Application of Through Glass Via (TGV) Technology for Sensors Manufacturing and Packaging
Abstract
:1. Introduction
2. Through Glass Vias’ Formation and Metallization Techniques
2.1. Through Glass Vias’ Formation Techniques
2.1.1. Abrasive Jet Machining (AJM)
2.1.2. Electrochemical Discharge Machining (ECDM)
2.1.3. Photosensitive Glass
2.1.4. Glass Reflow Process
2.1.5. Laser Ablation (LD)
2.1.6. Laser-Induced Deep Etching (LIDE)
2.2. Through Glass Vias’ Metallization Techniques
2.2.1. Conductive Paste Filling Method
2.2.2. Magnetic Self-Assembly Method
2.2.3. Electroplating Method
3. Application of TGV for Sensors’ Manufacturing and Packaging
3.1. Motion Sensors
3.2. Pressure Sensors
3.3. Acoustic Sensors
3.4. Optical Sensors
3.5. Thermoelectric Sensors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, F.; Han, G.; Yang, J.; Zhang, M.; Ning, J.; Yang, F.; Si, C. Research on Wafer-Level MEMS Packaging with Through-Glass Vias. Micromachines 2018, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Y.B.; Hou, Z.Q.; Zhuo, M.; Xu, Q.; Li, Q.S.; Xiao, B.; Shan, H.; Xiao, D.B.; Wu, X.Z. Research of Wafer-Level Vacuum Packaging Based on TGV Technology for MEMS Devices. In Proceedings of the 33rd IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Vancouver, BC, Canada, 18–22 January 2020; pp. 988–991. [Google Scholar]
- Adelegan, O.J.; Coutant, Z.A.; Zhang, X.; Yamaner, F.Y.; Oralkan, O. A 2D Capacitive Micromachined Ultrasonic Transducer (CMUT) Array with Through-Glass-Via Interconnects Fabricated Using Sacrificial Etching Process. In Proceedings of the IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 1205–1208. [Google Scholar]
- Stenchly, V.; Reinert, W.; Quenzer, H.J. Modular packaging concept for MEMS and MOEMS. In Proceedings of the 28th Micromechanics and Microsystems Europe Workshop (MME), Uppsala, Sweden, 23–25 August 2017. [Google Scholar]
- Ma, S.L.; Ren, K.L.; Xia, Y.M.; Yan, J.; Luo, R.F.; Cai, H.; Jin, Y.F.; Ma, M.J.; Jin, Z.H.; Chen, J. Process Development of a New TGV Interposer for Wafer Level Package of Inertial MEMS Device. In Proceedings of the 17th International Conference on Electronic Packaging Technology (ICEPT), Wuhan, China, 16–19 August 2016; pp. 983–987. [Google Scholar]
- Wang, Y.X.; Ma, S.L.; Liu, X.Q.; Zhao, J.H. Partially filled TGV based on Double Sides Cu Conformal Electroplating Process for MEMS Vacuum Packaging. In Proceedings of the International Conference on Electronics Packaging (ICEP), Sapporo, Japan, 11–14 May 2022; pp. 53–54. [Google Scholar]
- Fu, Y.C.; Han, G.W.; Gu, J.B.; Zhao, Y.M.; Ning, J.; Wei, Z.Y.; Yang, F.H.; Si, C.W. A High-Performance MEMS Accelerometer with an Improved TGV Process of Low Cost. Micromachines 2022, 13, 1071. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, Y.; Wang, H.; Wang, Y.; Dai, X.; Ding, G.; Zhao, X. High-g MEMS shock threshold sensor integrated on a copper filling through-glass-via (TGV) substrate for surface mount application. In Proceedings of the 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, 21–25 June 2015; pp. 291–294. [Google Scholar]
- Zhang, M.; Yang, J.; He, Y.R.; Yang, F.; Yang, F.H.; Han, G.W.; Si, C.W.; Ning, J. Research on a 3D Encapsulation Technique for Capacitive MEMS Sensors Based on Through Silicon Via. Sensors 2019, 19, 93. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Y.B.; Xiao, D.B.; Zhou, J.; Li, W.Y.; Hou, Z.Q.; Cui, H.J.; Wu, X.Z. Theoretical model of glass reflow process for through glass via (TGV) wafer fabrication. J. Micromech. Microeng. 2018, 28, 095004. [Google Scholar] [CrossRef]
- Kuang, Y.B.; Xiao, D.B.; Zhou, J.; Zhuo, M.; Li, W.Y.; Hou, Z.Q.; Cui, H.J.; Wu, X.Z. Enhancing airtightness of TGV through regulating interface energy for wafer-level vacuum packaging. Microsyst. Technol. -Micro-Nanosyst.-Inf. Storage Process. Syst. 2018, 24, 3645–3649. [Google Scholar] [CrossRef]
- Intel Shows off Work on Next-Gen Glass Core Substrates, Plans Deployment Later in Decade. Available online: https://www.anandtech.com/show/20058/intel-shows-off-glass-core-substrate-plans-deployment-late-decade (accessed on 18 September 2023).
