Backscatter Communication |
AGPS | Assisted Global Positioning System |
AI | Artificial Intelligence |
ANN | Artificial Neural Networks |
AR | Augmented Reality |
BS | Base Stations |
BLE | Bluetooth Low Energy |
CapEX | Capital Expenditure |
CDMA | Code-Division Multiple Access |
CRC | Cyclic Redundancy Check |
D2D | Device-to-Device |
EE | Energy efficient |
eMBB | Enhanced Mobile Broadband |
FBMC | Filter-bank Multicarrier |
GFDM | Generalized Frequency-Division Multiplexing |
GPS | Global Positioning System |
GSM | Global System for Mobile Communication |
H2M | Human-to-Machine |
HCS | Human-Centric Service |
HDNN | High Dimension Neural Networks |
HetNet | Heterogeneous Network |
ICS | Industrial Control System |
IERC | IoT European Research Cluster |
IIoT | Industrial Internet of Things |
IoE | Internet of Everything |
IoNT | Internet of NanoThings |
IoST | Internet of SpaceThings |
IoT | Internet of Things |
IoUT | Internet of UnderwaterThings |
IRS | Reflective Surface |
ITU | International Telecom Union |
KPI | Key Performance Indicator |
LoRaWAN | Long Range Wide Area Network |
LPWA | Low-Power Wide-Area |
LPWAN | Low-Power Wide-Area Networks |
LSTM | Long Short-Term Memory |
LTE | Long Term Evolution |
M2M | Machine-to-Machine |
MAC | Message Authentication Code |
mbRLLC | Mobile broadband RLLC |
MEC | Mobile Edge Computing |
MIMO | Multiple-Input-Multiple-Output |
MIT | Massachute Institute of Technology |
ML | Machine Learning |
mMTC | Massive Machine Type Communication |
MPS | Multipurpose 3CLS and energy services |
MTC | Machine-type Communicaiton |
muRLLC | Massive uRLLC |
NFC | Near Field Communication |
NOMA | Non-Orthogonal Multiple Access |
OAM | Orbital Angular Momentum |
OMA | Orthogonal Multiple Access |
OFDM | Orthogonal Frequency-Division Multiplexing |
OpEX | Operational Expenditure |
OWC | Optical Wireless Communications |
QML | Quantum Machine Learning |
QoE | Quality of Experience |
QoS | Quality of Service |
RADAR | Radio Detection And Ranging |
SBC | Single Board Computer |
RF | Radio Frequency |
RFID | Radio Frequency Identification |
RIS | Reconfigurable Intelligent Surfaces |
RNN | Recurrent Neural Network |
RSSI | received signal strength indicator |
RTLS | Real-Time Location monitoring System |
SDGs | Sustainable Development Goals |
SIoT | Social Internet of Things |
SON | Self-Organizing Network |
SWIPT | Simultaneous Wireless and Information Power Transfer |
TCP | Transmission Control Protocol |
THz | Terahertz |
TRL | Technology Readiness Level |
UDP | User Datagram Protocol |
uRLLC | Ultra-Reliable Low Latency Communication |
UUID | Universally Unique Identifier |
V2V | Vehicle-to-Vehicle |
VR | Virtual Reality |
VNI | Visual Networking Index |
VLC | Visible Light Communication |
WBCI | Wireless Brain-Computer Interface |
WLAN | Wireless Local Area Network |
WMMI | Wireless Mind-Machine Interface |
WNAN | Wireless Neighborhood Area Network |
WPAN | Wireless Personal Area Network |
WSN | Wireless Sensor Network |
References
- Cisco Visual Networking Index Forecast Projects 13-Fold Growth in Global Mobile Internet Data Traffic from 2012–2017. Available online: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html/ (accessed on 12 March 2021).
- Statistica. Internet of Things (Iot) Connected Devices Installed Base Worldwide From 2015 to 2025 (In Billions). Available online: https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/ (accessed on 18 March 2021).
- Pawar, P.; Trivedi, A. Device-to-Device Communication Based IoT System: Benefits and Challenges. IETE Tech. Rev. 2019, 36, 362–374. [Google Scholar] [CrossRef]
- Rahmani, A.M.; Bayramov, S.; Kalejahi, B.K. Internet of Things Applications: Opportunities and Threats. Wirel. Pers. Commun. 2021, 122, 451–476. [Google Scholar] [CrossRef] [PubMed]
- Padhi, P.; Charrua-Santos, F. 6G Enabled Industrial Internet of Everything: Towards a Theoretical Framework. Appl. Syst. Innov. 2021, 4, 11. [Google Scholar] [CrossRef]
- Amodu, O.A.; Othman, M. Machine-to-Machine Communication: An Overview of Opportunities. Comput. Netw. 2018, 145, 255–276. [Google Scholar] [CrossRef]
- El Zorkany, M.; Yasser, A.; Galal, A.I. Vehicle To Vehicle “V2V” Communication: Scope, Importance, Challenges, Research Directions and Future. Open Transp. J. 2020, 14, 86–98. [Google Scholar] [CrossRef]
- Iqbal, S.; Zafar, N.A.; Ali, T.; Alkhammash, E.H. Efficient IoT-Based Formal Model for Vehicle-Life Interaction in VANETs Using VDM-SL. Energies 2022, 15, 1013. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, X. Vehicle communication network in intelligent transportation system based on Internet of Things. Comput. Commun. 2020, 160, 799–806. [Google Scholar] [CrossRef]
- Khan, M.Z.; Alhazmi, O.H.; Javed, M.A.; Ghandorh, H.; Aloufi, K.S. Reliable Internet of Things: Challenges and Future Trends. Electronics 2021, 10, 2377. [Google Scholar] [CrossRef]
- Ali, O.; Ishak, M.K.; Bhatti, M.K.L. Emerging IoT domains, current standings and open research challenges: A review. PeerJ Comput. Sci. 2021, 7, e659. [Google Scholar] [CrossRef]
- Faizan, Q. Enhancing QOS Performance of the 5G Network by Characterizing Mm-Wave Channel and Optimizing Interference Cancellation Scheme/Faizan Qamar. Ph.D. Thesis, University of Malaya, Kuala Lumpur, Malaysia, 2019. [Google Scholar]
- Marsch, P.; Bulakci, Ö.; Queseth, O.; Boldi, M. E2E Architecture. In 5G System Design: Architectural and Functional Considerations and Long Term Research, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 81–115. [Google Scholar]
- Alsabah, M.; Naser, M.A.; Mahmmod, B.M.; Abdulhussain, S.H.; Eissa, M.R.; Al-Baidhani, A.; Noordin, N.K.; Sait, S.M.; Al-Utaibi, K.A.; Hashim, F. 6G Wireless Communications Networks: A Comprehensive Survey. IEEE Access 2021, 9, 148191–148243. [Google Scholar] [CrossRef]
- Shahraki, A.; Abbasi, M.; Piran, M.J.; Taherkordi, A. A comprehensive survey on 6G networks: Applications, core services, nabling technologies, and future challenges. arXiv 2021, arXiv:2101.12475. [Google Scholar]
- Jiang, W.; Han, B.; Habibi, M.A.; Schotten, H.D. The Road Towards 6G: A Comprehensive Survey. IEEE Open J. Commun. Soc. 2021, 2, 334–366. [Google Scholar] [CrossRef]
- Nasir, N.M.; Hassan, S.; Zaini, K.M. Evolution Towards 6G Intelligent Wireless Networks: The Motivations and Challenges on the Enabling Technologies. In Proceedings of the 2021 IEEE 19th Student Conference on Research and Development (SCOReD), Kota Kinabalu, Malaysia, 23–25 November 2021; pp. 305–310. [Google Scholar]
- Abdel Hakeem, S.A.; Hussein, H.H.; Kim, H. Vision and research directions of 6G technologies and applications. J. King Saud Univ. Comput. Inf. Sci. 2022. [Google Scholar] [CrossRef]
- Qadir, Z.; Munawar, H.S.; Saeed, N.; Le, K. Towards 6G Internet of Things: Recent Advances, Use Cases, and Open Challenges. 2021. Available online: https://arxiv.org/pdf/2111.06596v1.pdf (accessed on 19 April 2022).
- Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Niyato, D.; Dobre, O.; Poor, H.V. 6G Internet of Things: A Comprehensive Survey. IEEE Internet Things J. 2021, 9, 359–383. [Google Scholar] [CrossRef]
- Kim, J.H. 6G and Internet of Things: A survey. J. Manag. Anal. 2021, 8, 316–332. [Google Scholar] [CrossRef]
- Guo, F.; Yu, F.R.; Zhang, H.; Li, X.; Ji, H.; Leung, V.C.M. Enabling Massive IoT Toward 6G: A Comprehensive Survey. IEEE Internet Things J. 2021, 8, 11891–11915. [Google Scholar] [CrossRef]
- Barakat, B.; Taha, A.; Samson, R.; Steponenaite, A.; Ansari, S.; Langdon, P.; Wassell, I.; Abbasi, Q.; Imran, M.; Keates, S. 6G Opportunities Arising from Internet of Things Use Cases: A Review Paper. Future Internet 2021, 13, 159. [Google Scholar] [CrossRef]
- Mahdi, M.N.; Ahmad, A.R.; Qassim, Q.S.; Natiq, H.; Subhi, M.A.; Mahmoud, M. From 5G to 6G Technology: Meets Energy, Internet-of-Things and Machine Learning: A Survey. Appl. Sci. 2021, 11, 8117. [Google Scholar] [CrossRef]
- Jahid, A.; Alsharif, M.H.; Hall, T.J. The Convergence of Blockchain, IoT and 6G: Potential, Opportunities, Challenges and Research Roadmap. arXiv 2021, arXiv:2109.03184. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, S.; Wang, H.; Zhang, S. 6G Green IoT Network: Joint Design of Intelligent Reflective Surface and Ambient Backscatter Communication. Wirel. Commun. Mob. Comput. 2021, 2021, 9912265. [Google Scholar] [CrossRef]
- Ndiaye, M.; Saley, A.M.; Niane, K.; Raimy, A. Future 6G communication networks: Typical IoT network topology and Terahertz frequency challenges and research issues. In Proceedings of the 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), Meknes, Morocco, 3–4 March 2022; pp. 1–5. [Google Scholar]
- The Internet of Things. 2005. Available online: http://www.itu.int/osg/spu/publications/internetofthings/ (accessed on 15 March 2021).
- ITU, Global Standards for the Internet of Things. ed: ITU, 2012. Available online: https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx#:~:text=The%20Internet%20of%20Things%20(IoT,interoperable%20information%20and%20communication%20technologies (accessed on 15 March 2021).
- Ashton, K. That “Internet of Things” thing. RfiD J. 2009, 22, 97–114. [Google Scholar]
- Arshdeep, B.; Madisetti, V. Internet of Things: A Hands-On Approach; Vijay Madisetti: Atlanta, GA, USA, 2014. [Google Scholar]
- Kumar, S.; Tiwari, P.; Zymbler, M. Internet of Things is a revolutionary approach for future technology enhancement: A review. J. Big Data 2019, 6, 111. [Google Scholar] [CrossRef] [Green Version]
- Seth, I.; Panda, S.N.; Guleria, K. IoT based Smart Applications and Recent Research Trends. In Proceedings of the 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC), Solan, India, 7–9 October 2021; pp. 407–412. [Google Scholar] [CrossRef]
- Hassan, R.; Qamar, F.; Hasan, M.K.; Aman, A.H.M.; Ahmed, A.S. Internet of Things and Its Applications: A Comprehensive Survey. Symmetry 2020, 12, 1674. [Google Scholar] [CrossRef]
- Yousif, M.; Hewage, C.; Nawaf, L. IoT Technologies during and Beyond COVID-19: A Comprehensive Review. Future Internet 2021, 13, 105. [Google Scholar] [CrossRef]
- Mondal, S.; Mitra, P. The Role of Emerging Technologies to Fight Against COVID-19 Pandemic: An Exploratory Review. Trans. Indian Natl. Acad. Eng. 2022, 7, 157–174. [Google Scholar] [CrossRef]
- Kollu, P.K.; Kumar, K.; Kshirsagar, P.R.; Islam, S.; Naveed, Q.N.; Hussain, M.R.; Sundramurthy, V.P. Development of Advanced Artificial Intelligence and IoT Automation in the Crisis of COVID-19 Detection. J. Health Eng. 2022, 2022, 1987917. [Google Scholar] [CrossRef] [PubMed]
- Erişen, S.; Pham, D.T. IoT-Based Real-Time updating multi-layered learning system applied for a special care context during COVID-19. Cogent Eng. 2022, 9. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Rio, D.F.D. Smart home technologies in Europe: A critical review of concepts, benefits, risks and policies. Renew. Sustain. Energy Rev. 2020, 120, 109663. [Google Scholar] [CrossRef]
- Nauman, A.; Qadri, Y.A.; Amjad, M.; Bin Zikria, Y.; Afzal, M.K.; Kim, S.W. Multimedia Internet of Things: A Comprehensive Survey. IEEE Access 2020, 8, 8202–8250. [Google Scholar] [CrossRef]
- Zia, T.; Liu, P.; Han, W. Application-Specific Digital Forensics Investigative Model in Internet of Things (IoT). In Proceedings of the 12th International Conference on Availability, Reliability and Security, Reggio Calabria, Italy, 29 August 2017; pp. 1–7. [Google Scholar]
- Zeng, X.; Garg, S.K.; Strazdins, P.; Jayaraman, P.P.; Georgakopoulos, D.; Ranjan, R. IOTSim: A simulator for analysing IoT applications. J. Syst. Arch. 2017, 72, 93–107. [Google Scholar] [CrossRef]
- Stolojescu-Crisan, C.; Crisan, C.; Butunoi, B.-P. An IoT-Based Smart Home Automation System. Sensors 2021, 21, 3784. [Google Scholar] [CrossRef]
- Yuen, M.C.; Chu, S.Y.; Hong Chu, W.; Shuen Cheng, H.; Lam Ng, H.; Pang Yuen, S. A low-cost IoT smart home system. Int. J. Eng. Technol. 2018, 7, 3143–3147. [Google Scholar]
- Taiwo, O.; Ezugwu, A.E. Internet of Things-Based Intelligent Smart Home Control System. Secur. Commun. Networks 2021, 2021, 9928254. [Google Scholar] [CrossRef]
- Lee, C.; Wang, C.; Kim, E.; Helal, S. Blueprint Flow: A Declarative Service Composition Framework for Cloud Applications. IEEE Access 2017, 5, 17634–17643. [Google Scholar] [CrossRef]
- Lin, Y.B.; Lin, Y.W.; Hsiao, C.Y.; Wang, S.Y. Location-based IoT applications on campus: The IoT talk approach. Pervasive Mob. Comput. 2017, 40, 660–673. [Google Scholar] [CrossRef]
- Sun, X.; Ansari, N. Dynamic Resource Caching in the IoT Application Layer for Smart Cities. IEEE Internet Things J. 2017, 5, 606–613. [Google Scholar] [CrossRef]
- Sun, X.; Ansari, N. Traffic Load Balancing Among Brokers at the IoT Application Layer. IEEE Trans. Netw. Serv. Manag. 2018, 15, 489–502. [Google Scholar] [CrossRef]
- Bellini, P.; Nesi, P.; Pantaleo, G. IoT-Enabled Smart Cities: A Review of Concepts, Frameworks and Key Technologies. Appl. Sci. 2022, 12, 1607. [Google Scholar] [CrossRef]
- Syed, A.; Sierra-Sosa, D.; Kumar, A.; Elmaghraby, A. IoT in Smart Cities: A Survey of Technologies, Practices and Challenges. Smart Cities 2021, 4, 429–475. [Google Scholar] [CrossRef]
- Wang, Z. Research on Smart City Environment Design and Planning Based on Internet of Things. J. Sensors 2022, 2022, 2348573. [Google Scholar] [CrossRef]
- Humayun, M.; Alsaqer, M.S.; Jhanjhi, N. Energy Optimization for Smart Cities Using IoT. Appl. Artif. Intell. 2022, 1–17. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S. User preference for an IoT healthcare application for lifestyle disease management. Telecommun. Policy 2018, 42, 304–314. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.; Li, X.; Gu, D.; Liang, C.; Li, K.; Zhang, G.; Zhong, J. Exploring emerging IoT technologies in smart health research: A knowledge graph analysis. BMC Med. Inform. Decis. Mak. 2020, 20, 260. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.; Patgiri, R. 6G Communication Technology: A Vision on Intelligent Healthcare. arXiv 2020, arXiv:2005.07532. [Google Scholar]
- Yaacoub, E.; Abualsaud, K.; Khattab, T.; Chehab, A. Secure Transmission of IoT mHealth Patient Monitoring Data from Remote Areas Using DTN. IEEE Netw. 2020, 34, 226–231. [Google Scholar] [CrossRef]
