A Systematic Review of Air Quality Sensors, Guidelines, and Measurement Studies for Indoor Air Quality Management
Abstract
:1. Introduction
Indoor Air Quality, the Vulnerable Population, and Asthma
2. Common Air Pollutants that Affect IAQ
3. Air Quality Sensors, Measurement Tolerances, and Ranges
4. Air Quality Guidelines
5. Air Quality Measurements and Data Analysis
Analysis of the Sources and Mechanisms Affecting the Concentration Measurements
6. Discussions
6.1. Air Quality Guidelines
6.2. Air Quality Sensors
6.2.1. LCAQS
6.2.2. Cost vs. Accuracy of the LCAQS
6.2.3. Technology of LCAQS
6.2.4. Performance Evaluation of LCAQS
6.2.5. Uncertainties in LCAQS
6.2.6. QA/QC Control
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACGIH | American Conference of Governmental Industrial Hygienists |
ALA | American Lung Association |
AQ-SPEC | Air Quality Sensor Performance Evaluation Center |
ASHRAE | American Society of Heating, Refrigerating and Air–Conditioning Engineers |
BASE | Building Assessment Survey and Evaluation |
CARB | California Air Resources Board |
CAAQS | California ambient air quality standards |
SCAQMD | South Coast Air Quality Management District |
COPD | chronic obstructive pulmonary disease |
CDC | Centers for Disease Control and Prevention |
CO | Carbon Monoxide |
CO2 | Carbon Dioxide |
DOL | Department of Labor |
DQOS | Data Quality Objectives |
EC | Electrochemical |
EU JRC | European Union Joint Research Centre |
FEM | Federal Equivalent Methods |
FRM | Federal Reference |
HVAC | heating, ventilating and air-conditioning |
IAQ | indoor air quality |
LCAQS | Low-cost air quality sensors |
MOS | Metal Oxide Semiconductor Sensors |
MPI | Mass Psychogenic Illness |
NAAQS | Ambient Air Quality Standards |
NDIR | Non-dispersive Infrared Sensors |
NIOSH | National Institute for Occupational Safety and Health |
NO2 | Nitrogen Dioxide |
O3 | Ozone |
OPC | Optical Particle Counters |
OSHA | Occupational Safety and Health Administration |
PCA | Principal components analysis |
PID | Photo-ionization Detection Sensors |
PM | Particulate Matter |
SBS | Sick Building Syndrome |
SO2 | Sulfur Dioxide |
TLVs® | Threshold Limit Values |
TVOCs | Total Volatile Organic Compounds |
WHO | World Health Organization |
References
- WHO. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Jafari, M.J.; Khajevandi, A.A.; Najarkola, S.A.M.; Yekaninejad, M.S.; Pourhoseingholi Amin, M.; Omidi, L.; Kalantary, S. Association of sick building syndrome with indoor air parameters. Tanaffos 2015, 14, 55. [Google Scholar] [PubMed]
- Van Durme, J.; Dewulf, J.; Sysmans, W.; Leys, C.; Van Langenhove, H. Abatement and degradation pathways of toluene in indoor air by positive corona discharge. Chemosphere 2007, 68, 1821–1829. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Morawska, L.; Hitchins, J.; Gilbert, D. Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmos. Environ. 2004, 38, 3405–3415. [Google Scholar] [CrossRef]
- Brown, N.J. Indoor Air Quality; Cornell Univ ILR Sch: Ithaca, NY, USA, 2019. [Google Scholar]
- Goodman, N.B.; Steinemann, A.; Wheeler, A.J.; Paevere, P.J.; Cheng, M.; Brown, S.K. Volatile organic compounds within indoor environments in Australia. Build. Environ. 2017, 122, 116–125. [Google Scholar] [CrossRef]
- Meyer, B.; Hermanns, K.; Smith, D.C. Formaldehyde release from urea-formaldehyde bonded wood products. J. Adhes 1985, 17, 297–308. [Google Scholar] [CrossRef]
- Mujan, I.; Anđelković, A.S.; Munćan, V.; Kljajić, M.; Ružić, D. Influence of indoor environmental quality on human health and productivity—A review. J. Clean. Prod. 2019, 217, 646–657. [Google Scholar] [CrossRef]
- World Health Organization. Public Health, Environmental and Social Determinants of Health (PHE); World Heal Organ: Geneva, Switzerland, 2017. [Google Scholar]
- Seltzer, J.M. Building-related illnesses. J. Allergy Clin. Immunol. 1994, 94, 351–361. [Google Scholar] [CrossRef]
- Menzies, D.; Bourbeau, J. Building-related illnesses. N. Engl. J. Med. 1997, 337, 1524–1531. [Google Scholar] [CrossRef]
- Saeki, Y.; Kadonosono, K.; Uchio, E. Clinical and allergological analysis of ocular manifestations of sick building syndrome. Clin. Ophthalmol. 2017, 11, 517–522. [Google Scholar] [CrossRef] [Green Version]
- Horvath, E.P. Building-related illness and sick building syndrome: From the specific to the vague. Clevel. Clin. J. Med. 1997, 64, 303–309. [Google Scholar] [CrossRef]
- SAIF. Indoor Air Quality Investigations. SS-436 2018. Available online: https://www.saif.com/Documents/SafetyandHealth/IndoorAirQuality/SS436_indoor_air_quality_investigation.pdf (accessed on 8 November 2018).
- Herr, C.; Otterbach, I.; Nowak, D.; Hornberg, C.; Eikmann, T.; Wiesmüller, G.A. Clinical environmental medicine. Klin. Dtsch Arztebl.Umweltmed. 2008, 105, 523–531. [Google Scholar] [CrossRef] [PubMed]
- EPA. Report to Congress on Indoor Air Quality, Volume II: Assessment and Control of Indoor Air Pollution; EPA: Washington, DC, USA, 1989. [Google Scholar]
- Nezis, I.; Biskos, G.; Eleftheriadis, K.; Kalantzi, O.I. Particulate matter and health effects in offices—A review. Build. Environ. 2019, 156, 62–73. [Google Scholar] [CrossRef]
- Fisk, W.J. Health and productivity gains from better indoor environments and their relationship with building energy efficiency. Annu. Rev. Energy Environ. 2000, 25, 537–566. [Google Scholar] [CrossRef] [Green Version]
- Mendell, M.J.; Fisk, W.J.; Kreiss, K.; Levin, H.; Alexander, D.; Cain, W.S.; Rexroat, L.P. Improving the health of workers in indoor environments: Priority research needs for a National Occupational Research Agenda. Am. J. Public Health 2002, 92, 1430–1440. [Google Scholar] [CrossRef] [PubMed]
- Kibert, C.J. Sustainable Construction: Green Building Design and Delivery; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- De Robles, D.; Kramer, S.W. Improving Indoor Air Quality through the Use of Ultraviolet Technology in Commercial Buildings. Procedia Eng. 2017, 196, 888–894. [Google Scholar] [CrossRef]
- Amin, N.D.M.; Akasah, Z.A.; Razzaly, W. Architectural evaluation of thermal comfort: Sick building syndrome symptoms in engineering education laboratories. Procedia Soc. Behav. Sci. 2015, 204, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Magnavita, N. Work-related symptoms in indoor environments: A puzzling problem for the occupational physician. Int. Arch. Occup. Environ. Health 2015, 88, 185–196. [Google Scholar] [CrossRef]
- Norbäck, D.; Hashim, J.H.; Markowicz, P.; Cai, G.-H.; Hashim, Z.; Ali, F.; Larsson, L. Endotoxin, ergosterol, muramic acid and fungal DNA in dust from schools in Johor Bahru, Malaysia—Associations with rhinitis and sick building syndrome (SBS) in junior high school students. Sci. Total Environ. 2016, 545, 95–103. [Google Scholar] [CrossRef]
- Nordström, K.; Norbäck, D.; Akselsson, R. Influence of indoor air quality and personal factors on the sick building syndrome (SBS) in Swedish geriatric hospitals. Occup. Environ. Med. 1995, 52, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Lahtinen, M.; Huuhtanen, P.; Reijula, K. Sick Building Syndrome and Psychosocial Factors—A Literature Review. Indoor Air 1998, 8, 71–80. [Google Scholar] [CrossRef]
- Chirico, F.; Ferrari, G.; Taino, G.; Oddone, E.; Giorgi, I.; Imbriani, M. Prevalence and risk factors for sick building syndrome among Italian correctional officers: A pilot study. J. Health Soc. Sci. 2017, 2, 31–46. [Google Scholar]
- Ghaffarianhoseini, A.; AlWaer, H.; Omrany, H.; Ghaffarianhoseini, A.; Alalouch, C.; Clements-Croome, D.; Tookey, J. Sick building syndrome: Are we doing enough. Archit Sci. Rev. 2018, 61, 99–121. [Google Scholar] [CrossRef] [Green Version]
- ASHRAE. ; ANSI. Standard 55-2017, Thermal Environmental Comfort Conditions for Human Occupancy; ASHRAE: Atlanta, GA, USA, 2013. [Google Scholar]
- Goss, K.U. Effects of temperature and relative humidity on the sorption of organic vapors on quartz sand. Environ. Sci. Technol. 1992, 26, 2287–2294. [Google Scholar] [CrossRef]