- Advanced Packaging Technology Controversy|Through-Glass-Via (TGV) Redefining Packaging Substrates to Meet the Challenge of 1 Trillion Transistors in the Next Decade. Available online: https://mp.weixin.qq.com/s/O0bQFmkf_RxvflcrwdKhQQ (accessed on 10 November 2023).
- Nguyen, T.; Pang, K.; Wang, J. A Preliminary Study of the Erosion Process in Micro-machining of Glasses with a Low Pressure Slurry Jet. In Proceedings of the 11th International Symposium on Advances in Abrasive Technology, Awaji City, Japan, 30 September–3 October 2008; pp. 375–380. [Google Scholar]
- Qiu, Y.F.; Wang, C.Y.; Wang, J.; Song, Y.X. Masked and Unmasked Machining of Glass by Micro Abrasive Jet. In Proceedings of the 8th China-Japan International Conference on Ultra-Precision Machining, Changsha, China, 24–25 November 2008; pp. 182–186. [Google Scholar]
- Fan, J.M.; Wang, J. Micro-channel fabrication on quartz crystals by a micro abrasive air jet. In Proceedings of the 3rd International Conference on Advances in Materials Manufacturing (ICAMMP 2012), Beihai, China, 22–23 December 2012; pp. 2159–2163. [Google Scholar]
- Fan, J.M.; Wang, J. Kerf profile characteristics in abrasive air jet micromachining. In Proceedings of the 16th International Symposium on Advances in Abrasive Technology (ISAAT 2013), Hangzhou, China, 23–26 September 2013; pp. 33–38. [Google Scholar]
- Nouraei, H.; Wodoslawsky, A.; Papini, M.; Spelt, J.K. Characteristics of abrasive slurry jet micro-machining: A comparison with abrasive air jet micro-machining. J. Mater. Process. Technol. 2013, 213, 1711–1724. [Google Scholar] [CrossRef]
- Kowsari, K.; Nouraei, H.; James, D.F.; Spelt, J.K.; Papini, M. Abrasive slurry jet micro-machining of holes in brittle and ductile materials. J. Mater. Process. Technol. 2014, 214, 1909–1920. [Google Scholar] [CrossRef]
- Nouraei, H.; Kowsari, K.; Spelt, J.K.; Papini, M. Surface evolution models for abrasive slurry jet micro-machining of channels and holes in glass. Wear 2014, 309, 65–73. [Google Scholar] [CrossRef]
- Nouhi, A.; Lari, M.R.S.; Spelt, J.K.; Papini, M. Implementation of a shadow mask for direct writing in abrasive jet micro-machining. J. Mater. Process. Technol. 2015, 223, 232–239. [Google Scholar] [CrossRef]
- Abhishek, K.; Hiremath, S.S. Machining of Micro-holes on Sodalime Glass using Developed Micro-Abrasive Jet Machine (μ-AJM). In Proceedings of the 1st Global Colloquium on Recent Advancements and Effectual Researches in Engineering, Science and Technology (RAEREST), Palai, India, 22–23 April 2016; pp. 1234–1241. [Google Scholar]
- Kowsari, K.; Schwartzentruber, J.; Spelt, J.K.; Papini, M. Erosive smoothing of abrasive slurry-jet micro-machined channels in glass, PMMA, and sintered ceramics: Experiments and roughness model. Precis. Eng. -J. Int. Soc. Precis. Eng. Nanotechnol. 2017, 49, 332–343. [Google Scholar] [CrossRef]
- Hou, R.G.; Wang, T.; Lv, Z.; Liu, Y.Y. Experimental Study of the Ultrasonic Vibration-Assisted Abrasive Waterjet Micromachining the Quartz Glass. Adv. Mater. Sci. Eng. 2018, 2018, 8904234. [Google Scholar] [CrossRef]
- Li, H.Z.; Wang, J.; Kwok, N.; Nguyen, T.; Yeoh, G.H. A study of the micro-hole geometry evolution on glass by abrasive air-jet micromachining. J. Manuf. Process. 2018, 31, 156–161. [Google Scholar] [CrossRef]
- Qi, H.; Qin, S.; Cheng, Z.; Teng, Q.; Hong, T.; Xie, Y. Towards understanding performance enhancing mechanism of micro-holes on K9 glasses using ultrasonic vibration-assisted abrasive slurry jet. J. Manuf. Process. 2021, 64, 585–593. [Google Scholar] [CrossRef]
- Hof, L.; Abou Ziki, J. Micro-Hole Drilling on Glass Substrates—A Review. Micromachines 2017, 8, 53. [Google Scholar] [CrossRef]