- Xie, C.; Yang, P.; Yang, Y. Open Knowledge Accessing Method in IoT-Based Hospital Information System for Medical Record Enrichment. IEEE Access 2018, 6, 15202–15211. [Google Scholar] [CrossRef]
- Islam, M.S.; Islam, M.T.; Almutairi, A.F.; Beng, G.K.; Misran, N.; Amin, N. Monitoring of the Human Body Signal through the Internet of Things (IoT) Based LoRa Wireless Network System. Appl. Sci. 2019, 9, 1884. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.-X.; Qian, P.; Bi, D.; Ye, Z.-W.; He, X.; Zhao, Y.-H.; Su, L.; Li, S.-L.; Zhu, Z.-L. Application of AI and IoT in Clinical Medicine: Summary and Challenges. Curr. Med Sci. 2021, 41, 1134–1150. [Google Scholar] [CrossRef]
- Chen, W.; Hao, X.; Lu, J.; Yan, K.; Liu, J.; He, C.; Xu, X. Research and Design of Distributed IoT Water Environment Monitoring System Based on LoRa. Wirel. Commun. Mob. Comput. 2021, 2021, 9403963. [Google Scholar] [CrossRef]
- Li, H.; Wang, H.; Yin, W.; Li, Y.; Qian, Y.; Hu, F. Development of a Remote Monitoring System for Henhouse Environment Based on IoT Technology. Future Internet 2015, 7, 329–341. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.-S.; Lee, K.; Ryu, J.-H. Study on IoT based wild vegetation community ecological monitoring system. In Proceedings of the 2015 Seventh International Conference on Ubiquitous and Future Networks, Sapporo, Japan, 7–10 July 2015; pp. 311–316. [Google Scholar]
- Nordin, R.; Mohamad, H.; Behjati, M.; Kelechi, A.H.; Ramli, N.; Ishizu, K.; Kojima, F.; Ismail, M.; Idris, M. The world-first deployment of narrowband IoT for rural hydrological monitoring in UNESCO biosphere environment. In Proceedings of the 2017 IEEE 4th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA), Putrajaya, Malaysia, 28–30 November 2017; pp. 1–5. [Google Scholar]
- Zhang, Y.; Xiong, Z.; Niyato, D.; Wang, P.; Han, Z. Information Trading in Internet of Things for Smart Cities: A Market-Oriented Analysis. IEEE Netw. 2020, 34, 122–129. [Google Scholar] [CrossRef]
- Sukmaningsih, D.W.; Suparta, W.; Trisetyarso, A.; Abbas, B.S.; Kang, C.H. Proposing Smart Disaster Management in Urban Area. In Proceedings of the Studies in Computational Intelligence, Yogyakarta, Indonesia, 8–11 April 2019; pp. 3–16. [Google Scholar]
- Suparta, W.; Alhasa, K.M.; Singh, M.S.J. Preliminary Development of Greenhouse Gases System Data Logger Using Microcontroller Netduino. Adv. Sci. Lett. 2017, 23, 1398–1402. [Google Scholar] [CrossRef]
- Sahota, H.; Kumar, R.; Kamal, A.; Huang, J. An energy-efficient wireless sensor network for precision agriculture. In Proceedings of the IEEE symposium on Computers and Communications, Riccione, Italy, 22–25 June 2010; pp. 347–350. [Google Scholar]
- Jawad, H.M.; Nordin, R.; Gharghan, S.K.; Jawad, A.M.; Ismail, M. Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review. Sensors 2017, 17, 1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quy, V.K.; Van Hau, N.; Van Anh, D.; Quy, N.M.; Ban, N.T.; Lanza, S.; Randazzo, G.; Muzirafuti, A. IoT-Enabled Smart Agriculture: Architecture, Applications, and Challenges. Appl. Sci. 2022, 12, 3396. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Belal, A.; Abd-Elmabod, S.K.; El-Shirbeny, M.A.; Gad, A.; Zahran, M.B. Smart farming for improving agricultural management. Egypt. J. Remote Sens. Space Sci. 2021, 24, 971–981. [Google Scholar] [CrossRef]
- Vijaya Saraswathi, R.; Sridharani, J.; Saranya Chowdary, P.; Nikhil, K.; Sri Harshitha, M.; Mahanth Sai, K. Smart Farming: The IoT based Future Agriculture. In Proceedings of the 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 January 2022; pp. 150–155. [Google Scholar]
- Xu, J.; Gu, B.; Tian, G. Review of agricultural IoT technology. Artif. Intell. Agric. 2022, 6, 10–22. [Google Scholar] [CrossRef]
- Swamidason, I.T.J.; Pandiyarajan, S.; Velswamy, K.; Jancy, P.L. Futuristic IoT based Smart Precision Agriculture: Brief Analysis. J. Mob. Multimedia 2022, 18, 935–956. [Google Scholar] [CrossRef]
- Zheng, G.; Zang, X.; Xu, N.; Wei, H.; Yu, Z.; Gayah, V.; Xu, K.; Li, Z. Diagnosing reinforcement learning for traffic signal control. arXiv 2019, arXiv:1905.04716. [Google Scholar]
- Zhang, T.; Zhu, Q. Distributed Privacy-Preserving Collaborative Intrusion Detection Systems for VANETs. IEEE Trans. Signal Inf. Process. Over Netw. 2018, 4, 148–161. [Google Scholar] [CrossRef]
- Elliott, D.; Keen, W.; Miao, L. Recent advances in connected and automated vehicles. J. Traffic Transp. Eng. 2019, 6, 109–131. [Google Scholar] [CrossRef]
- Mustakim, H.U. 5G Vehicular Network for Smart Vehicles in Smart City: A Review. J. Comput. Electron. Telecommun. 2020, 1, 12–16. [Google Scholar] [CrossRef]
- Dogra, A.K.; Kaur, J. Moving towards smart transportation with machine learning and Internet of Things (IoT): A review. J. Smart Environ. Green Comput. 2022, 2, 3–18. [Google Scholar] [CrossRef]
- Temglit, N.; Chibani, A.; Djouani, K.; Nacer, M.A. A Distributed Agent-Based Approach for Optimal QoS Selection in Web of Object Choreography. IEEE Syst. J. 2017, 12, 1655–1666. [Google Scholar] [CrossRef]
- Cao, B.; Liu, J.; Wen, Y.; Li, H.; Xiao, Q.; Chen, J. QoS-aware service recommendation based on relational topic model and factorization machines for IoT Mashup applications. J. Parallel Distrib. Comput. 2019, 132, 177–189. [Google Scholar] [CrossRef]
- Cuomo, S.; Di Somma, V.; Sica, F. An application of the one-factor HullWhite model in an IoT financial scenario. Sustain. Cities Soc. 2018, 38, 18–20. [Google Scholar] [CrossRef]
- Song, Y.; Yu, F.R.; Zhou, L.; Yang, X.; He, Z. Applications of the Internet of Things (IoT) in Smart Logistics: A Comprehensive Survey. IEEE Internet Things J. 2021, 8, 4250–4274. [Google Scholar] [CrossRef]
- Sharma, V.; Gandhi, M.K. Internet of Things (IoT) on E-commerce Logistics: A Review. J. Phys. Conf. Ser. 2021, 1964, 62113. [Google Scholar] [CrossRef]
- Rejeb, A.; Simske, S.; Rejeb, K.; Treiblmaier, H.; Zailani, S. Internet of Things research in supply chain management and logistics: A bibliometric analysis. Internet Things 2020, 12, 100318. [Google Scholar] [CrossRef]
- Sekaran, R.; Patan, R.; Raveendran, A.; Al-Turjman, F.; Ramachandran, M.; Mostarda, L. Survival Study on Blockchain Based 6G-Enabled Mobile Edge Computation for IoT Automation. IEEE Access 2020, 8, 143453–143463. [Google Scholar] [CrossRef]
- Li, L.; Li, S.; Zhao, S. QoS-Aware Scheduling of Services-Oriented Internet of Things. IEEE Trans. Ind. Inform. 2014, 10, 1497–1505. [Google Scholar] [CrossRef]
- Venticinque, S.; Amato, A. A methodology for deployment of IoT application in fog. J. Ambient Intell. Humaniz. Comput. 2018, 10, 1955–1976. [Google Scholar] [CrossRef]
- Luvisotto, M.; Tramarin, F.; Vangelista, L.; Vitturi, S. On the Use of LoRaWAN for Indoor Industrial IoT Applications. Wirel. Commun. Mob. Comput. 2018, 2018, 3982646. [Google Scholar] [CrossRef] [Green Version]
- Mazzei, D.; Baldi, G.; Fantoni, G.; Montelisciani, G.; Pitasi, A.; Ricci, L.; Rizzello, L. A Blockchain Tokenizer for Industrial IOT trustless applications. Future Gener. Comput. Syst. 2020, 105, 432–445. [Google Scholar] [CrossRef]