- Pegas, P.N.; Alves, C.A.; Evtyugina, M.G.; Nunes, T.; Cerqueira, M.; Franchi, M.; Pio, C.A.; Almeida, S.M.; Freitas, M.C. Indoor air quality in elementary schools of Lisbon in spring. Environ. Geochem. Health 2011, 33, 455–468. [Google Scholar] [CrossRef]
- Smith, K.R. National burden of disease in India from indoor air pollution. Proc. Natl. Acad. Sci. USA 2000, 97, 13286–13293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bael, D.; Sample, J. Life and Breath—How Air Pollution Affects Public Health in the Twin Cities; Minnesota Pollut Control Agency (MPCA) & Minnesota Department Health: St Paul, MN, USA, 2015; pp. 1–50. [Google Scholar]
- CDC. Centers for Disease Control and Prevention, Populations at Risk from Particulate Air Pollution—United States; MMWR, Morbidity and Mortality Weekly Report. n.d.; CDC: Atlanta, GA, USA, 1992. [Google Scholar]
- Mendes, A.; Pereira, C.; Mendes, D.; Aguiar, L.; Neves, P.; Silva, S.; Batterman, S.; Teixeira, P.S. Indoor air quality and thermal comfort—Results of a pilot study in elderly care centers in Portugal. J. Toxicol. Environ. Health A 2013, 76, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Simoni, M.; Jaakkola, M.S.; Carrozzi, L.; Baldacci, S.; Di Pede, F.; Viegi, G. Indoor air pollution and respiratory health in the elderly. Eur. Respir. J. 2003, 21, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V. Effect of indoor air pollution from biomass combustion prevalence of asthma in the elderly. Environ. Health Perspect 2003, 111, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Franklin, P.J. Indoor air quality and respiratory health of children. Paediatr. Respir. Rev. 2007, 8, 281–286. [Google Scholar] [CrossRef]
- Smith, K.R.; Samet, J.M.; Romieu, I.; Bruce, N. Indoor air pollution in developing countries and acute lower respiratory infections in children. Thorax 2000, 55, 518–532. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Effects of Air Pollution Children’s Health and Development: A Review of the Evidence; WHO Regional Office for Europe: Copenhagen, Denmark, 2005. [Google Scholar]
- Flynn, E.; Matz, P.; Woolf, A.; Wright, R. Indoor Air Pollutants Affecting Child Health. A Project of the American College of Medical Toxicology. 2000, pp. 1–201. Available online: http://www.sygdoms.com/pdf/23.pdf (accessed on 12 November 2018).
- Simoni, M.; Baldacci, S.; Maio, S.; Cerrai, S.; Sarno, G.; Viegi, G. Adverse effects of outdoor pollution in the elderly. J. Thorac. Dis. 2015, 7, 34. [Google Scholar]
- NSW Government. Who Is Affected by Air Pollution? n.d. Available online: http://www.health.nsw.gov.au/environment/air/Pages/who-is-affected.aspx (accessed on 12 November 2018).
- Mendy, A.; Wilkerson, J.; Salo, P.M.; Weir, C.H.; Feinstein, L.; Zeldin, D.C.; Thorne, P.S. Synergistic association of house endotoxin exposure and ambient air pollution with asthma outcomes. Am. J. Respir. Crit. Care Med. 2019, 200, 712–720. [Google Scholar] [CrossRef] [PubMed]
- Abramson, M.J.; Guo, Y. Indoor Endotoxin Exposure and Ambient Air Pollutants Interact on Asthma Outcomes. Am. J. Respir. Crit. Care Med. 2019, 200, 652–654. [Google Scholar] [CrossRef] [PubMed]
- Kanchongkittiphon, W.; Mendell, M.J.; Gaffin, J.M.; Wang, G.; Phipatanakul, W. Indoor environmental exposures and exacerbation of asthma: An update to the 2000 review by the Institute of Medicine. Environ. Health Perspect. 2014, 123, 6–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- State of the AIR; American Lung Association (ALA). National Headquarters, American Lung Association, State of the Air, and Fighting for Air are Registered Trademarks of the American Lung Association; State of the AIR: Chicago, IL, USA, 2020; p. 60601. [Google Scholar]
- Shao, M.; Zhang, Y.; Zeng, L.; Tang, X.; Zhang, J.; Zhong, L.; Wang, B. Ground-level ozone in the Pearl River Delta and the roles of VOC and NOx in its production. J. Environ. Manag. 2009, 90, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Uysal, N.; Schapira, R.M. Effects of ozone on lung function and lung diseases. Curr. Opin. Pulm. Med. 2003, 9, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Care process Model (CPM). Outdoor Air Quality and Health. Intermountain LiVe Well and the Office of the Sustainability. Intermt LiVe Well Off Sustain 2015. Available online: https://intermountainhealthcare.org/ext/Dcmnt?ncid=527926681 (accessed on 17 November 2019).
- Bernstein, J.A.; Alexis, N.; Bacchus, H.; Bernstein, I.L.; Fritz, P.; Horner, E.; Li, N.; Mason, S.; Nel, A.; Oullette, J.; et al. The health effects of nonindustrial indoor air pollution. J. Allergy Clin. Immunol. 2008, 121, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Seppänen, O.A.; Fisk, W.J.; Mendell, M.J. Association of ventilation rates and CO2 concentrations with health andother responses in commercial and institutional buildings. Indoor Air 1999, 9, 226–252. [Google Scholar] [CrossRef]
- Erdmann, C.A.; Steiner, K.C.; Apte, M.G. Indoor Carbon Dioxide Concentrations and Sick Building Syndrome Symptoms in the BASE Study Revisited: Analyses of the 100 Building Dataset; Lawrence Berkeley National Lab. (LBNL): Berkeley, CA, USA, 2002. [Google Scholar]
- Arndt, R.L.; Carmichael, G.R.; Streets, D.G.; Bhatti, N. Sulfur dioxide emissions and sectorial contributions to sulfur deposition in Asia. Atmos. Environ. 1997, 31, 1553–1572. [Google Scholar] [CrossRef]
- EPA, U. Sulfur Dioxide (SO2) Pollution. United States Environ Prot Agency 2019. Available online: https://www.epa.gov/so2-pollution/sulfur-dioxide-basics#what is so2 (accessed on 8 May 2019).
- Spengler, J.D.; Ferris, B.G.; Dockery, D.W.; Speizer, F.E. Sulfur Dioxide and Nitrogen Dioxide Levels Inside and Outside Homes and the Implications on Health Effects Research. Environ. Sci. Technol. 1979, 13, 1276–1280. [Google Scholar] [CrossRef]
- Siwarom, S.; Puranitee, P.; Plitponkarnpim, A.; Manuyakorn, W.; Sinitkul, R.; Vallipakorn, S.A.O. Association of indoor air quality and preschool children’s respiratory symptoms. Asian Pac. J. Allergy Immunol. 2017, 35, 119–126. [Google Scholar] [CrossRef]
- Ielpo, P.; Mangia, C.; Marra, G.P.; Comite, V.; Rizza, U.; Uricchio, V.F.; Fermo, P. Outdoor spatial distribution and indoor levels of NO2 and SO2 in a high environmental risk site of the South Italy. Sci. Total Environ. 2019, 648, 787–797. [Google Scholar] [CrossRef]
- Shehu, M.S.; Umaru, I.; Tukura, B.W. Health Impact Analysis of Some Outdoor Atmospheric. Am. J. Public Health Res. 2019, 7, 1–8. [Google Scholar] [CrossRef]
- Dunlea, E.J.; Herndon, S.C.; Nelson, D.D.; Volkamer, R.M.; Martini, F.S.; Sheehy, P.M.; Zahniser, M.S.; Shorter, J.H.; Wormhoudt, J.C.; Lamb, B.K.; et al. Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment. Atmos. Chem. Phys. 2007, 7, 2691–2704. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Harrison, R.M. Pragmatic mass closure study for PM1.0, PM2.5 and PM10 at roadside, urban background and rural sites. Atmos. Environ. 2008, 42, 980–988. [Google Scholar] [CrossRef]
- Chock, D.P. An advection-diffusion model for pollutant dispersion near roadways. J. Appl. Meteorol. 1978, 17, 976–989. [Google Scholar] [CrossRef] [Green Version]
- Wagner, J.G.; Kamal, A.S.; Morishita, M.; Dvonch, J.T.; Harkema, J.R.; Rohr, A.C. PM2.5-induced cardiovascular dysregulation in rats is associated with elemental carbon and temperature-resolved carbon subfractions. Part Fibre Toxicol. 2014, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Ehrlich, C.; Noll, G.; Kalkoff, W.-D.; Baumbach, G.; Dreiseidler, A. PM10, PM2.5 and PM1.0—Emissions from industrial plants—Results from measurement programmes in Germany. Atmos. Environ. 2007, 41, 6236–6254. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367. [Google Scholar] [CrossRef]
- Ishizaka, T.D.; Kawashima, A.; Hishida, N.; Hamada, N. Measurement of total volatile organic compound (TVOC) in indoor air using passive solvent extraction method. Air. Qual. Atmos. Heal 2019, 12, 173–187. [Google Scholar] [CrossRef]
- EPA. Volatile Organic Compounds’ Impact on Indoor Air Quality. United States Environ Prot Agency 2017. Available online: https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality#intro (accessed on 4 February 2018).