- Takahashi, S.; Horiuchi, K.; Tatsukoshi, K.; Ono, M.; Imajo, N.; Mobely, T. Development of Through Glass Via (TGV) Formation Technology Using Electrical Discharging for 2.5/3D Integrated Packaging. In Proceedings of the IEEE 63rd Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 28–31 May 2013; pp. 348–352. [Google Scholar]
- Ho, C.C.; Wu, D.S. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision. Materials 2018, 11, 470. [Google Scholar] [CrossRef]
- Ranganayakulu, J.; Srihari, P.V. Multi-objective Optimization Using Taguchi’s Loss Function-Based Principal Component Analysis in Electrochemical Discharge Machining of Micro-channels on Borosilicate Glass with Direct and Hybrid Electrolytes. In Proceedings of the International Conference on Engineering Materials, Metallurgy and Manufacturing (ICEMMM), Chennai, India, 15–16 February 2018; pp. 349–360. [Google Scholar]
- Xu, Y.; Chen, J.H.; Jiang, B.Y.; Liu, Y.; Ni, J. Experimental investigation of magnetohydrodynamic effect in electrochemical discharge machining. Int. J. Mech. Sci. 2018, 142, 86–96. [Google Scholar] [CrossRef]
- Arab, J.; Kannojia, H.K.; Dixit, P. Effect of tool electrode roughness on the geometric characteristics of through-holes formed by ECDM. Precis. Eng. -J. Int. Soc. Precis. Eng. Nanotechnol. 2019, 60, 437–447. [Google Scholar] [CrossRef]
- Kannojia, H.K.; Arab, J.; Pegu, B.J.; Dixit, P. Fabrication and Characterization of Through-Glass Vias by the ECDM Process. J. Electrochem. Soc. 2019, 166, D531–D538. [Google Scholar] [CrossRef]
- Wuthrich, R.; Hof, L.A. Low Batch Size Production of Glass Products requiring Micrometer Precision. In Proceedings of the 13th International-Federation-of-Automatic-Control (IFAC) Workshop on Intelligent Manufacturing Systems (IMS), Oshawa, ON, Canada, 12–14 August 2019; pp. 319–322. [Google Scholar]
- Kannojia, H.K.; Arab, J.; Sidhique, A.; Mishra, D.K.; Kumar, R.; Pednekar, J.; Dixit, P. Fabrication and Characterization of Through-glass vias (TGV) based 3D Spiral and Toroidal Inductors by Cost-effective ECDM Process. In Proceedings of the 70th IEEE Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 3–30 June 2020; pp. 1192–1198. [Google Scholar]
- Sahebari, S.M.S.; Barari, A.; Abou Ziki, J.D. Neural Network Signal Processing in Spark Assisted Chemical Engraving (SACE) Micromachining. In Proceedings of the 14th IEEE International Conference on Industry Applications (INDUSCON), Univ Sao Paulo, Escola Politecnica São Paulo, Brazil, 15–18 August 2021; pp. 1169–1176. [Google Scholar]
- Bajpai, V.K.; Mishra, D.K.; Dixit, P. Fabrication of Through-glass Vias (TGV) based 3D microstructures in glass substrate by a lithography-free process for MEMS applications. Appl. Surf. Sci. 2022, 584, 152494. [Google Scholar] [CrossRef]
- Bahar, D.; Dvivedi, A.; Kumar, P. On innovative approach in ECDM process by controlling the temperature and stirring rate of the electrolyte. Mater. Manuf. Process. 2023, 1–19. [Google Scholar] [CrossRef]
- Villeneuve, G.; Hof, L.A. On the use of the current signal in spark assisted chemical engraving for micromachining process control. Precis. Eng. -J. Int. Soc. Precis. Eng. Nanotechnol. 2023, 83, 181–191. [Google Scholar] [CrossRef]
- Wu, Y.; Jia, W.; Wang, C.-Y.; Hu, M.; Ni, X.; Chai, L. Micro-hole fabricated inside FOTURAN glass using femtosecond laser writing and chemical etching. Opt. Quantum Electron. 2007, 39, 1223–1229. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Wang, W. Fabrication Technology of High Aspect Ratio Microholes Based on Photosensitive Glass. Electron. Process Technol. 2022, 43, 139–142. [Google Scholar] [CrossRef]