- Jadala, V.C.; Pasupuletti, S.K.; Raju, S.H.; Kavitha, S.; Bhaba, C.H.S.; Sreedhar, B. Need of Intenet of Things, Industrial IoT, Industry 4.0 and Integration of Cloud for Industrial Revolution. In Proceedings of the 2021 Innovations in Power and Advanced Computing Technologies (i-PACT), Kuala Lumpur, Malaysia, 27–29 November 2021; pp. 1–5. [Google Scholar]
- Kalsoom, T.; Ahmed, S.; Rafi-Ul-Shan, P.M.; Azmat, M.; Akhtar, P.; Pervez, Z.; Imran, M.A.; Ur-Rehman, M. Impact of IoT on Manufacturing Industry 4.0: A New Triangular Systematic Review. Sustainability 2021, 13, 12506. [Google Scholar] [CrossRef]
- Suhonen, J. Designs for the Quality of Service Support in Low-Energy Wireless Sensor Network Protocols. Ph.D. Thesis, Tampere University of Technology, Tampere, Finland, 2012. [Google Scholar]
- Kwon, H.; Park, J.; Kang, N. Challenges in Deploying CoAP Over DTLS in Resource Constrained Environments. In Information Security Applications. WISA 2015. Lecture Notes in Computer Science; Kim, H., Choi, D., Eds.; Springer: Cham, Germany, 2016; Volume 9503, pp. 269–280. [Google Scholar]
- Shafique, K.; Khawaja, B.A.; Sabir, F.; Qazi, S.; Mustaqim, M. Internet of Things (IoT) for Next-Generation Smart Systems: A Review of Current Challenges, Future Trends and Prospects for Emerging 5G-IoT Scenarios. IEEE Access 2020, 8, 23022–23040. [Google Scholar] [CrossRef]
- Chen, S.; Xu, H.; Liu, D.; Hu, B.; Wang, H. A Vision of IoT: Applications, Challenges, and Opportunities with China Perspective. IEEE Internet Things J. 2014, 1, 349–359. [Google Scholar] [CrossRef]
- Donta, P.K.; Srirama, S.N.; Amgoth, T.; Annavarapu, C.S.R. Survey on recent advances in IoT application layer protocols and machine learning scope for research directions. Digit. Commun. Networks Sci. Direct 2021. [Google Scholar] [CrossRef]
- Pereira, F.; Correia, R.; Pinho, P.; Lopes, S.I.; Carvalho, N.B. Challenges in Resource-Constrained IoT Devices: Energy and Communication as Critical Success Factors for Future IoT Deployment. Sensors 2020, 20, 6420. [Google Scholar] [CrossRef]
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. ISDN Syst. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Giuliano, R.; Mazzenga, F.; Neri, A.; Vegni, A.M. Security Access Protocols in IoT Capillary Networks. IEEE Internet Things J. 2017, 4, 645–657. [Google Scholar] [CrossRef]
- European Commission. Expert Group on the Internet of Things (IoT-EG). Available online: http://ec.europa.eu/information_society/newsroom/cf/dae/document.cfm?doc_id=1752JeCyd173g&sig2=a3cHVzht3OtpsHdevmA87w (accessed on 17 March 2017).
- Raza, S.; Duquennoy, S.; Höglund, J.; Roedig, U.; Voigt, T. Secure communication for the Internet of Things-a comparison of link-layer security and IPsec for 6LoWPAN. Secur. Commun. Networks 2012, 7, 2654–2668. [Google Scholar] [CrossRef]
- Lee, C.; Zappaterra, L.; Choi, K.; Choi, H.-A. Securing smart home: Technologies, security challenges, and security requirements. In Proceedings of the Workshop on Security and Privacy in Machine-to-Machine Communications (M2MSec’14), San Francisco, CA, USA, 29 October 2014; pp. 67–72. [Google Scholar]
- Mehmood, Y.; Ahmad, F.; Yaqoob, I.; Adnane, A.; Imran, M.; Guizani, S. Internet-of-Things-Based Smart Cities: Recent Advances and Challenges. IEEE Commun. Mag. 2017, 55, 16–24. [Google Scholar] [CrossRef]
- Sadeeq, M.M.; Abdulkareem, N.M.; Zeebaree, S.R.M.; Ahmed, D.M.; Sami, A.S.; Zebari, R.R. IoT and Cloud Computing Issues, Challenges and Opportunities: A Review. Qubahan Acad. J. 2021, 1, 1–7. [Google Scholar] [CrossRef]
- Yao, X.; Farha, F.; Li, R.; Psychoula, I.; Chen, L.; Ning, H. Security and privacy issues of physical objects in the IoT: Challenges and opportunities. Digit. Commun. Networks 2021, 7, 373–384. [Google Scholar] [CrossRef]
- HaddadPajouh, H.; Dehghantanha, A.; Parizi, R.M.; Aledhari, M.; Karimipour, H. A survey on internet of things security: Requirements, challenges, and solutions. Internet Things 2021, 14, 100129. [Google Scholar] [CrossRef]
- Gupta, K.; Shukla, S. Internet of Things: Security challenges for next generation networks. In Proceedings of the 2016 International Conference on Innovation and Challenges in Cyber Security (ICICCS-INBUSH), Greater Noida, India, 3–5 February 2016; pp. 315–318. [Google Scholar]
- Granjal, J.; Monteiro, E.; Silva, J.S. Security for the Internet of Things: A Survey of Existing Protocols and Open Research Issues. IEEE Commun. Surv. Tutor. 2015, 17, 1294–1312. [Google Scholar] [CrossRef]
- Garcia-Morchon, O.; Rietman, R.; Sharma, S.; Tolhuizen, L.; Torre-Arce, J. A Comprehensive and Lightweight Security Architecture to Secure the IoT Throughout the Lifecycle of a Device Based on HIMMO. In Algorithms for Sensor Systems, Proceedings of the 11th International Symposium on Algorithms and Experiments for Wireless Sensor Networks (ALGOSENSORS), Patras, Greece, 17–18 September 2015; Bose, P., Gasieniec, L., Römer, K., Wattenhofer, R., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; pp. 112–128. [Google Scholar]
- Hummen, R.; Hiller, J.; Wirtz, H.; Henze, M.; Shafagh, H.; Wehrle, K. 6LoWPAN fragmentation attacks and mitigation mechanisms. In Proceedings of the sixth ACM conference on Security and privacy in wireless and mobile networks—WiSec ’13, Budapest, Hungary, 17–19 April 2013; pp. 55–66. [Google Scholar]
- Ni, J.; Lin, X.; Zhang, K.; Shen, X. Privacy-Preserving Real-Time Navigation System Using Vehicular Crowdsourcing. In Proceedings of the 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, Canada, 18–21 September 2016; pp. 1–5. [Google Scholar]
- Zhang, J.; Wang, B.; Xhafa, F.; Wang, X.A.; Li, C. Energy-efficient secure outsourcing decryption of attribute based encryption for mobile device in cloud computation. J. Ambient Intell. Humaniz. Comput. 2017, 10, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Hamad, S.A.; Zhang, W.E.; Sheng, Q.Z.; Nepal, S. IoT Device Identification via Network-Flow Based Fingerprinting and Learning. In Proceedings of the 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications(TrustCom), Rotorua, New Zealand, 5–8 August 2019; pp. 103–111. [Google Scholar]
- Hamad, S.A.; Sheng, Q.Z.; Zhang, W.E.; Nepal, S. Realizing an Internet of Secure Things: A Survey on Issues and Enabling Technologies. IEEE Commun. Surv. Tutor. 2020, 22, 1372–1391. [Google Scholar] [CrossRef]
- Yang, L.; Humayed, A.; Li, F. A multi-cloud based privacy-preserving data publishing scheme for the internet of things. In Proceedings of the 32nd Annual Conference on Computer Security Applications, Los Angeles, CA, USA, 5–8 December 2016; Schwab, S., Robertson, W.K., Balzarotti, D., Eds.; ACM: Los Angeles, CA, USA, 2016; pp. 30–39. [Google Scholar]
- Sengupta, J.; Ruj, S.; Das Bit, S. A Comprehensive Survey on Attacks, Security Issues and Blockchain Solutions for IoT and IIoT. J. Netw. Comput. Appl. 2020, 149, 102481. [Google Scholar] [CrossRef]
- Abdullah, P.Y.; Zeebaree, S.R.M.; Jacksi, K.; Zeabri, R.R. An hrm system for small and medium enterprises (sme)s based on cloud computing technology. Int. J. Res.Granthaalayah 2020, 8, 56–64. [Google Scholar] [CrossRef]
- Thakkar, A.; Lohiya, R. A Review on Machine Learning and Deep Learning Perspectives of IDS for IoT: Recent Updates, Security Issues, and Challenges. Arch. Comput. Methods Eng. 2021, 28, 3211–3243. [Google Scholar] [CrossRef]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef] [Green Version]