- Salthammer, T. Very volatile organic compounds: An understudied class of indoor air pollutants. Indoor Air 2016, 26, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Rehwagen, M.; Schlink, U.; Herbarth, O. Seasonal cycle of VOCs in apartments. Indoor Air 2003, 13, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Ohura, T.; Amagai, T.; Shen, X.; Li, S.; Zhang, P.; Zhu, L. Comparative study on indoor air quality in Japan and China: Characteristics of residential indoor and outdoor VOCs. Atmos. Environ. 2009, 43, 6352–6359. [Google Scholar] [CrossRef]
- Solomon, S.J.; Schade, G.W.; Kuttippurath, J.; Ladstätter-Weissenmayer, A.; Burrows, J.P. VOC concentrations in an indoor workplace environment of a university building. Indoor Built. Environ. 2008, 17, 260–268. [Google Scholar] [CrossRef]
- de Blas, M.; Navazo, M.; Alonso, L.; Durana, N.; Gomez, M.C.; Iza, J. Simultaneous indoor and outdoor on-line hourly monitoring of atmospheric volatile organic compounds in an urban building. The role of inside and outside sources. Sci. Total Environ. 2012, 426, 327–335. [Google Scholar] [CrossRef]
- EPA. Initial List of Hazardous Air Pollutants with Modifications. US Environ Prot Agency 2017. Available online: https://www.epa.gov/haps/initial-list-hazardous-air-pollutants-modifications#mods (accessed on 1 April 2020).
- ASHRAE, A. ASHRAE Standard 62.1-2016, Ventilation for Acceptable Indoor Air Quality; American Society of Heating, Refrigerating, and Air-Conditioning Engineers: Atlanta, GA, USA, 2016. [Google Scholar]
- Chin, J.Y.; Godwin, C.; Parker, E.; Robins, T.; Lewis, T.; Harbin, P.; Batterman, S. Levels and sources of volatile organic compounds in homes of children with asthma. Indoor Air 2014, 24, 403–415. [Google Scholar] [CrossRef] [Green Version]
- Civan, M.Y.; Elbir, T.; Seyfioglu, R.; Kuntasal, Ö.O.; Bayram, A.; Doğan, G.; Yurdakul, S.; Andiç, Ö.; Müezzinoğlu, A.; Sofuoglu, S.C.; et al. Spatial and temporal variations in atmospheric VOCs, NO2, SO2, and O3 concentrations at a heavily industrialized region in Western Turkey, and assessment of the carcinogenic risk levels of benzene. Atmos. Environ. 2015, 103, 102–113. [Google Scholar] [CrossRef] [Green Version]
- Tsai, W.-T. Toxic Volatile Organic Compounds (VOCs) in the Atmospheric Environment: Regulatory Aspects and Monitoring in Japan and Korea. Environments 2016, 3, 23. [Google Scholar] [CrossRef]
- Andersson, K. TVOC and health in non-industrial indoor environments report from a nordic scientific consensus meeting at I̊ngholmen in Stockholm, 1996. Indoor Air 1997, 7, 78–91. [Google Scholar] [CrossRef]
- Yang, J.; Seo, J.H.; Jeong, N.N.; Sohn, J.R. Effects of Legal Regulation Indoor Air Quality in Facilities for Sensitive Populations—A Field Study in Seoul, Korea. Environ. Manag. 2019, 64, 344–352. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Chiang, H.C.; Shie, R.H.; Ku, C.H.; Lin, T.Y.; Chen, M.J.; Chen, N.T.; Chen, Y.C. Ambient VOCs in residential areas near a large-scale petrochemical complex: Spatiotemporal variation, source apportionment and health risk. Environ. Pollut. 2018, 240, 95–104. [Google Scholar] [CrossRef]
- Fang, L.; Clausen, G.; Fanger, P.O. Impact of temperature and humidity on the perception of indoor air quality. Indoor Air 1998, 8, 80–90. [Google Scholar] [CrossRef]
- Berglund, L.G. Perceived air quality and the thermal environment, The Human Equation: Health and Comfort. In Proceedings of the ASHRAE/SOEH Conferece IAQ’89, Atlanta, GA, USA, 21–25 April 1989; pp. 93–99. [Google Scholar]
- Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, N.; et al. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environ. Int. 2018, 116, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Munir, S.; Mayfield, M.; Coca, D.; Jubb, S.A.; Osammor, O. Analysing the performance of low-cost air quality sensors, their drivers, relative benefits and calibration in cities—A case study in Sheffield. Environ. Monit. Assess 2019, 191, 94. [Google Scholar] [CrossRef] [Green Version]
- Ahangar, F.E.; Freedman, F.R.; Venkatram, A. Using low-cost air quality sensor networks to improve the spatial and temporal resolution of concentration maps. Int. J. Environ. Res. Public Health 2019, 16, 1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, W.Y.; Lo, K.M.; Mak, T.; Leung, K.S.; Leung, Y.; Meng, M.L. A survey of wireless sensor network based air pollution monitoring systems. Sensors 2015, 15, 9859. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.E. Crowd-sourced air quality studies: A review of the literature & portable sensors. Trends. Environ. Anal. Chem. 2016, 11, 23–34. [Google Scholar] [CrossRef]
- Schneider, P.; Castell, N.; Vogt, M.; Dauge, F.R.; Lahoz, W.A.; Bartonova, A. Mapping urban air quality in near real-time using observations from low-cost sensors and model information. Environ. Int. 2017, 106, 234–247. [Google Scholar] [CrossRef]
- Chatzidiakou, L.; Krause, A.; Popoola, O.; Di Antonio, A.; Kellaway, M.; Han, Y.; Squires, F.A.; Wang, T.; Zhang, H.; Wang, Q. Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments. Atmos. Meas. Tech. 2019, 12, 4643–4657. [Google Scholar] [CrossRef] [Green Version]
- Collier-Oxandale, A.; Feenstra, B.; Papapostolou, V.; Zhang, H.; Kuang, M.; Der Boghossian, B.; Polidori, A. Field and laboratory performance evaluations of 28 gas-phase air quality sensors by the AQ-SPEC program. Atmos. Environ. 2020, 220, 117092. [Google Scholar] [CrossRef]
- Mukherjee, A.; Stanton, L.G.; Graham, A.R.; Roberts, P.T. Assessing the utility of low-cost particulate matter sensors over a 12-week period in the Cuyama valley of California. Sensors (Switzerland) 2017, 17, 1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R.P.; Lv, Q.; Hannigan, M.; et al. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring. Atmos. Meas. Tech. 2014, 7, 3325–3336. [Google Scholar] [CrossRef] [Green Version]
- SR-G04. BW Ozone Sensor 0-1ppm (SR-G04), Gas Sensor n.d. Available online: https://www.gas-sensing.com/bw-ozone-sensor-sr-g04.html (accessed on 25 July 2019).
- UHoo-O3. uHoo Sensor Ozone specifications. UHoo Air n.d. Available online: https://uhooair.com/product-2/ (accessed on 28 July 2019).
- ME3-O3. Electrochemical Sensor, Zhengzhou Winsen Electronics Technology Co., Ltd., 2017. 2017. Available online: https://www.winsen-sensor.com/d/files/PDF/Electrochemical Gas Sensor/4-series Electrochemical/ME3-O3 0-20ppm(Ver1.2) Manual.pdf (accessed on 26 July 2019).