- Freitag, A.; Vogel, D.; Scholz, R.; Dietrich, T.R. Microfluidic Devices Made of Glass. JALA J. Assoc. Lab. Autom. 2001, 6, 45–49. [Google Scholar] [CrossRef]
- Williams, J.D.; Schmidt, C.; Serkland, D. Processing advances in transparent Foturan® MEMS. Appl. Phys. A Mater. Sci. Process. 2010, 99, 777–782. [Google Scholar] [CrossRef]
- Mrotzek, S.; Harnisch, A.; Hülsenberg, D.; Brokmann, U. Crystallisation mechanism in ultraviolet sensitive microstructurable glasses. Glass Technol. 2004, 45, 97–100. [Google Scholar]
- Lin, L.; Wang, Q.; Qiu, D. Formation and Metallization Process Study on High Aspect Ratio Through-Glass-Via (TGV) within Photosensitive Glass. Trans. Beijing Inst. Technol. 2018, 38, 52–57. [Google Scholar] [CrossRef]
- Brokmann, U.; Weigel, C.; Altendorf, L.-M.; Strehle, S.; Rädlein, E. Wet Chemical and Plasma Etching of Photosensitive Glass. Solids 2023, 4, 213–234. [Google Scholar] [CrossRef]
- Haque, R.-u.M.; Wise, K.D. A Glass-in-Silicon Reflow Process for Three-Dimensional Microsystems. J. Microelectromechanical Syst. 2013, 22, 1470–1477. [Google Scholar] [CrossRef]
- Toan, N.V.; Toda, M.; Ono, T. An Investigation of Processes for Glass Micromachining. Micromachines 2016, 7, 51. [Google Scholar] [CrossRef]
- Luo, B.; Su, Z.X.; Shang, J.T. Glass Molding for Microstructures. In Proceedings of the 9th IEEE International Symposium on Inertial Sensors and Systems (IEEE INERTIAL), Avignon, France, 8–11 May 2022. [Google Scholar]
- Du, X.; Liu, S.; Zhu, M. Reflow Technology of Nano-Glass Powder for TGV Packaging. Micronanoelectronic Technol. 2020, 57, 562–567. [Google Scholar] [CrossRef]
- Lee, S.K.; Kim, M.G.; Jo, K.W.; Shin, S.M.; Lee, J.H. A glass reflowed microlens array on a Si substrate with rectangular through-holes. J. Opt. A-Pure Appl. Opt. 2008, 10, 044003. [Google Scholar] [CrossRef]
- Lin, C.-W.; Hsu, C.-P.; Yang, H.-A.; Wang, W.C.; Fang, W. Implementation of silicon-on-glass MEMS devices with embedded through-wafer silicon vias using the glass reflow process for wafer-level packaging and 3D chip integration. J. Micromechanics Microengineering 2008, 18, 025018. [Google Scholar] [CrossRef]
- Hu, Q.; Zhou, J.; Li, W. Modeling of glass-reflow facing TGV substrate. Transducer Microsyst. Technol. 2017, 36, 34–37. [Google Scholar] [CrossRef]
- Li, W.Y.; Xiao, D.B.; Wu, X.Z.; Hou, Z.Q.; Chen, Z.H.; Wang, X.H.; Zhou, J. A new fabrication process of TGV substrate with silicon vertical feedthroughs using double sided glass in silicon reflow process. J. Mater. Sci. -Mater. Electron. 2017, 28, 3917–3923. [Google Scholar] [CrossRef]
- Liu, Y.F.; Sang, H.B.; Bu, Z.X.; Zhang, Y.L.; Gao, G.G.; Wang, L.Y. Influence of the Particle Size of Glass Powder on Sintering Characteristics in TGV Packaging. In Proceedings of the 16th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE-NEMS), Xiamen, China, 25–29 April 2021; pp. 1065–1068. [Google Scholar]
- Nguyen Van, T.; Hahng, S.; Song, Y.; Ono, T. Fabrication of Vacuum-Sealed Capacitive Micromachined Ultrasonic Transducer Arrays Using Glass Reflow Process. Micromachines 2016, 7, 76. [Google Scholar] [CrossRef]
- Chung, C.K.; Lin, S.L. CO2 laser micromachined crackless through holes of Pyrex 7740 glass. Int. J. Mach. Tools Manuf. 2010, 50, 961–968. [Google Scholar] [CrossRef]
- Brusberg, L.; Queisser, M.; Gentsch, C.; Schröder, H.; Lang, K.D. Advances in CO2-Laser Drilling of Glass Substrates. In Proceedings of the 7th Conference on Laser Assisted Net shape Engineering (LANE)/International Conference on Photonic Technologies, Furth, Germany, 12–15 November 2012; pp. 548–555. [Google Scholar]