- Arridha, R.; Sukaridhoto, S.; Pramadihanto, D.; Funabiki, N. Classification extension based on IoT-big data analytic for smart environment monitoring and analytic in real-time system. Int. J. Space-Based Situated Comput. 2017, 7, 82. [Google Scholar] [CrossRef] [Green Version]
- Centenaro, M.; Costa, C.E.; Granelli, F.; Sacchi, C.; Vangelista, L. A Survey on Technologies, Standards and Open Challenges in Satellite IoT. IEEE Commun. Surv. Tutor. 2021, 23, 1693–1720. [Google Scholar] [CrossRef]
- Ghorpade, S.; Zennaro, M.; Chaudhari, B. Survey of Localization for Internet of Things Nodes: Approaches, Challenges and Open Issues. Future Internet 2021, 13, 210. [Google Scholar] [CrossRef]
- Li, S.; Da Xu, L.; Zhao, S. 5G Internet of Things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Palattella, M.R.; Dohler, M.; Grieco, L.A.; Rizzo, G.; Torsner, J.; Engel, T.; Ladid, L. Internet of Things in the 5G Era: Enablers, Architecture, and Business Models. IEEE J. Sel. Areas Commun. 2016, 34, 510–527. [Google Scholar] [CrossRef] [Green Version]
- Sanislav, T.; Mois, G.D.; Zeadally, S.; Folea, S.C. Energy Harvesting Techniques for Internet of Things (IoT). IEEE Access 2021, 9, 39530–39549. [Google Scholar] [CrossRef]
- Farhan, L.; Hameed, R.S.; Ahmed, A.S.; Fadel, A.H.; Gheth, W.; Alzubaidi, L.; Fadhel, M.A.; Al-Amidie, M. Energy Efficiency for Green Internet of Things (IoT) Networks: A Survey. Network 2021, 1, 279–314. [Google Scholar] [CrossRef]
- Shafique, K.; Khawaja, B.A.; Khurram, M.D.; Sibtain, S.M.; Siddiqui, Y.; Mustaqim, M.; Chattha, H.T.; Yang, X. Energy Harvesting Using a Low-Cost Rectenna for Internet of Things (IoT) Applications. IEEE Access 2018, 6, 30932–30941. [Google Scholar] [CrossRef]
- Awais, Q.; Jin, Y.; Chattha, H.T.; Jamil, M.; Qiang, H.; Khawaja, B.A. A compact rectenna system with high conversion effciency for wireless energy harvesting. IEEE Access 2018, 6, 35857–35866. [Google Scholar] [CrossRef]
- Pang, B.-M.; Shi, H.-S.; Li, Y.-X. An energy-effcient MAC protocol for wireless sensor network. In Future Wireless Networks and Information Systems; Zhang, Y., Ed.; Springer: Berlin, Germany, 2012; Volume 143, pp. 163–170. [Google Scholar]
- Rani, S.; Ahmed, S.H.; Talwar, R.; Malhotra, J.; Song, H. IoMT: A Reliable Cross Layer Protocol for Internet of Multimedia Things. IEEE Internet Things J. 2017, 4, 832–839. [Google Scholar] [CrossRef]
- Benhamaid, S.; Bouabdallah, A.; Lakhlef, H. Recent advances in energy management for Green-IoT: An up-to-date and comprehensive survey. J. Netw. Comput. Appl. 2021, 198, 103257. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Z.; Shi, X.; Yang, X.; Yu, P.; Feng, L.; Li, W. A Deep Reinforcement Learning based Mechanism for Cell Outage Compensation in Massive IoT Environments. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 284–289. [Google Scholar]
- Sobin, C.C. A Survey on Architecture, Protocols and Challenges in IoT. Wirel. Pers. Commun. 2020, 112, 1383–1429. [Google Scholar] [CrossRef]
- IoT Analytics Report. Available online: https://iot-analytics.com/rise-of-iot-semiconductor/ (accessed on 4 January 2022).
- Oliveira, L.; Rodrigues, J.J.P.C.; Kozlov, S.A.; Rabêlo, R.A.L.; de Albuquerque, V.H.C. MAC Layer Protocols for Internet of Things: A Survey. Future Internet 2019, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Minihold, R. Near Field Communication (NFC) Technology and Measurements, White Paper; Rohde & Schwarz: Munich, Germany, 2011. [Google Scholar]
- Mendes, T.; Godina, R.; Rodrigues, E.M.G.; Matias, J.C.O.; Catalão, J.P.S. Smart Home Communication Technologies and Applications: Wireless Protocol Assessment for Home Area Network Resources. Energies 2015, 8, 7279–7311. [Google Scholar] [CrossRef] [Green Version]
- Vermesan, O.; Friess, P. Internet of Things—From Research and Innovation to Market Deployment; River Publishers: Aalborg, Denmark, 2014. [Google Scholar]
- Horyachyy, O. Comparison of Wireless Communication Technologies used in a Smart Home: Analysis of wireless sensor node based on Arduino in home automation scenario. Master’s Thesis, Blekinge Institute of Technology, Karlskrona, Sweden, 2017. [Google Scholar]
- Danbatta, S.J.; Varol, A. Comparison of Zigbee, Z-Wave, Wi-Fi, and Bluetooth Wireless Technologies Used in Home Automation. In Proceedings of the 2019 7th International Symposium on Digital Forensics and Security (ISDFS), Barcelos, Portugal, 10–12 June 2019; pp. 1–5. [Google Scholar]
- Chen, S.; Liu, B.; Chen, X.; Zhang, Y.; Huang, G. Framework for Adaptive Computation Offloading in IoT Applications. In Proceedings of the 9th Asia-Pacific Symposium on Internetware, Shanghai, China, 23 September 2017; pp. 1–6. [Google Scholar]
- Ertürk, M.A.; Aydın, M.A.; Büyükakkaşlar, M.T.; Evirgen, H. A Survey on LoRaWAN Architecture, Protocol and Technologies. Future Internet 2019, 11, 216. [Google Scholar] [CrossRef] [Green Version]
- Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Nolan, K.E.; Guibene, W.; Kelly, M.Y. An evaluation of low power wide area network technologies for the Internet of Things. In Proceedings of the 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), Paphos, Cyprus, 5–9 September 2016; pp. 439–444. [Google Scholar]
- Finnegan, J.; Brown, S. A Comparative Survey of LPWA Networking. arXiv 2018, arXiv:abs/1802.04222. [Google Scholar]
- Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low Power Wide Area Networks: An Overview. IEEE Commun. Surv. Tutor. 2017, 19, 855–873. [Google Scholar] [CrossRef] [Green Version]
- Ismail, D.; Rahman, M.; Saifullah, A. Low-power wide-area networks: Opportunities, challenges, and directions. In Proceedings of the Workshops ICDCN, Varanasi, India, 4–7 January 2018; pp. 1–6. [Google Scholar]
- Qadir, Q.M.; Rashid, T.A.; Al-Salihi, N.K.; Ismael, B.; Kist, A.A.; Zhang, Z. Low Power Wide Area Networks: A Survey of Enabling Technologies, Applications and Interoperability Needs. IEEE Access 2018, 6, 77454–77473. [Google Scholar] [CrossRef]
- LoRaWAN and Cellular IoT (NB-IoT, LTE-M)-How do they Complement Each Other? Actility SA: Lannion, France, 2018.
- Chaudhari, B.S.; Zennaro, M.; Borkar, S. LPWAN Technologies: Emerging Application Characteristics, Requirements, and Design Considerations. Future Internet 2020, 12, 46. [Google Scholar] [CrossRef] [Green Version]
- SigFox. SigFox Technology Overview. Available online: https://www.sigfox.com/en/sigfox-iot-technologyoverview (accessed on 2 April 2021).
- SigFox. Sigfox Technical Overview. Available online: https://www.disk91.com/wp-content/uploads/2017/05/4967675830228422064.pdf (accessed on 2 April 2021).
- Alsharif, M.H.; Kelechi, A.H.; Albreem, M.A.; Chaudhry, S.A.; Zia, M.S.; Kim, S. Sixth Generation (6G) Wireless Networks: Vision, Research Activities, Challenges and Potential Solutions. Symmetry 2020, 12, 676. [Google Scholar] [CrossRef]
- Chen, N.; Okada, M. Toward 6G Internet of Things and the Convergence With RoF System. IEEE Internet Things J. 2021, 8, 8719–8733. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Kak, A.; Nie, S. 6G and Beyond: The Future of Wireless Communications Systems. IEEE Access 2020, 8, 133995–134030. [Google Scholar] [CrossRef]
- Technology Digest on the Topic “Evolution of Mobile Communications”; Part 2, Issue; Telecom Regulatory Authority of India: New Delhi, India, 2018.