- DGS-O3. DGS-O3 986-042, Digital Gas Sensor- Ozone, SPEC Sensors n.d. Available online: https://www.spec-sensors.com/wp-content/uploads/2017/01/DGS-O3-968-042_9-6-17.pdf (accessed on 25 July 2019).
- ULPSMO3. Ultra-Low Power Analog Sensor Module for Ozone, ULPSM-O3968-005, Digital Gas Sensor- Ozone; SPEC Sensors n.d. SPRC-Sensor: Newark, CA, USA, 2017. [Google Scholar]
- ZE25-O3. Electrochemical Ozone Detection Module ZE25-O3; Zhengzhou Winsen Electron Technol Co., Ltd.: Zhengzhou, China, 2018. [Google Scholar]
- MQ131. Semiconductor Sensor for Ozone. Zhengzhou Winsen Electron Technol Co, Ltd. 2017. Available online: https://www.winsensensor.com/d/files/PDF/Semiconductor Gas Sensor/mq131(high-concentration)-ver1_4-manual.pdf (accessed on 26 July 2019).
- MiCS-2610. A1A-MiCS-2610 Version 2, e2v technologies (uk) limited July 2008, n.d. Available online: https://sgx.cdistore.com/datasheets/sgx/mics-2610.pdf (accessed on 26 July 2019).
- UHoo. uHoo Air Quality Sensor Specifications:, n.d. Available online: https://reviewsofairpurifiers.com/uhoo-air-quality-sensor-review/ (accessed on 28 July 2019).
- COB4. COB4, Carbon Mono CO-B4, Carbon Monoxide Sensor, Alphasense Ltd. n.d. Available online: http://www.alphasense.com/WEB1213/wp-content/uploads/2019/09/CO-B4.pdf (accessed on 26 July 2019).
- COB4PRO. COB4, Smart Gases PRO Technical Guide, Libelium Comunicaciones Distribuidas, S.L. Document version: v7.6—02/2019 n.d. Available online: http://www.libelium.com/downloads/documentation/gases_sensor_board_pro.pdf (accessed on 26 July 2019).
- MNS9. Monnit Wireless Carbon Monoxide (CO) Gas Sensor—Commercial AA Battery. Powered n.d. Available online: https://www.monnit.com/Product/MNS-9-W1-GS-C1 (accessed on 26 July 2019).
- 968-034 D-C. DigitalGas Sensor–Carbon Monoxide n.d. Available online: https://www.digikey.com/en/products/detail/spec-sensors-llc/968-034/6676880 (accessed on 26 July 2019).
- MiCS-4514. The MiCS-4514, 0278 rev 15. A Compact MOS Sensor with Two Fully Independent Sensing Elements on e Package. n.d. Available online: https://www.sgxsensortech.com/content/uploads/2014/08/0278_Datasheet-MiCS-4514.pdf (accessed on 28 July 2019).
- TGS5342. TGS 5342, Sensor for the Detection of Carbon Monoxide, Figaro, n.d. Available online: https://cdn.sparkfun.com/assets/8/4/3/e/f/52a8c005757b7f292e8b456c.pdf (accessed on 29 July 2019).
- TGS2442. TGS 2442—For the detection of Carbon Monoxide, product information. FIGARO USA INC n.d. Available online: https://cdn.sos.sk/productdata/af/2e/9901fb15/tgs-2442.pdf (accessed on 26 July 2019).
- HS-134. Carbon Monoxide sensor element, Sencera n.d. Available online: https://www.tme.eu/Document/b4e5250ef234a352fb2b89cc5de7675b/HS-134.pdf (accessed on 28 July 2019).
- MiCS-5524. The MiCS-5524 is a Compact MOS Sensor, SGX Sensortech n.d. Available online: https://www.mouser.com/datasheet/2/18/1084_Datasheet-MiCS-5524-rev-8-1144838.pdf (accessed on 28 July 2019).
- TGS5042. Figaro, Product Datasheet rev04, n.d. Available online: https://www.figaro.co.jp/en/product/docs/tgs5042_product infomation%28en%29_rev04.pdf (accessed on 28 July 2019).
- MQ –7. CO Sensor, HANWEI ELECTRONICS CO., LTD. n.d. Available online: https://www.sparkfun.com/da.asheets/Sensors/Biometric/MQ-7.pdf (accessed on 26 July 2019).
- GC0024. ExplorIR®-M 20% CO2 Sensor, Product Information, n.d. Available online: https://www.co2meter.com/products/minir-co2-sensor (accessed on 30 July 2019).
- CO2. AWAIR CO2, Carbon Dioxide (CO2) Sensor, Product Information n.d. Available online: https://images-na.ssl-images-amazon.com/images/I/B1-qbtPfPaS.pdf (accessed on 30 July 2019).
- B-530. ELT Sensor Data Sheet n.d. Available online: http://eltsensor.co.kr/2012/eng/product/carbon-dioxide-sensor-module.html (accessed on 30 July 2019).
- Moreno-Rangel, A.; Sharpe, T.; Musau, F.; McGill, G. Field evaluation of a low-cost indoor air quality monitor to quantify exposure to pollutants in residential environments. J. Sensors Sens. Syst. 2018, 7, 373–388. [Google Scholar] [CrossRef] [Green Version]
- 8096-AP. 8096-AP, CO2, Specification, Air Mentor pro n.d. Available online: https://air-mentor.eu/product/air_mentor_8096ap.html#specification (accessed on 30 July 2019).
- Yocto-VOC-V3. USB Environmental Sensors. specifications n.d. Available online: http://www.yoctopuce.com/EN/products/usb-environmental-sensors/yocto-voc-v3 (accessed on 31 July 2019).
- NWS01-EU.; Netatmo, Netatmo Weather Station NWS01. Version 1, May 2012 n.d. Available online: https://images-eu.ssl-images-amazon.com/images/I/A1RvwZ80UpS.pdf (accessed on 28 July 2019).
- CozIR®-LP2. CozIR®-LP2, Sensor Datasheet n.d. Available online: https://www.gassensing.co.uk/wp-content/uploads/2019/06/CozIR-LP2-Datasheet.pdf (accessed on 30 July 2019).
- K-30. K-30, CO2Meter n.d. Available online: https://img.ozdisan.com/ETicaret_Dosya/456729_1584920.PDF (accessed on 30 July 2019).
- D-400. D-400. ELT Corp. Sensor Data Sheet, n.d. Available online: http://eltsensor.co.kr/2016/file/oem_modules/DS_D-400_ver%201.0_eng_new.pdf (accessed on 30 July 2019).
- GC-0015. ExplorIR®-W 5% CO2. Sensor. Available online: https://gaslab.com/products/co2-sensor-gss-explorir-w-5-percent (accessed on 30 July 2019).
- T-110 - ELT SENSOR. Datasheet. Available online: https://gasdetect.com/wp-content/uploads/2014/08/DS_T-110_Rev1.2.pdf (accessed on 30 July 2019).
- MT-100. MT-100. ELT Sensor Data Sheet, n.d. Available online: https://www.sensorinstock.it/en/8_elt-sensor?p=2 (accessed on 30 July 2019).
- S-300. S-300. ELT Sensor Data Sheet n.d. Available online: https://www.tme.eu/Document/f2b0a5bcaca9d92f234559ea927d4ca1/DS_S-300-3V_ver1.110.pdf (accessed on 30 July 2019).
- T6713. T6713, Telaire, Carbon Dioxide (CO2) Sensor, Product Information, n.d. Available online: https://www.digikey.com/product-detail/en/amphenol-advanced-sensors/T6713/235-1373-ND/5027891&?gclid=CjwKCAiAsoviBRAoEiwATm8OYOt0ysnaMiBDpWveW3Lm_czWRws-aJiWMB8rIRyiE35h7Yw2SXU0kBoCS1AQAvD_BwE (accessed on 30 July 2019).
- T6615. T6615, Sensor Product Datasheet n.d. Available online: https://www.amphenol-sensors.com/en/telaire/co2/525-co2-sensor-modules/319-t6615 (accessed on 30 July 2019).
- MG-811. CO2 Sensor Module, Carbon Dioxide (CO2) Sensor, Product Information n.d. Available online: https://sandboxelectronics.com/?cat=44 (accessed on 30 July 2019).
- 4161, T. TGS 4161, Sensor for the Detection of Carbon Dioxide, Figaro, Product Information n.d. Available online: https://cdn.sos.sk/productdata/62/d9/f2bb36a6/tgs-4161.pdf (accessed on 30 July 2019).
- MH-Z16. Intelligent Infrared Gas Module, Winsen, Zhengzhou Winsen Electronic Technology CO., LTD. Product Information, n.d. Available online: https://www.compel.ru/pdf-items/winsen/pn/mh-z16-ndir-co2-sensor/d12adaf2dfb2f751e33928845c54ef43 (accessed on 30 July 2019).