- Chung, C.K.; Lin, S.L.; Wang, H.Y.; Tan, T.K.; Tu, K.Z.; Lung, H.F. Fabrication and simulation of glass micromachining using CO2 laser processing with PDMS protection. Appl. Phys. A Mater. Sci. Process. 2013, 113, 501–507. [Google Scholar] [CrossRef]
- Brusberg, L.; Queisser, M.; Neitz, M.; Schröder, H.; Lang, K.D. CO2-Laser Drilling of TGVs for Glass Interposer Applications. In Proceedings of the IEEE 64th Electronic Components and Technology Conference (ECTC), Lake Buena Vista, FL, USA, 27–30 May 2014; pp. 1759–1764. [Google Scholar]
- Huang, H.; Yang, L.M.; Liu, J. Micro-hole drilling and cutting using femtosecond fiber laser. Opt. Eng. 2014, 53, 051513. [Google Scholar] [CrossRef]
- Sakakura, M.; Shimotsuma, Y.; Miura, K. Observation of Stress Wave and Thermal Stress in Ultrashort Pulse Laser Bulk Processing inside Glass. J. Laser Micro Nanoeng. 2017, 12, 159–164. [Google Scholar] [CrossRef]
- Ito, Y.; Shinomoto, R.; Nagato, K.; Otsu, A.; Tatsukoshi, K.; Fukasawa, Y.; Kizaki, T.; Sugita, N.; Mitsuishi, M. Mechanisms of damage formation in glass in the process of femtosecond laser drilling. Appl. Phys. A-Mater. Sci. Process. 2018, 124, 181. [Google Scholar] [CrossRef]
- Sato, Y.; Imajyo, N.; Ishikawa, K.; Tummala, R.; Hori, M. Laser-drilling formation of through-glass-via (TGV) on polymer-laminated glass. J. Mater. Sci. -Mater. Electron. 2019, 30, 10183–10190. [Google Scholar] [CrossRef]
- Wlodarczyk, K.L.; Hand, D.P.; Maroto-Valer, M. Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser. Sci. Rep. 2019, 9, 20215. [Google Scholar] [CrossRef] [PubMed]
- Kondratenko, V.S.; Kadomkin, V.V.; Lu, H.T.; Naumov, A.S.; Velikovskii, I.E. Laser Drilling of Microholes in Glass. Glass Ceram. 2020, 77, 39–42. [Google Scholar] [CrossRef]
- Schrauben, J.N.; Matsumoto, H.; Lin, Z.B.; Kleinert, J. Rapid and complex dynamics of through glass via formation using a picosecond quasi-continuous wave laser as revealed by time-resolved absorptance measurements and multiphase modeling. Appl. Phys. A Mater. Sci. Process. 2023, 129, 282. [Google Scholar] [CrossRef]
- Matsumoto, H.; Lin, Z.B.; Schrauben, J.N.; Kleinert, J.; Vázquez, R.G.; Buttazzoni, M.; Otto, A. Rapid formation of high aspect ratio through holes in thin glass substrates using an engineered, QCW laser approach. Appl. Phys. A Mater. Sci. Process. 2022, 128, 269. [Google Scholar] [CrossRef]
- Ostholt, R.; Ambrosius, N.; Krüger, R.A. High speed through glass via manufacturing technology for interposer. In Proceedings of the 5th Electronics System-integration Technology Conference (ESTC), Helsinki, Finland, 16–18 September 2014; pp. 1–3. [Google Scholar]
- Chen, L.; Yu, D. Investigation of low-cost through glass vias formation on borosilicate glass by picosecond laser-induced selective etching. J. Mater. Sci. -Mater. Electron. 2021, 32, 16481–16493. [Google Scholar] [CrossRef]
- Delrue, J.-P.; Ostholt, R.; Ambrosius, N. Glass Wafer Level Packaging Enabled by Laser Induced Deep Etching of Closed Cavities. In Proceedings of the 22nd European Microelectronics and Packaging Conference and Exhibition (EMPC), Pisa, Italy, 16–19 September 2019. [Google Scholar]
- Vanda, J.; Mydlar, M.; Pilna, K.; Turcicova, H.; Poboril, R.; Brajer, J.; Mocek, T.; Stoklasa, B.; Venos, S. LIDT testing as a tool for optimization of processing window for D263 glass sheet TGV treatment. In Proceedings of the 54th SPIE Laser Damage Symposium on Laser-Induced Damage in Optical Materials, Rochester, NY, USA, 18–21 September 2022. [Google Scholar]
- Beresna, M.; Gecevicius, M.; Kazansky, P.G. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass Invited. Opt. Mater. Express 2011, 1, 783–795. [Google Scholar] [CrossRef]