- Michailow, N.; Matthe, M.; Gaspar, I.S.; Caldevilla, A.N.; Mendes, L.; Festag, A.; Fettweis, G. Generalized Frequency Division Multiplexing for 5th Generation Cellular Networks. IEEE Trans. Commun. 2014, 62, 3045–3061. [Google Scholar] [CrossRef]
- Bedoui, A.; Et-Tolba, M. A comparative analysis of filter bank multicarrier (FBMC) as 5G multiplexing technique. In Proceedings of the 2017 International Conference on Wireless Networks and Mobile Communications (WINCOM), Rabat, Morocco, 1–4 November 2017; pp. 1–7. [Google Scholar]
- Farhang, M.; Bizaki, H.K. Adaptive time-frequency multiplexing for 5G applications. AEU-Int. J. Electron. Commun. 2020, 117, 153089. [Google Scholar] [CrossRef]
- Baghani, M.; Parsaeefard, S.; Derakhshani, M.; Saad, W. Dynamic Non-Orthogonal Multiple Access and Orthogonal Multiple Access in 5G Wireless Networks. IEEE Trans. Commun. 2019, 67, 6360–6373. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Zhang, W.; Jing, H.; Gao, S.; Zhang, H. Orbital Angular Momentum for Wireless Communications. IEEE Wirel. Commun. 2019, 26, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Akay, E.; Sengul, E.; Ayanoglu, E. Achieving full spatial multiplexing and full diversity in wireless communications. IEEE Wirel. Commun. Netw. Conf. WCNC 2006 2006, 4, 2046–2050. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhai, W.; Zhao, J.; Zhang, T.; Sun, S.; Niyato, D.; Lam, K. A Comprehensive Survey of 6G Wireless Communications. arXiv 2020, arXiv:2101.03889. [Google Scholar]
- Chen, Y.; Liu, W.; Niu, Z.; Feng, Z.; Hu, Q.; Jiang, T. Pervasive intelligent endogenous 6G wireless systems: Prospects, theories and key technologies. Digit. Commun. Networks 2020, 6, 312–320. [Google Scholar] [CrossRef]
- Qiao, X.; Huang, Y.; Dustdar, S.; Chen, J. 6G Vision: An AI-Driven Decentralized Network and Service Architecture. IEEE Internet Comput. 2020, 24, 33–40. [Google Scholar] [CrossRef]
- Van Huynh, N.; Hoang, D.T.; Lu, X.; Niyato, D.; Wang, P.; Kim, D.I. Ambient Backscatter Communications: A Contemporary Survey. IEEE Commun. Surv. Tutor. 2018, 20, 2889–2922. [Google Scholar] [CrossRef] [Green Version]
- Strinati, E.C.; Barbarossa, S.; Gonzalez-Jimenez, J.L.; Kténas, D.; Cassiau, N.; Maret, L.; Dehos, C. 6G: The Next Frontier: From Holographic Messaging to Artificial Intelligence Using Subterahertz and Visible Light Communication. IEEE Veh. Technol. Mag. 2019, 14, 42–58. [Google Scholar] [CrossRef]
- Imoize, A.; Adedeji, O.; Tandiya, N.; Shetty, S. 6G Enabled Smart Infrastructure for Sustainable Society: Opportunities, Challenges, and Research Roadmap. Sensors 2021, 21, 1709. [Google Scholar] [CrossRef] [PubMed]
- Fager, C.; Member, S.; Eriksson, T.; Member, S.; Fellow, H.Z.; Dielacher, F.; Member, S.; Studer, C.; Member, S. Implementation Challenges and Opportunities in Beyond-5G and 6G Communication. IEEE J. Microw. 2021, 1, 86–100. [Google Scholar]
- Zhou, Z.; Gong, J.; He, Y.; Zhang, Y. Software Defined Machine-to-Machine Communication for Smart Energy Management. IEEE Commun. Mag. 2017, 55, 52–60. [Google Scholar] [CrossRef]
- Maksymyuk, T.; Gazda, J.; Volosin, M.; Bugar, G.; Horvath, D.; Klymash, M.; Dohler, M. Blockchain-Empowered Framework for Decentralized Network Management in 6G. IEEE Commun. Mag. 2020, 58, 86–92. [Google Scholar] [CrossRef]
- Hewa, T.; Gur, G.; Kalla, A.; Ylianttila, M.; Bracken, A.; Liyanage, M. The Role of Blockchain in 6G: Challenges, Opportunities and Research Directions. In Proceedings of the 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 17–20 March 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Xu, H.; Klaine, P.V.; Onireti, O.; Cao, B.; Imran, M.; Zhang, L. Blockchain-enabled resource management and sharing for 6G communications. Digit. Commun. Networks 2020, 6, 261–269. [Google Scholar] [CrossRef]
- Khan, A.H.; Hassan, N.U.; Yuen, C.; Zhao, J.; Niyato, D.; Zhang, Y.; Poor, H.V. Blockchain and 6G: The Future of Secure and Ubiquitous Communication. IEEE Wirel. Commun. 2021, 1–8. [Google Scholar] [CrossRef]
- Nawaz, S.J.; Sharma, S.K.; Wyne, S.; Patwary, M.N. Asaduzzaman Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future. IEEE Access 2019, 7, 46317–46350. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, X.; Zhang, B.; Zhang, Y.; Niu, Z.; Kuang, N.; Chen, W.; Li, L.; Li, S. A survey on terahertz communications. China Comm. 2019, 16, 1–35. [Google Scholar] [CrossRef]
- Elayan, H.; Amin, O.; Shubair, R.M.; Alouini, M.-S. Terahertz communication: The opportunities of wireless technology beyond 5G. In Proceedings of the International Conference on Advanced Communication Technologies and Networking, Marrakech, Morocco, 2–4 April 2018; pp. 1–5. [Google Scholar]
- Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Han, C.; Nie, S. Combating the Distance Problem in the Millimeter Wave and Terahertz Frequency Bands. IEEE Commun. Mag. 2018, 56, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Yang, W.; Wu, J.; Ma, J.; Zhang, X.; Zhang, D. A Survey on Green 6G Network: Architecture and Technologies. IEEE Access 2019, 7, 175758–175768. [Google Scholar] [CrossRef]
- Dang, S.; Amin, O.; Shihada, B.; Alouini, M. From a Human-Centric Perspective: What Might 6G Be? arXiv 2019, arXiv:abs/1906.00741. [Google Scholar]
- Prasad, R. Human bond communication. Wirel. Pers. Commun. 2016, 87, 619–627. [Google Scholar] [CrossRef]
- Shiroishi, Y.; Uchiyama, K.; Suzuki, N. Society 5.0: For Human Security and Well-Being. Computer 2018, 51, 91–95. [Google Scholar] [CrossRef]
- Rojas, C.N.; Peñafiel, G.A.; Buitrago, D.L.; Romero, C.T. Society 5.0: A Japanese Concept for a Superintelligent Society. Sustainability 2021, 13, 6567. [Google Scholar] [CrossRef]
- Alsharif, M.H.; Kelechi, A.H.; Yahya, K.; Chaudhry, S.A. Machine Learning Algorithms for Smart Data Analysis in Internet of Things Environment: Taxonomies and Research Trends. Symmetry 2020, 12, 88. [Google Scholar] [CrossRef] [Green Version]
- Letaief, K.B.; Chen, W.; Shi, Y.; Zhang, J.; Zhang, Y.-J.A. The Roadmap to 6G: AI Empowered Wireless Networks. IEEE Commun. Mag. 2019, 57, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Albreem, M.A.; Alsharif, M.H.; Kim, S. A Low Complexity Near-Optimal Iterative Linear Detector for Massive MIMO in Realistic Radio Channels of 5G Communication Systems. Entropy 2020, 22, 388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guimarães, D.; Pereira, E.; Alberti, A.; Moreira, J. Design Guidelines for Database-Driven Internet of Things-Enabled Dynamic Spectrum Access. Sensors 2021, 21, 3194. [Google Scholar] [CrossRef] [PubMed]
- Samdanis, K.; Rost, P.; Maeder, A.; Meo, M.; Verikoukis, C. Green Communications: Principles, Concepts and Practice; Wiley Telecom: Hoboken, NJ, USA, 2015; ISBN 978-1-118-75926-4. [Google Scholar]
- Malik, N.A.; Ur-Rehman, M. Green Communications: Techniques and Challenges. EAI Endorsed Trans. Energy Web 2017, 4, 153162. [Google Scholar] [CrossRef] [Green Version]
- Jamil, S.; Fawad; Abbas, M.S.; Umair, M.; Hussain, Y. A Review of Techniques and Challenges in Green Communication. In Proceedings of the 2020 International Conference on Information Science and Communication Technology (ICISCT), Tashkent, Uzbekistan, 4–6 November 2020; pp. 1–6. [Google Scholar]
- Suraweera, H.A.; Yang, J.; Zappone, A.; Thompson, J. Green Communications for Energy-Efficient Wireless Systems and Networks; Institution of Engineering and Technology: London, UK, 2020; ISBN 9781839530685. [Google Scholar] [CrossRef]
- Song, H.-J.; Nagatsuma, T. Present and Future of Terahertz Communications. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 256–263. [Google Scholar] [CrossRef]
- Luo, K.; Dang, S.; Shihada, B.; Alouini, M.-S. Prospect Theory for Human-Centric Communications. Front. Commun. Networks 2021, 2, 634950. [Google Scholar] [CrossRef]
- The 5th Science and Technology Basic Plan. Government of Japan, 22 January 2016. Available online: http://www8.cao.go.jp/cstp/english/basic/5thbasicplan.pdf (accessed on 18 October 2021).