- MH-Z19. MH-Z19, Intelligent Infrared Gas Module, Winsen, Zhengzhou Winsen Electronic Technology CO., LTD. Product Information n.d. Available online: https://www.circuits.dk/testing-mh-z19-ndir-co2-sensor-module/ (accessed on 30 July 2019).
- SO2-B4. Sulfur Dioxide Sensor, Alphasense, Technical Specification. 4-Electrode n.d. Available online: https://pdf.directindustry.com/pdf/alphasense/so2-b4/16860-592343.html (accessed on 28 July 2019).
- ME4-SO2. Sulfur Dioxide Gas Sensor, Winsen, Datasheet, n.d. Available online: https://www.winsen-sensor.com/d/files/PDF/Electrochemical Gas Sensor/7-series Electrochemical/ME4-SO2 0-20ppm(Ver1.2)—Manual.pdf (accessed on 28 July 2019).
- 986-038. DGS-SO2 986-042, Digital Gas Sensor- Ozone, SPEC Sensors, Aug 2017, n.d. Available online: https://www.spec-sensors.com/wp-content/uploads/2017/01/DGS-SO2-968-038.pdf (accessed on 25 July 2019).
- EC-4SO2-2000. Sulfur Dioxide Electrochemical Sensor EC-4SO2-2000, Product Details n.d. Available online: https://www.scienoc-chem.com/gas-sensors-and-detectors/electrochemical-gas-sensor/sulfur-dioxide-electrochemical-sensor-ec-4so2.html (accessed on 25 July 2019).
- MQ-136. GAS SENSOR, Technical Data, n.d. Available online: http://www.sensorica.ru/pdf/MQ-136.pdf (accessed on 25 July 2019).
- FECS43-20. FECS43-20, FIGARO, FECS43-20—For the Detection of Sulfur Dioxide, Tentative Product Information n.d. Available online: https://www.figaro.co.jp/en/product/docs/fecs43-20_product%20infomation(en)_rev01.pdf (accessed on 25 July 2019).
- 986-043. DGS-NO2 986-042, Digital Gas Sensor- Ozone, SPEC sensors, Aug 2017 n.d. Available online: https://media.digikey.com/pdf/Data Sheets/SPEC Sensors PDFs/968-043_9-6-17.pdf (accessed on 25 July 2019).
- Mics6814. SGXtech, Datasheet n.d. Available online: https://sgx.cdistore.com/datasheets/sgx/1143_datasheet mics-6814 rev 8.pdf (accessed on 31 July 2019).
- MiCS-2714. The MiCS-2714, NO2, a Compact MOS Sensor with Two Fully Independent Sensing Elements on e Package. Data Sheet, n.d. Available online: https://www.sgxsensortech.com/content/uploads/2014/08/1107_Datasheet-MiCS-2714.pdf (accessed on 29 July 2019).
- NO2-B4. NO2-B4, Sulfur Dioxide Sensor, Alphasense, Technical Specification. 4-Electrode. n.d. Available online: https://pdf.directindustry.com/pdf/alphasense/no2-b4/16860-592349.html (accessed on 29 July 2019).
- DC1100Pro. Dylos, Technical Specification n.d. Available online: https://www.sylvane.com/laser-particle-counter-pro.html (accessed on 30 July 2019).
- OPC-N2. PM Sensor, Alphasense User Manual, OPC-N2 Optical Particle Counter, Alphasense, Technical Specification n.d. Available online: http://stg-uneplive.unep.org/media/aqm_document_v1/Blue Print/Components/Microcomputer and sensors/B. Dust Sensor Specifications/B.1 Alphasense OPC N1/072-0300 OPC-N2 manual issue 3.pdf (accessed on 30 July 2019).
- FBT0002100. FBT0002100-PM2.5 SENSOR, Foobot (Airboxlab) Specifications, n.d. Available online: https://foobot.io/foobotspecs.pdf (accessed on 28 July 2019).
- AW6404. AW6404, Pm Sensor, Awair 2nd, Edition, Technical Specification n.d. Available online: https://www.sylvane.com/media/documents/products/owner_manual_awair_2nd_Edition_.pdf (accessed on 29 July 2019).
- 8096-AP. PM Sensor, Specification, Air Mentor pro. n.d. Available online: https://air-mentor.eu/media/catalog/product_download/201706131332nie4aEwweGhu.pdf (accessed on 30 July 2019).
- PPD42NS S, SPS30. Particulate Matter Sensor, Technical Specification. n.d. Available online: https://media.digikey.com/pdf/DataSheets/SensirionPDFs/Sensirion_SPS30_Particulate_Matter_Sensor_v0.9_D1.pdf (accessed on 31 July 2019).
- PMS7003. PMS7003, Particulate Matter Sensor, Digital Universal Particle Concentration Sensor. Plantower, 2016 n.d. Available online: https://download.kamami.com/p564008-p564008-PMS7003 series data manua_English_V2.5.pdf (accessed on 31 July 2019).
- PMS5003. Particulate Matter Sensor, Digital Universal Particle Concentration Sensor. Plantower 2016. Available online: http://www.aqmd.gov/docs/default-source/aq-spec/resources-page/plantower-pms5003-manual_v2-3.pdf (accessed on 31 July 2019).
- HPMA115S0-XXX. HPMA115S0-XXX, HPM Series, Particulate Matter Sensor, Honeywell n.d. Available online: https://sensing.honeywell.com/honeywell-sensing-particulate-hpm-series-datasheet-32322550 (accessed on 30 July 2019).
- DN7C3CA006. Datasheet. Digi-Key Part Number, 425-2896-ND.. Particulate Matter Sensor, Technical Specification. n.d. Available online: https://www.digchip.com/datasheets/parts/datasheet/424/DN7C3CA006-pdf.php (accessed on 31 July 2019).
- PM2.5 L. Laser PM2.5 Sensor. Nova Fitness Co., Ltd. n.d. Available online: https://cdn-reichelt.de/documents/datenblatt/X200/SDS011-DATASHEET.pdf (accessed on 31 July 2019).
- ppd42ns.shinyei ppd42ns datasheet. Available online: https://files.seeedstudio.com/wiki/Grove_Dust_Sensor/resource/Grove_-_Dust_sensor.pdf. (accessed on 30 July 2019).
- TIDA-00378. PM2.5/PM10 Particle Sensor Analog Front-End for Air Quality Monitoring Design. TI Designs, May 2016, n.d. Available online: http://www.ti.com/lit/ug/tidub65c/tidub65c.pdf (accessed on 31 July 2019).
- ZMOD4410. ZMOD4410, Gas Sensor Module for TVOC and Indoor Air Quality. specifications, n.d. Available online: https://www.idt.com/document/dst/zmod4410-datasheet (accessed on 28 July 2019).
- Yocto-VOC-V3. USB Environmental Sensors. User’s guide.Datasheet n.d. Available online: http://www.yoctopuce.com/EN/productcategories.php (accessed on 31 July 2019).
- uThing::VOC™- Air-Quality USB sensor dongle. Available online: https://ohmtech.io/products/uthingvoc/. (accessed on 31 July 2019).
- MiCS-5524. 1084 rev 8, The MiCS-5524 is a Compact MOS Sensor. SGXsensorTech. n.d. Available online: https://sgx.cdistore.com/datasheets/sgx/1084_datasheet mics-5524 rev 8.pdf (accessed on 28 July 2019).
- IAQ-100C. iAQ-100C, ASPEC, IAQ_100CPackage110-802, Specifications, n.d. Available online: https://www.spec-sensors.com/wp-content/uploads/2016/02/IAQ_100-C-Package-110-802.pdf (accessed on 28 July 2019).
- SP3s-AQ2-01. NISSAHA, FIS Gas Sensor, Specifications, n.d. Available online: http://www.fisinc.co.jp/en/common/pdf/SP3SAQ201E_P.pdf (accessed on 28 July 2019).
- 2602, T. Tvocs, the detection of Air Contaminants, Figaro, Specifications n.d. Available online: http://www.figarosensor.com/product/docs/TGS2602-B00 %280615%29.pdf (accessed on 31 July 2019).
- MICS-VZ-87. The MiCS-VZ-87 is an integrated sensor board for Indoor Air Quality monitoring. MiCS-VZ-87 Preliminary rev 8, SGXsensorTech. n.d. Available online: https://sgx.cdistore.com/datasheets/sgx/mics-vz-87_rev 8.pdf (accessed on 28 July 2019).