- Rajesh, S.; Bellouard, Y. Towards fast femtosecond laser micromachining of glass, effect of deposited energy. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO)/Quantum Electronics and Laser Science Conference (QELS), San Jose, CA, USA, 16–21 May 2010. [Google Scholar]
- Qi, J.; Wang, Z.; Xu, J.; Lin, Z.; Li, X.; Chu, W.; Cheng, Y. Femtosecond laser induced selective etching in fused silica: Optimization of the inscription conditions with a high-repetition-rate laser source. Opt. Express 2018, 26, 29669–29678. [Google Scholar] [CrossRef]
- Serkov, A.A.; Snelling, H.V. Enhanced chemical etch rate of borosilicate glass via spatially resolved laser-generated color centers. J. Phys. D Appl. Phys. 2020, 53, 135306. [Google Scholar] [CrossRef]
- Chen, L.; Wu, H.; Zhang, M.C.; Jiang, F.; Yu, T.; Yu, D.Q. Development of Laser-Induced Deep Etching Process for Through Glass Via. In Proceedings of the 20th International Conference on Electronic Packaging Technology (ICEPT), Hong Kong, China, 12–15 August 2019. [Google Scholar]
- Chen, Z.H.; Yu, D.Q.; Jiang, F. Development of 3-D Wafer Level Packaging for SAW Filters Using Thin Glass Capping Technology. IEEE Trans. Compon. Packag. Manuf. Technol. 2022, 12, 375–381. [Google Scholar] [CrossRef]
- Hong, P.H.; Kong, D.Y.; Nam, J.W.; Lee, J.H.; Cho, C.S.; Kim, B. Low Cost Via-Hole Filling Process Using Powder and Solder. J. Sens. Sci. Technol. 2013, 22, 130–135. [Google Scholar] [CrossRef]
- Baek, K.-H.; Kim, D.-P.; Park, K.-S.; Ham, Y.-H.; Do, L.-M.; Lee, K.; Kim, K.-S. Conformal Deposition of an Insulator Layer and Ag Nano Paste Filling of a Through Silicon Via for a 3D Interconnection. J. Korean Phys. Soc. 2011, 59, 2252–2258. [Google Scholar] [CrossRef]
- Ham, Y.-H.; Kim, D.-P.; Park, K.-S.; Jeong, Y.-S.; Yun, H.-J.; Baek, K.-H.; Kwon, K.-H.; Lee, K.; Do, L.-M. Dual etch processes of via and metal paste filling for through silicon via process. Thin Solid Film. 2011, 519, 6727–6731. [Google Scholar] [CrossRef]
- Ikeda, H.; Sekine, S.; Kimura, R.; Shimokawa, K.; Okada, K.; Shindo, H.; Ooi, T.; Tamaki, R.; Nagata, M. Nano-Function materials for TSV technologies. In Proceedings of the 2015 International 3D Systems Integration Conference (3DIC), Sendai, Japan, 31 August–2 September 2015; pp. TS5.3.1–TS5.3.6. [Google Scholar]
- Laakso, M.J.; Bleiker, S.J.; Liljeholm, J.; Martensson, G.E.; Asiatici, M.; Fischer, A.C.; Stemme, G.; Ebefors, T.; Niklaus, F. Through-Glass Vias for Glass Interposers and MEMS Packaging Applications Fabricated Using Magnetic Assembly of Microscale Metal Wires. IEEE Access 2018, 6, 44306–44317. [Google Scholar] [CrossRef]
- Kudo, H.; Akazawa, M.; Yamada, S.; Tanaka, M.; Iida, H.; Suzuki, J.; Takano, T.; Kuramochi, S.; Ieee, T.P.C. High-speed High-density Cost-effective Cu-filled Through-Glass-Via Channel for Heterogeneous Chip Integration. In Proceedings of the International Conference on Electronics Packaging (ICEP), Niigata, Japan, 17–20 April 2019; pp. 104–109. [Google Scholar]
- Onohara, J.; Takagi, F.; Kizu, T.; Imayoshi, K.; Nomura, H.; Yun, H.B. Development of the Integrated Passive Device using Through-Glass-Via substrate. In Proceedings of the International Conference on Electronics Packaging (ICEP)/iMAPS All Asia Conference (IAAC), Kuwana, Japan, 17–21 April 2018; pp. 19–22. [Google Scholar]
- Tanaka, M.; Kuramochi, S.; Tai, T.; Sato, Y.; Kidera, N. High Frequency Characteristics of Glass Interposer. In Proceedings of the 70th IEEE Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 3–30 June 2020; pp. 601–610. [Google Scholar]