- Gladden, M.E. Who Will Be the Members of Society 5.0? Towards an Anthropology of Technologically Posthumanized Future Societies. Soc. Sci. 2019, 8, 148. [Google Scholar] [CrossRef] [Green Version]
- From Industry 4.0 to Society 5.0: The Big Societal Transformation Plan of Japan, 2016. Available online: https://www.i-scoop.eu/industry-4-0/society-5-0/ (accessed on 18 October 2021).
- A Holistic Approach to Creating Smart Societies. Available online: https://www.itu.int/dms_pub/itu-d/oth/07/17/D07170000020001PDFE.pdf (accessed on 12 October 2021).
- Lu, Y.; Zheng, X. 6G: A survey on technologies, scenarios, challenges, and the related issues. J. Ind. Inf. Integr. 2020, 19, 100158. [Google Scholar] [CrossRef]
- Tataria, H.; Shafi, M.; Molisch, A.F.; Dohler, M.; Sjoland, H.; Tufvesson, F. 6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities. Proc. IEEE 2021, 109, 1166–1199. [Google Scholar] [CrossRef]
- Akhtar, M.W.; Hassan, S.A.; Ghaffar, R.; Jung, H.; Garg, S.; Hossain, M.S. The shift to 6G communications: Vision and requirements. Hum. Cent. Comput. Inf. Sci. 2020, 10, 53. [Google Scholar] [CrossRef]
- Nayak, S.; Patgiri, R. 6G Communication: Envisioning the Key Issues and Challenges. EAI Endorsed Trans. Internet Things 2021, 6, 166959. [Google Scholar] [CrossRef]
- Xing, Y.; Rappaport, T.S. Propagation Measurement System and Approach at 140 GHz-Moving to 6G and Above 100 GHz. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Yan, L.; Han, C.; Yuan, J. Hybrid Precoding for 6G Terahertz Communications: Performance Evaluation and Open Problems. In Proceedings of the 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 17–20 March 2020; pp. 1–5. [Google Scholar]
- Ahmad, I.; Shahabuddin, S.; Kumar, T.; Harjula, E.; Meisel, M.; Juntti, M.; Sauter, T.; Ylianttila, M. Challenges of AI in Wireless Networks for IoT. IEEE Ind. Electron. Mag. 2021, 15, 16–29. [Google Scholar] [CrossRef]
- Kato, N.; Mao, B.; Tang, F.; Kawamoto, Y.; Liu, J. Ten Challenges in Advancing Machine Learning Technologies toward 6G. IEEE Wirel. Commun. 2020, 27, 96–103. [Google Scholar] [CrossRef]
- Shafin, R.; Liu, L.; Chandrasekhar, V.; Chen, H.; Reed, J.; Zhang, J.C. Artificial Intelligence-Enabled Cellular Networks: A Critical Path to Beyond-5G and 6G. IEEE Wirel. Commun. 2020, 27, 212–217. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Zhang, R. Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Saad, W.; Jang, Y.; Kong, G.; Choi, S. Performance Analysis of Large Intelligent Surfaces (LISs): Asymptotic Data Rate and Channel Hardening Effects. IEEE Trans. Wirel. Commun. 2020, 19, 2052–2065. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Challita, U.; Saad, W.; Yin, C.; Debbah, M. Artificial Neural Networks-Based Machine Learning for Wireless Networks: A Tutorial. IEEE Commun. Surv. Tutor. 2019, 21, 3039–3071. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; You, G. Monitoring System for Coal Mine Safety Based on Wireless Sensor Network. In Proceedings of the 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Taiyuan, China, 18–21 July 2019; pp. 1–2. [Google Scholar]
- Mangulkar, P.; Shrawankar, U. Monitoring and Safety System for Underground Coal Mines. In Proceedings of the 1st IEEE International Conference on Power Energy, Environment & Intelligent Control (PEEIC2018), Greater Noida, India, 13–14 April 2018. [Google Scholar]
- Nageswari, C.S.; Sangeetha, C.G.; Yogambigai, V.B. IoT based Smart Mine Monitoring System. Int. J. Electron. Electr. Comput. Syst. 2018, 7, 690–695. [Google Scholar]
- Roopashree; Srujana; Chaithanya. IoT based mine safety system using wireless sensor network. Int. J. Adv. Res. Innov. Ideas Educ. 2017, 2, 58–62. [Google Scholar]
- Ansari, A.H.; Shaikh, K.; Kadu, P.; Rishikesh, N. IOT Based Coal Mine Safety Monitoring and Alerting System. Int. J. Sci. Res. Sci. Eng. Technol. 2021, 8, 404–410. [Google Scholar] [CrossRef]
- Henriques, V.; Malekian, R. Mine Safety System Using Wireless Sensor Network. IEEE Access 2016, 4, 3511–3521. [Google Scholar] [CrossRef]
- Bandyopadhyay, L.K.; Chaulya, S.K.; Mishra, P.K.; Choure, A. Wireless Information and Safety System for Underground Mines; Central Institute of Mining and Fuel Research: Dhanbad, India, 2009. [Google Scholar]
- Kumar, B.V.; Jayasree, M.B.; Kiruthika, M.D. Iot based Underground Coalmine Safety System. J. Physics Conf. Ser. 2021, 1717, 12030. [Google Scholar] [CrossRef]
- Porselvi, T.; Sai Ganesh, C.; Janaki, B.; Priyadarshini, K.; Shajitha, S.B. IoT Based Coal Mine Safety and Health Monitoring System using LoRaWAN. In Proceedings of the 2021 3rd International Conference on Signal Processing and Communication (ICPSC), Coimbatore, India, 13–14 May 2021; pp. 49–53. [Google Scholar]
- Bandyopadhyay, L.K.; Chaulya, S.K.; Mishra, P.K. Wireless Communication in Underground Mines; Springer: Boston, MA, USA, 2010; ISBN 978-0-387-98165-9. [Google Scholar] [CrossRef]
References | Authors | Year | Research Topic | Objectives/Key Contributions |
---|---|---|---|---|
[14] | Alsabah et al. | 2021 | Concept on 6G Network | A comprehensive review fn 6G-enabling technologies with a short discussion on their principle of operations, applications, current researchand challenges. |
[15] | Shahraki et al. | 2021 | Enabling technologies and future challenges for 6G | A brief discussion on the enabling technologies, requirementsand trends of 6G with a focus on challenges and recent research activities, including tactile Internet and terahertz communication. |
[16] | Jiang et al. | 2021 | Roadmap definition and Key Performance Indicators of 6G | A comprehensive survey on 6G use cases, architecture, key drivers, enabling technologies, etc. |
[17] | Nasir, et al. | 2021 | Evolution of intelligent 6G network |
|
[18] | Hakeem et al. | 2022 | 6G applications and future research | A brief discussion on trends, regulations, industrial marketsand analysis of 6G requirements in terms of network architecture and hardware–software design. |
[19] | Qadir et al. | 6G-IoT concept | A brief survey on 6G networks, research activities, key enabling technologiesand case studies with the main focus given to the discussion of terahertz communication and visible light communication. | |
[20] | Nguyen et al. | 2022 | 6G-enabled IoT networks |
|
[21] | J. H. Kim | 2021 | Recent trends in 6G related to IoT technology | A short discussion on key drivers, enabling technologiesand current research trends of 6G with a brief introduction about viable applications of 6G to the IoT. |
[22] | Guo et al. | 2021 | 6G-enabled massive IoT |
|
[23] | Barakat et al. | 2021 | Opportunities of 6G in IoT technology perspective | A comprehensive review of the IoT use cases based on its wide variety of implementations. |
[24] | Mahdi et al. | 2021 | Road map from 5G to 6G | A holistic review of 5G and 6G technologies in terms of energy, he IoTand ML. |