- NAAQS. Primary National Ambient Air Quality Standard (NAAQS) for Sulfur Dioxide n.d. Available online: https://www.epa.gov/so2-pollution/primary-national-ambient-air-quality-standard-naaqs-sulfur-dioxide (accessed on 26 July 2019).
- EPA. NAAQS Table. United States Environ Prot Agency 2016. Available online: https://www.epa.gov/criteria-air-pollutants/naaqs-table (accessed on 26 July 2019).
- Green, L.C.; Crouch, E.A.C.; Ames, M.R.; Lash, T.L. What’s wrong with the National Ambient Air Quality Standard (NAAQS) for fine particulate matter (PM2.5)? Regul. Toxicol. Pharmacol. 2002, 35, 327–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EPA. Air Quality—Cities and Counties. United States Environ Prot Agency 2019. Available online: https://www.epa.gov/air-trends/air-quality-cities-and-counties (accessed on 26 July 2019).
- Fritz, P.M.; Horner, E. NAAQS PM2.5 or ISO 14644 As an IAQ Metric? ASHRAE J. N. Y. Occup. Saf. Health Adm. 2017, 59, 84–86. [Google Scholar]
- OSHA. Indoor Air Quality in Commercial and Institutional Buildings. Maroon Ebooks; Occupational Safety and Health Administration: Washington, DC, USA, 2015. [Google Scholar]
- WHO. Ambient (outdoor) Air Pollution. World Heal Organ 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 26 July 2019).
- WHO. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update 2005: Summary of Risk Assessment; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- ACGIH. TLVs® and BEIs®: Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices. In American Conference of Governmental Industrial Hygienists; ACGIH: Cincinnati, OH, USA, 2019. [Google Scholar]
- ANSI Ashrae. Standard AS. 62.1. 2007, Ventilation for Acceptable Indoor Air Quality; ANSI Ashrae: Atlanta, GA, USA, 2007. [Google Scholar]
- AQMD. National Ambient Air Quality Standards (NAAQS) and California Ambient Air Quality Standards (CAAQS) Attainment Status for South Coast Air Basin. Calif Air Resour Board 2016. Available online: http://www.aqmd.gov/docs/default-source/clean-air-plans/air-quality-management-plans/2016-air-quality-management-plan/final-2016-aqmp/chapter2.pdf (accessed on 28 November 2019).
- Christopher, M.; Resources, P.A.N.; Vol, C. Indoor Airborne Particulate Matter: Unregulated, but a Major Contributor to Our Everyday Exposure. Nat. Resour. Env’t 2017, 32, 8–12. [Google Scholar]
- World Health Organization (WHO). WHO Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Krzyzanowski, M.; Cohen, A. Update of WHO air quality guidelines. Air Qual. Atmos. Heal 2008, 1, 7–13. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO Expert Consultation: Available Evidence for the Future Update of the WHO Global Air Quality Guidelines (AQGs); WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Ahmed Abdul–Wahab, S.A.; En, S.C.F.; Elkamel, A.; Ahmadi, L.; Yetilmezsoy, K. A review of standards and guidelines set by international bodies for the parameters of indoor air quality. Atmos. Pollut. Res. 2015, 6, 751–767. [Google Scholar] [CrossRef]
- WHO. Risk of Bias Assesssment Instrument for Systematic; WHO regional office for Europe: Geneva, Switzerland, 2020. [Google Scholar]
- ASHRAE. ASHRAE 62.1 The Standards for Ventilation and Indoor Air Quality. ANSI/ASHRAE 2019. Available online: https://www.ashrae.org/technical-resources/bookstore/standards-62-1-62-2 (accessed on 4 April 2020).
- Persily, A. Challenges in developing ventilation and indoor air quality standards: The story of ASHRAE Standard 62. Build. Environ. 2015, 91, 61–69. [Google Scholar] [CrossRef]
- ANSI/ASHRAE. ANSI/ASHRAE Standard 62.1-2019, Ventilation for Acceptable Indoor Air Quality; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2019. [Google Scholar]
- Epa. Building Air Quality—A Guide for Building Owners and Facility Managers; Epa: Washington, DC, USA, 1991; pp. 1–228. [Google Scholar]
- OSHA. Indoor Air Quality. Occup Saf Heal Adm US Dep Labor 2019. Available online: https://www.osha.gov/SLTC/indoorairquality/ (accessed on 4 April 2020).
- OSHA. Permissible Exposure Limits—Annotated Tables. Occup Saf Heal Adm n.d. Available online: https://www.osha.gov/dsg/annotated-pels/ (accessed on 4 April 2020).
- ACGIH. TLV® Chemical Substances Introduction. Am Conf Gov Ind Hyg 2020. Available online: https://www.acgih.org/tlv-bei-guidelines/tlv-chemical-substances-introduction (accessed on 6 April 2020).
- Scarborough, J.; Resources, H.; Jennie, D.; Summary, E. Industrial Hygiene Services 04/05/2019. 2019. Available online: https://lincoln.k12.or.us/media/2019/04/Lincoln-County-School-District-489788-Industrial-Hygiene- Report.031319.pdf (accessed on 4 April 2020).
- CARB. California Ambient Air Quality Standards. California Ambient Air Quality Standards (CAAQS). Calif Air Resour Board 2020. Available online: https://ww2.arb.ca.gov/resources/california-ambient-air-quality-standards (accessed on 4 April 2020).
- Burke, W.A.; Ed, D.; Carney, J.W. Final 2016 Air Quality Management Plan. South Coast Air Quality Management District. 2016. Available online: http://www.aqmd.gov/docs/default-source/clean-air-plans/air-quality-management-plans/2016-air-quality-management-plan/final-2016-aqmp/final2016aqmp.pdf (accessed on 4 April 2020).
- Stewart, D.R.; Saunders, E.; Perea, R.; Fitzgerald, R.; Campbell, D.E.; Stockwell, W.R. Projected changes in particulate matter concentrations in the South Coast Air Basin due to basin-wide reductions in nitrogen oxides, volatile organic compounds, and ammonia emissions. J. Air Waste Manag. Assoc. 2019, 69, 192–208. [Google Scholar] [CrossRef]
- SCAQMD. South Coast Air Quality Mnanagement District Draft Staff Report for 2015 8-Hour Ozone Standard Reasonably Available Control Technology (RACT) Demonstration APRIL 2020; SCAQMD: Diamond Bar, CA, USA, 2020. [Google Scholar]
- CARB. Ambient Air Monitoring Key Summaries & References. Available online: https://ww3.arb.ca.gov/research/research-results.php (accessed on 4 April 2020).