- Kilige, S.; Bartusseck, I.; Junige, M.; Neumann, V.; Reif, J.; Wenzel, C.; Böttcher, M.; Albert, M.; Wolf, M.J.; Bartha, J.W. 3D system integration on 300 mm wafer level: High-aspect-ratio TSVs with ruthenium seed layer by thermal ALD and subsequent copper electroplating. Microelectron. Eng. 2019, 205, 20–25. [Google Scholar] [CrossRef]
- Van Huylenbroeck, S.; Li, Y.L.; Heylen, N.; Croes, K.; Beyer, G.; Beyne, E.; Brouri, M.; Gopinath, S.; Nalla, P.; Thorum, M.; et al. Advanced Metallization Scheme for 3x50μm Via Middle TSV and Beyond. In Proceedings of the IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 26–29 May 2015; pp. 66–72. [Google Scholar]
- Vandersmissen, K.; Inou, F.; Velenis, D.; Li, Y.; Dictus, D.; Frees, B.; Van Huylenbroeck, S.; Kondo, M.; Seino, T.; Heylen, N.; et al. Demonstration of a cost effective Cu electroless TSV metallization scheme. In Proceedings of the 24th Workshop on Materials for Advanced Metallization Held Jointly with the International Interconnect Technology (IITC) Conference, Grenoble, France, 18–21 May 2015; pp. 197–199. [Google Scholar]
- Inoue, F.; Philipsen, H.; Radisic, A.; Armini, S.; Civale, Y.; Leunissen, P.; Kondo, M.; Webb, E.; Shingubara, S. Electroless Cu deposition on atomic layer deposited Ru as novel seed formation process in through-Si vias. Electrochim. Acta 2013, 100, 203–211. [Google Scholar] [CrossRef]
- Inouel, F.; Philipsen, H.; van der Veen, M.H.; Van Huylenbroeck, S.; Armini, S.; Struyf, H.; Tanaka, T. Electroless Cu Seed on Ru and Co Liners in High Aspect Ratio TSV. In Proceedings of the IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC), San Jose, CA, USA, 20–23 May 2014; pp. 207–209. [Google Scholar]
- Zhang, Z.Y.; Ding, Y.T.; Xiao, L.; Cai, Z.R.; Yang, B.Y.; Chen, Z.M.; Xie, H.K. Enabling Continuous Cu Seed Layer for Deep Through-Silicon-Vias with High Aspect Ratio by Sequential Sputtering and Electroless Plating. IEEE Electron Device Lett. 2021, 42, 1520–1523. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, S.W.; Lee, S.K.; Park, J.H. Wafer level packaging for RF MEMS devices using void free copper filled through glass via. In Proceedings of the 26th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, 20–24 January 2013; pp. 773–776. [Google Scholar]
- Tanaka, M.; Okazaki, Y.; Suyama, J.; Kuramochi, S.; Han, Y.G.; Horiuchi, O.; Katoh, Y. Experimental Study of Through Glass Via Effects on High Frequency Electrical Characteristics. In Proceedings of the International Conference on Electronics Packaging (ICEP)/iMAPS All Asia Conference (IAAC), Kuwana, Japan, 17–21 April 2018; pp. 184–188. [Google Scholar]
- Gu, J.B.; Xia, X.Y.; Zhang, W.B.; Li, X.X. A Modified MEMS-Casting Based TSV Filling Method with Universal Nozzle Piece That Uses Surface Trenches as Nozzles. In Proceedings of the 19th International Conference on Electronic Packaging Technology (ICEPT), Shanghai, China, 8–11 August 2018; pp. 536–539. [Google Scholar]
- Luo, Z.; Chen, D.; Wang, J.; Li, Y.; Chen, J. A High-Q Resonant Pressure Microsensor with Through-Glass Electrical Interconnections Based on Wafer-Level MEMS Vacuum Packaging. Sensors 2014, 14, 24244–24257. [Google Scholar] [CrossRef]
- Kim, J.-K.; Baek, C.-W. Capacitive pressure sensor with wafer-through silicon vias using SOI-Si direct wafer bonding and glass reflow technique. IEICE Electron. Express 2013, 10, 20130453. [Google Scholar] [CrossRef]
- Herickhoff, C.D.; van Schaijk, R. cMUT technology developments. Z. Fur Med. Phys. 2023, 33, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yamaner, F.Y.; Oralkan, O.; IEEE. Fabrication of Capacitive Micromachined Ultrasonic Transducers with Through-Glass-Via Interconnects. In Proceedings of the IEEE International Ultrasonics Symposium (IUS), Taipei, Taiwan, 21–24 October 2015.