[25] | Jahid et al. | 2021 | Integration of blockchain technology with 6G and Ithe IoT | A comprehensive survey on integrity, privacyand security issues, with the mitigation techniques encountered in blockchain-integrated 6G cellular networks. |
[26] | Liu et al. | 2021 | 6G green IoT network | A novel method of minimizing the access point’s transmitting power is introduced by implementing the ABC and IRS technique jointly. |
[27] | Ndiaye et al. | 2022 | IoT network topology and 6G communication technology |
|
Focused Area | Applications | References |
---|---|---|
Intelligent Home |
| [39,40,41,42,43,44,45,46] |
Smart Cities |
| [41,43,47,48,49,50,51,52,53] |
Medical and Health Care |
| [35,36,50,51,54,55,56,57,58,59,60] |
Environment |
| [50,51,61,62,63,64,65,66,67] |
Agriculture |
| [62,64,67,68,69,70,71,72,73,74] |
Transport |
| [48,49,75,76,77,78,79] |
Retail and Logistics |
| [77,78,80,81,82,83,84,85] |
Industry |
| [33,86,87,88,89,90,91,92] |
Focused Area | Challenges | References |
---|---|---|
Constrained Resources |
| [93,94,95,96,97,98] |
Scalability, Reliability and Interoperability |
| [96,99,100,101,102,103,104,105] |
Privacy and Security |
| [35,36,96,101,104,106,107,108,109,110,111,112,113,114,115,116,117,118,119] |
Big Data and Cloud Computing |
| [104,105,107,108,120,121] |
Universal Standardization |
| [95,96,120,122] |
Connectivity |
| [95,104,117,120,123,124,125] |
Energy Efficiency |
| [95,96,107,126,127,128,129,130,131,132] |
IoT Architecture and Protocol |
| [95,96,104,105,107,122,133,134] |
Standards | Range of Communication | Max. Data Rate | Frequency Spectrum Used | Power Consumption | Standardization | Modulation | Multiplexing/ MAC Scheme | Security Algorithm |
---|---|---|---|---|---|---|---|---|
NFC | 0.1 m [136] | 106–848 Kbps [136] | 13.56 MHz [34,136] | Low (<40 mA) [136] | ISO/IEC 14443, 18092 JIS X6319-4 [136] | ASK, BPSK [136] | TDMA [137] | Encryption Cryptographic, Secure Channel, Key Agreements [136] |
Bluetooth | 0–10 m [138] | 24 Mbps [138] | 2.4 Ghz [138] | 10 mw [12], 2.5–100 mW [139] | IEEE 802.15.1 [140] | GFSK, DQPSK, 8DPSK [138,140] | TDD [138], FHSS [140] | E0, E1, E21, E22, E3, 56–128 bit [140] |
BLE | 50 m [89], 70 m [136] | 1 Mbps [136,140] | 2.4 Ghz [140] | Low (<12.5 mA) [140] | IEEE 802.15.1 [140] | GFSK, FHSS Star [136] | FHSS [140] | AES-128 [140] |
ANT | <30 m [140] | 1 Mbps [140] | 2.4 Ghz [140] | Low (<16 mA) [140] | Proprietary [140] | GFSK [140] | TDMA [140] | AES-128, 64 bit [140] |
Zigbee | 10–300 m [138] | 20–250 Kbps [138] | ISM Bands 2.4 GHz/915 MHz (USA)/868 MHz (EU) [138] | Medium (1 mw-100 mw) [141] | IEEE 802.15.4 [140] | BPSK (868–915 MHz) O-QPSK (2.4 GHz) [138,140] | DSSS [89], CSMA/CA TDMA + CSMA/CA [138] | AES-128 [138,140] |
Zwave | 100 m [136], 0–30 m [138] | 9–100 Kbps [136], 40 kbps [138] | 2.4 GHz 908.4 MHz (USA) 868.4 MHz (EU) [138] | Medium (1 mW) [141] | Proprietary [140], ITU G.9959 [142] | FSK, GFSK [136,137,140] | FHSS [89], CSMA/CA [138] | AES-128 [138,140] |
WiFi | 10–100 m [138] | 65 Mbps [138] | ISM Bands 2.4–5 Ghz [138] | Low to Medium (32–200 mW) [138,139] | IEEE 802.11 [143] | BPSK, QPSK, COFDM, CCK, M-QAM [138] | CSMA/CA + PCF [138] | CCMP 128 [138] |
LoRaWAN | 5–20 km [144] | 50 kbps [144] | Unlicensed ISM bands (868 MHz in Europe, 915 MHz in North America and 433 MHz in Asia) [144] | Low (10.5–28 mA) [145] | LoRa Alliance [143] | LoRa CSS [143,146,147,148] | Pure—ALOHA [146,147,149] | AES-128 encryption [146,147] |
NB-IoT | 1–10 km [144] | 204.7–234.8 Kbps [136], 200 kbps [144] | Licensed LTE frequency Bands [136,144] | Low (46 mA) [150] | 3GPP [136,143] | QPSK [143], BPSK [147], GFSK, BPSK [136] | OFDMA for downlink and SC-FDMA for uplink [151] | 3GPP 128–256 bit [136,144,146] |
Sigfox | 10–40 km [136,144] | 100–600 bps [136], 100 bps [144] | Unlicensed ISM bands (868 MHz in Europe, 915 MHz in North America and 433 MHz in Asia) [136,144] | Low (10–50 mA) [145] | Sigfox [143] | BPSK [92], DBPSK for Uplink and Gaussian frequency shift keying (GFSK) for downlink [136,147,148] | R-FDMA [152,153] | AES-128 encryption [147,148] |
Parameters | Technological Standards | |
---|---|---|
5G | 6G | |
Frequency Band | Sub 6 GHz, 30–300 GHz [155] | Sub 6 GHz, 30–300 GHz, 0.3–3 THz [155] |
Average Data Rate | 100 Mbps [155] | 1 Gbps [155] |
Latency | 1 ms [155] | <1 ms [155] |
Mobility | ≥500 kmph [155,156] | ≥1000 kmph [155,156] |
Maximum Channel Bandwidth | 1 GHz [156] | 100 GHz [156] |
Connection Density | [156] | [156] |
Reliability (Packet Error Rate) | [156] | [156] |
Area Traffic Capacity | [155,156] | [155,156] |
Service Types | eMBB, mMTC, uRLLC [155] | mbRLLC, muRLLC, HCS, MPS [155] |
Multiplexing | CDMA [157,158], OFDM, GFDM [158], FBMC [159], Adaptive Time–Frequency Multiplexing [160] | Smart OFDMA + Index Modulation, OMA [161], NOMA [161], OAM [162], Spatial Multiplexing [163] |
Power Consumption | Low to Medium | Ultra-low [164] |
Downlink Spectral Efficiency | 30 bps/Hz [165] | 100 bps/Hz [165] |
Energy Efficiency Gains in Comparison With 4G | 10× [165] | 1000× [165] |
Network Architecture | Centralized [155] | Decentralized [155,166] |
Technology | Advantages | Disadvantages |
---|---|---|
GPS | Large coverage area | Inefficient for underground mines |
GSM | Large coverage area | Communication delay exists |
RFID | Non line-of-sight Communication, High Penetration, Compact Size | High maintenance of RFID tags, Low Security |
RF TECHNOLOGY | Non line-of-sight Communication | High penetration loss/ Signal attenuation is very high |
RADAR | Accurate and High Penetration | High CapEx and OpEx |
ZIGBEE | Low Power Consumption, Low Latency Time, Cheap | Low Penetration, Poor non-interference |
BLUETOOTH | Low Power Consumption, Low Latency Time | High CapEx and OpEx, Small coverage area |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pattnaik, S.K.; Samal, S.R.; Bandopadhaya, S.; Swain, K.; Choudhury, S.; Das, J.K.; Mihovska, A.; Poulkov, V. Future Wireless Communication Technology towards 6G IoT: An Application-Based Analysis of IoT in Real-Time Location Monitoring of Employees Inside Underground Mines by Using BLE. Sensors 2022, 22, 3438. https://doi.org/10.3390/s22093438
Pattnaik SK, Samal SR, Bandopadhaya S, Swain K, Choudhury S, Das JK, Mihovska A, Poulkov V. Future Wireless Communication Technology towards 6G IoT: An Application-Based Analysis of IoT in Real-Time Location Monitoring of Employees Inside Underground Mines by Using BLE. Sensors. 2022; 22(9):3438. https://doi.org/10.3390/s22093438
Chicago/Turabian StylePattnaik, Sushant Kumar, Soumya Ranjan Samal, Shuvabrata Bandopadhaya, Kaliprasanna Swain, Subhashree Choudhury, Jitendra Kumar Das, Albena Mihovska, and Vladimir Poulkov. 2022. "Future Wireless Communication Technology towards 6G IoT: An Application-Based Analysis of IoT in Real-Time Location Monitoring of Employees Inside Underground Mines by Using BLE" Sensors 22, no. 9: 3438. https://doi.org/10.3390/s22093438