- EPA, U. CFR Parts 50, 51, 52, 53, and 58-National Ambient Air Quality Standards for Particulate Matter: Final Rule.Fed. Regist. 40; 78, 3086–3286. n.d.; EPA: Washington, DC, USA, 2020. [Google Scholar]
- Majd, E.; McCormack, M.; Davis, M.; Curriero, F.; Berman, J.; Connolly, F.; Leaf, P.; Rule, A.; Green, T.; Erby, D.C.; et al. Indoor air quality in inner-city schools and its associations with building characteristics and environmental factors. Environ. Res. 2019, 170, 83–91. [Google Scholar] [CrossRef]
- Bennett, J.; Davy, P.; Trompetter, B.; Wang, Y.; Pierse, N.; Boulic, M.; Phipps, R.; Howden-Chapman, P. Sources of indoor air pollution at a New Zealand urban primary school; a case study. Atmos Pollut Res. 2019, 10, 435–444. [Google Scholar] [CrossRef]
- Nkosi, V.; Wichmann, J.; Voyi, K. Indoor and outdoor PM 10 levels at schools located near mine dumps in Gauteng and North West Provinces, South Africa. BMC Public Health 2017, 17, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raysoni, A.U.; Stock, T.H.; Sarnat, J.A.; Chavez, M.C.; Sarnat, S.E.; Montoya, T.; Holguin, F.; Li, W.W. Evaluation of VOC concentrations in indoor and outdoor microenvironments at near-road schools. Environ. Pollut. 2017, 231, 681–693. [Google Scholar] [CrossRef]
- Kalimeri, K.K.; Saraga, D.E.; Lazaridis, V.D.; Legkas, N.A.; Missia, D.A.; Tolis, E.I.; Bartzis, J.G. Indoor air quality investigation of the school environment and estimated health risks: Two-season measurements in primary schools in Kozani, Greece. Atmos Pollut Res. 2016, 7, 1128–1142. [Google Scholar] [CrossRef]
- Madureira, J.; Paciência, I.; Rufo, J.; Severo, M.; Ramos, E.; Barros, H.; de Oliveira Fernandes, E. Source apportionment of CO2, PM10 and VOCs levels and health risk assessment in naturally ventilated primary schools in Porto, Portugal. Build. Environ. 2016, 96, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Madureira, J.; Paciência, I.; Pereira, C.; Teixeira, J.P.; de Fernandes, E.O. Indoor air quality in Portuguese schools: Levels and sources of pollutants. Indoor Air. 2016, 26, 526–537. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.; Slezakova, K.; Delerue-Matos, C.; Pereira, M.C.; Morais, S. Assessment of air quality in preschool environments (3–5 years old children) with emphasis on elemental composition of PM10 and PM2.5. Environ. Pollut. 2016, 214, 430–439. [Google Scholar] [CrossRef]
- Verriele, M.; Schoemaecker, C.; Hanoune, B.; Leclerc, N.; Germain, S.; Gaudion, V.; Locoge, N. The MERMAID study: Indoor and outdoor average pollutant concentrations in 10 low-energy school buildings in France. Indoor Air. 2016, 26, 702–713. [Google Scholar] [CrossRef]
- Mainka, A.; Brągoszewska, E.; Kozielska, B.; Pastuszka, J.S.; Zajusz-Zubek, E. Indoor air quality in urban nursery schools in Gliwice, Poland: Analysis of the case study. Atmos Pollut Res. 2015, 6, 1098–1104. [Google Scholar] [CrossRef]
- Mainka, A.; Zajusz-Zubek, E.; Kaczmarek, K. PM10 composition in urban and rural nursery schools in Upper Silesia, Poland: A trace elements analysis. Int. J. Environ. Pollut. 2017, 61, 98–118. [Google Scholar] [CrossRef]
- Vassura, I.; Venturini, E.; Bernardi, E.; Passarini, F.; Settimo, G. Assessment of indoor pollutionin a school environment through both passive and continuous samplings. Environ. Eng. Manag. J. 2015, 14, 1761–1770. [Google Scholar]
- Sunyer, J.; Esnaola, M.; Alvarez-Pedrerol, M.; Forns, J.; Rivas, I.; López-Vicente, M.; Suades-González, E.; Foraster, M.; Garcia-Esteban, R.; Basagaña, X.; et al. Association between traffic-related air pollution in schools and cognitive development in primary school children: A prospective cohort study. PLoS Med. 2015, 12, e1001792. [Google Scholar] [CrossRef]
- Huang, K.; Song, J.; Feng, G.; Chang, Q.; Jiang, B.; Wang, J.; Sun, W.; Li, H.; Wang, J.; Fang, X. Indoor air quality analysis of residential buildings in northeast China based on field measurements and longtime monitoring. Build. Environ. 2018, 144, 171–183. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, J.; Ren, J. Impact of various ventilation modes on IAQ and energy consumption in Chinese dwellings: First long-term monitoring study in Tianjin, China. Build. Environ. 2018, 143, 99–106. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, K.; Li, H.; Cao, G.; Wu, D.; Shi, Y. Exploring the potential relationship between indoor air quality and the concentration of airborne culturable fungi: A combined experimental and neural network modeling study. Environ. Sci. Pollut. Res. 2018, 25, 3510–3517. [Google Scholar] [CrossRef]
- Quang, T.N.; Hue, N.T.; Thai, P.; Mazaheri, M.; Morawska, L. Exploratory assessment of indoor and outdoor particle number concentrations in Hanoi households. Sci. Total Environ. 2017, 599, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Prasauskas, T.; Leivo, V.; Turunen, M.; Pekkonen, M.; Kiviste, M.; Aaltonen, A.; Martuzevicius, D.; Shaughnessy, U. Assessment of indoor environmental quality in existing multi-family buildings in North–East Europe. Environ. Int. 2015, 79, 74–84. [Google Scholar] [CrossRef]
- Meier, R.; Schindler, C.; Eeftens, M.; Aguilera, I.; Ducret-Stich, R.E.; Ineichen, A.; Davey, M.; Phuleria, H.C.; Probst-Hensch, N.; Tsai, M.Y.; et al. Modeling indoor air pollution of outdoor origin in homes of SAPALDIA subjects in Switzerland. Environ. Int. 2015, 82, 85–91. [Google Scholar] [CrossRef]
- Kim, J.; Kong, M.; Hong, T.; Jeong, K.; Lee, M. The effects of filters for an intelligent air pollutant control system considering natural ventilation and the occupants. Sci. Total Environ. 2019, 657, 410–419. [Google Scholar] [CrossRef]
- Roshan, S.K.; Godini, H.; Nikmanesh, B.; Bakhshi, H.; Charsizadeh, A. Study on the relationship between the concentration and type of fungal bio-aerosols at indoor and outdoor air in the Children’s Medical Center, Tehran, Iran. Environ. Monit Assess. 2019, 191, 48. [Google Scholar] [CrossRef]
- Tolis, E.I.; Panaras, G.; Douklias, E.; Ouranos, N.; Bartzis, J.G. Air quality measurements in a medium scale athletic hall: Diurnal and I/O ratio analysis. FEB-FRESENIUS Environ. Bull. 2019, 28, 658–664. [Google Scholar]
- Hwang, S.H.; Roh, J.; Park, W.M. Evaluation of PM10, CO2, airborne bacteria, TVOCs, and formaldehyde in facilities for susceptible populations in South Korea. Environ. Pollut. 2018, 242, 700–708. [Google Scholar] [CrossRef]
- Deng, G.; Li, Z.; Wang, Z.Z.; Gao, J.; Xu, Z.; Li, J.; Wang, Z. Indoor/outdoor relationship of PM2.5 concentration in typical buildings with and without air cleaning in Beijing. Indoor Built Environ. 2017, 26, 60–68. [Google Scholar] [CrossRef]
- Saraga, D.; Maggos, T.; Sadoun, E.; Fthenou, E.; Hassan, H.; Tsiouri, V.; Karavoltsos, S.; Sakellari, A.; Vasilakos, C.; Kakosimos, K. Chemical characterization of indoor and outdoor particulate matter (PM2.5, PM10) in Doha, Qatar. Aerosol Air Qual. Res. 2017, 17, 1156–1168. [Google Scholar] [CrossRef] [Green Version]
- Loupa, G.; Zarogianni, A.-M.; Karali, D.; Kosmadakis, I.; Rapsomanikis, S. Indoor/outdoor PM2.5 elemental composition and organic fraction medications, in a Greek hospital. Sci. Total Environ. 2016, 550, 727–735. [Google Scholar] [CrossRef]
- He, Q.; Song, Q.; Yan, Y.; Wang, Z.; Guo, L.; Wang, X. Exposure to particle matters and hazardous volatile organic compounds in selected hot spring hotels in Guangdong, China. Atmosphere (Basel) 2016, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Irga, P.J.; Torpy, F.R. Indoor air pollutants in occupational buildings in a sub-tropical climate: Comparison among ventilation types. Build. Environ. 2016, 98, 190–199. [Google Scholar] [CrossRef]
- Shang, Y.; Li, B.; Baldwin, A.N.; Ding, Y.; Yu, W.; Cheng, L. Investigation of indoor air quality in shopping malls during summer in Western China using subjective survey and field measurement. Build. Environ. 2016, 108, 1–11. [Google Scholar] [CrossRef]
- Hu, T.; Jia, W.; Cao, J.; Huang, R.; Li, H.; Liu, S.; Ma, T.; Zhu, Y. Indoor air quality at five site museums of Yangtze River civilization. Atmos Environ. 2015, 123, 449–454. [Google Scholar] [CrossRef]
- Montgomery, J.F.; Storey, S.; Bartlett, K. Comparison of the indoor air quality in an office operating with natural or mechanical ventilation using short-term intensive pollutant monitoring. Indoor Built Environ. 2015, 24, 777–787. [Google Scholar] [CrossRef]