- Adelegan, O.J.; Coutant, Z.A.; Zhang, X.; Yamaner, F.Y.; Oralkan, O. Fabrication of 2D Capacitive Micromachined Ultrasonic Transducer (CMUT) Arrays on Insulating Substrates with Through-Wafer Interconnects Using Sacrificial Release Process. J. Microelectromechanical Syst. 2020, 29, 553–561. [Google Scholar] [CrossRef]
- Brusberg, L.; Schröder, H.; Töpper, M.; Arndt-Staufenbiel, N.; Röder, J.; Lutz, M.; Reichl, H. Thin Glass Based Packaging Technologies for Optoelectronic Modules. In Proceedings of the 59th Electronic Components and Technology Conference, San Diego, CA, USA, 26–29 May 2009; pp. 207–212. [Google Scholar]
- Brusberg, L.; Schröder, H.; Töpper, M.; Reichl, H. Photonic System-in-Package Technologies Using Thin Glass Substrates. In Proceedings of the 11th Electronics Packaging Technology Conference, Singapore, 9–11 December 2009; pp. 930–935. [Google Scholar]
- Liu, S.; Hu, B.; Liu, D.; Li, F.; Li, J.-F.; Li, B.; Li, L.; Lin, Y.-H.; Nan, C.-W. Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference. Appl. Energy 2018, 225, 600–610. [Google Scholar] [CrossRef]
- Zhu, Y.Q.; Chen, B.; Qin, M.; Huang, J.Q.; Huang, Q.A. A Self-packaged Self-heated Thermal Wind Sensor with High Reliability and Low Power Consumption. In Proceedings of the IEEE 10th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xi’an, China, 7–11 April 2015; pp. 193–196. [Google Scholar]
- Zhu, Y.Q.; Chen, B.; Qin, M.; Huang, Q.A.; Huang, J.Q. Development of A Robust 2-D Thermal Wind Sensor Using Glass Reflow Process for Low Power Applications. In Proceedings of the IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 26–29 May 2015; pp. 1633–1639. [Google Scholar]
- Zhu, Y.Q.; Chen, B.; Gao, D.; Qin, M.; Huang, Q.A.; Huang, J.Q. A robust and low-power 2-D thermal wind sensor based on a glass-in-silicon reflow process. Microsyst. Technol. -Micro-Nanosyst. -Inf. Storage Process. Syst. 2016, 22, 151–162. [Google Scholar] [CrossRef]
- Zhu, Y.Q.; Qin, M.; Ye, Y.Z.; Yi, Z.X.; Long, K.W.; Huang, Q.A. Modelling and characterization of a robust, low-power and wide-range thermal wind sensor. Microsyst. Technol.-Micro-Nanosyst. -Inf. Storage Process. Syst. 2017, 23, 5571–5585. [Google Scholar] [CrossRef]
- Watanabe, A.O.; Lin, T.H.; Ali, M.; Ogawa, T.; Raj, P.M.; Tentzeris, M.M.; Tummala, R.R.; Swaminathan, M. 3D Glass-Based Panel-Level Package with Antenna and Low-Loss Interconnects for Millimeter-Wave 5G Applications. In Proceedings of the IEEE MTT-S International Microwave Conference on Hardware and Systems for 5G and Beyond (IMC-5G), Atlanta, GA, USA, 15–16 August 2019. [Google Scholar]
Process | AJM | EDM/ECDM | Photosensitive Glass | Glass Reflow Process | LD | LIDE |
---|---|---|---|---|---|---|
Minimum size | 50 µm | 20 µm | 1 µm | 1 µm | 5 µm | 5 µm |
Mass fabrication efficiency | Medium | Medium | High | Low | High | High |
Supported TGV array density | Low | Medium | High | Medium | High | High |
TGV reliability | Medium | Low | High | High | Low | High |
Complexity | Low | Medium | High | High | Low | Medium |
Process | Conductive Paste Filling | Magnetic Self-Assembly | Electroplating |
---|---|---|---|
Minimum size | 20 µm | 70 µm | 3 µm |
Aspect ratio | >10 | 2 | 15 |
Reliability | Low | High | High |
Complexity | Low | Medium | Medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Wu, S.; Zhong, Y.; Xu, R.; Yu, T.; Zhao, J.; Yu, D. Application of Through Glass Via (TGV) Technology for Sensors Manufacturing and Packaging. Sensors 2024, 24, 171. https://doi.org/10.3390/s24010171
Yu C, Wu S, Zhong Y, Xu R, Yu T, Zhao J, Yu D. Application of Through Glass Via (TGV) Technology for Sensors Manufacturing and Packaging. Sensors. 2024; 24(1):171. https://doi.org/10.3390/s24010171
Chicago/Turabian StyleYu, Chen, Shaocheng Wu, Yi Zhong, Rongbin Xu, Tian Yu, Jin Zhao, and Daquan Yu. 2024. "Application of Through Glass Via (TGV) Technology for Sensors Manufacturing and Packaging" Sensors 24, no. 1: 171. https://doi.org/10.3390/s24010171
APA StyleYu, C., Wu, S., Zhong, Y., Xu, R., Yu, T., Zhao, J., & Yu, D. (2024). Application of Through Glass Via (TGV) Technology for Sensors Manufacturing and Packaging. Sensors, 24(1), 171. https://doi.org/10.3390/s24010171