- Challoner, A.; Pilla, F.; Gill, L. Prediction of indoor air exposure from outdoor air quality using an artificial neural network model for inner city commercial buildings. Int. J. Environ. Res. Public Health 2015, 12, 15233–15253. [Google Scholar] [CrossRef]
- Kwon, S.-B.; Jeong, W.; Park, D.; Kim, K.-T.; Cho, K.H. A multivariate study for characterizing particulate matter (PM10, PM2.5, and PM1) in Seoul metropolitan subway stations, Korea. J. Hazard Mater. 2015, 297, 295–303. [Google Scholar] [CrossRef]
- Mejía, J.F.; Choy, S.L.; Mengersen, K.; Morawska, L. Methodology for assessing exposure and impacts of air pollutants in school children: Data collection, analysis and health effects—A literature review. Atmos. Environ. 2011, 45, 813–823. [Google Scholar] [CrossRef]
- Yen, Y.; Yang, C.; Mena, K.D.; Cheng, Y.; Chen, P. Cooking/Window Opening and Associated Increases of Indoor PM 2. 5 and NO 2 Concentrations of Children ’ s Houses in Kaohsiung, Taiwan. Appl. Sci. 2019, 9, 4306. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.L.; Lynch, R.A.; Floyd, E.L.; Wang, J.; Bartels, J.N. Indoor air quality in classrooms: Environmental measures and effective ventilation rate modeling in urban elementary schools. Build. Environ. 2018, 136, 185–197. [Google Scholar] [CrossRef]
- Branco, P.T.B.S.; Nunes, R.A.O.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V. Children’s exposure to indoor air in urban nurseries—Part II: Gaseous pollutants’ assessment. Environ. Res. 2015, 142, 662–670. [Google Scholar] [CrossRef] [Green Version]
- Madureira, J.; Aguiar, L.; Pereira, C.; Mendes, A.; Querido, M.M.; Neves, P.; Teixeira, J.P. Indoor exposure to bioaerosol particles: Levels and implications for inhalation dose rates in schoolchildren. Air Qual. Atmos. Health 2018, 11, 955–964. [Google Scholar] [CrossRef]
- Nunes, R.A.O.; Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V. Gaseous pollutants on rural and urban nursery schools in Northern Portugal. Environ. Pollut. 2016, 208, 2–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fishbain, B.; Lerner, U.; Castell, N.; Cole-Hunter, T.; Popoola, O.; Broday, D.M.; Iñiguez, T.M.; Nieuwenhuijsen, M.; Jovasevic-Stojanovic, M.; Topalovic, D.; et al. An evaluation tool kit of air quality micro-sensing units. Sci. Total Environ. 2017, 575, 639–648. [Google Scholar] [CrossRef]
- Scibor, M. Are we safe inside? Indoor air quality in relation to outdoor concentration of PM10 and PM2.5 and to characteristics of homes. Sustain. Cities Soc. 2019, 48, 101537. [Google Scholar] [CrossRef]
- Saraga, D.E.; Volanis, L.; Maggos, T.; Vasilakos, C.; Bairachtari, K.; Helmis, C.G. Workplace personal exposure to respirable PM fraction: A study in sixteen indoor environments. Atmos. Pollut. Res. 2014, 5, 431–437. [Google Scholar] [CrossRef] [Green Version]
- De Vito, S.; Piga, M.; Martinotto, L.; Di Francia, G. CO, NO2 and NOx urban pollution monitoring with on-field calibrated electronic nose by automatic bayesian regularization. Sensors Actuators B Chem. 2009, 143, 182–191. [Google Scholar] [CrossRef]
- Gvozdić, V.; Kovač-Andrić, E.; Brana, J. Influence of Meteorological Factors NO2, SO2, CO and PM10 on the Concentration of O3 in the Urban Atmosphere of Eastern Croatia. Environ. Model. Assess. 2011, 16, 491–501. [Google Scholar] [CrossRef]
- Chock, D.P.; Winkler, S.L.; Chen, C. A study of the association between daily mortality and ambient air pollutant concentrations in Pittsburgh, Pennsylvania. J. Air Waste Manag. Assoc. 2000, 50, 1481–1500. [Google Scholar] [CrossRef] [Green Version]
- Shields, K.N.; Cavallari, J.M.; Hunt, M.J.; Lazo, M.; Molina, M.; Molina, L.; Holguin, F. Traffic-related air pollution exposures and changes in heart rate variability in Mexico City: A panel study. Environ. Health A Glob Access Sci. Source 2013, 12, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ul-Saufie, A.Z.; Yahaya, A.S.; Ramli, N.A.; Rosaida, N.; Hamid, H.A. Future daily PM10 concentrations prediction by combining regression models and feedforward backpropagation models with principle component analysis (PCA). Atmos. Environ. 2013, 77, 621–630. [Google Scholar] [CrossRef]
- Popoola, O.A.M.; Carruthers, D.; Lad, C.; Bright, V.B.; Mead, M.I.; Stettler, M.E.J.; Saffell, J.R.; Jones, R.L. Use of networks of low cost air quality sensors to quantify air quality in urban settings. Atmos. Environ. 2018, 194, 58–70. [Google Scholar] [CrossRef]
- Williams, R.; Kilaru, V.J.; Snyder, E.G.; Kaufman, A.; Dye, T.; Rutter, A.; Russell, A.; Hafner, H. Air Sensor Guidebook; Office of research and development (US EPA): Washington, DC, USA, 2014. [Google Scholar]
- Williams, R. EPA Tools and Resources Webinar: Low Cost Air Quality Sensors; EPA National Exposure Research Laboratory (US EPA): Washington, DC, USA, 2019. [Google Scholar]
- Wang, Z.; Delp, W.W.; Singer, B.C. Performance of low-cost indoor air quality monitors for PM2.5 and PM10 from residential sources. Build. Environ. 2020, 171, 106654. [Google Scholar] [CrossRef]
- Clements, A.L.; Griswold, W.G.; Rs, A.; Johnston, J.E.; Herting, M.M.; Thorson, J.; Collier-Oxandale, A.; Hannigan, M. Low-cost air quality monitoring tools: From research to practice (A workshop summary). Sensors (Switzerland) 2017, 17, 2478. [Google Scholar] [CrossRef] [Green Version]
- Sayahi, T.; Butterfield, A.; Kelly, K.E. Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors. Environ. Pollut. 2019, 245, 932–940. [Google Scholar] [CrossRef] [PubMed]
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonovaa, A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Papapostolou, V.; Zhang, H.; Feenstra, B.J.; Polidori, A. Development of an environmental chamber for evaluating the performance of low-cost air quality sensors under controlled conditions. Atmos. Environ. 2017, 171, 82–90. [Google Scholar] [CrossRef]
- Rai, A.C.; Kumar, P.; Pilla, F.; Skouloudis, A.N.; Di Sabatino, S.; Ratti, C.; Yasar, A.; Rickerby, D. End-user perspective of low-cost sensors for outdoor air pollution monitoring. Sci. Total Environ. 2017, 607–608, 691–705. [Google Scholar] [CrossRef] [Green Version]
- Malings, C.; Tanzer, R.; Hauryliuk, A.; Saha, P.K.; Robinson, A.L.; Presto, A.A.; Subramanian, R. Fine particle mass monitoring with low-cost sensors: Corrections and long-term performance evaluation. Aerosol. Sci. Technol. 2020, 54, 160–174. [Google Scholar] [CrossRef]
- AQ-SPEC. Air Quality Sensor Performance Evaluation Center (AQ-SPEC) n.d. Available online: http://www.aqmd.gov/aq-spec (accessed on 4 April 2020).
- US-EPA. Air Sensor Toolbox; Evaluation of Emerging Air Pollution Sensor Performance. US-EPA n.d. Available online: https://www.epa.gov/air-sensor-toolbox/evaluation-emerging-air-sensor-performance (accessed on 4 April 2020).
- Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide. Sensors Actuators B Chem. 2015, 215, 249–257. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field calibration of a cluster of low-cost commercially available sensors for air quality monitoring. Part B: NO, CO and CO2. Sensors Actuators B Chem. 2017, 238, 706–715. [Google Scholar] [CrossRef]
- Polidori, A.; Papapostolou, V.; Zhang, H. Laboratory Evaluation of Low-Cost Air Quality Sensors; SCAQMD: Diamond Bar, CA, USA, 2016. [Google Scholar]
- Goletto, V.; Mialon, G.; Faivre, T.; Wang, Y.; Lesieur, I.; Petigny, N.; Vijapurapu, S. Formaldehyde and total VOC (TVOC) commercial low-cost monitoring devices: From an evaluation in controlled conditions to a use case application in a real building. Chemosensors 2020, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.D.; Nourbakhsh, I.R.; Steinfeld, A.; Presto, A.; Longhurst, J. Calibration and Characterization of Low-Cost Fine Particulate Monitors and their Effect on Individual Empowerment; The Robotics Institute Carnegie Mellon University: Pittsburgh, PA, USA, 2016; p. 146. [Google Scholar]
- Giusto, E.; Gandino, F.; Greco, M.L.; Grosso, M.; Montrucchio, B.; Rinaudo, S. An investigation pervasive technologies for IoT-based thermal monitoring. Sensors (Switzerland) 2019, 19, 663. [Google Scholar] [CrossRef] [Green Version]
- Budde, M.D.; Schwarz, A.; Müller, T.; Laquai, B.; Streibl, N.; Schindler, G.; Köpke, M.; Riedel, T.; Dittler, A.; Beig, M. Potential and Limitations of the Low-Cost SDS011 Particle Sensor for Monitoring Urban Air Quality. ProScience 2018, 5, 6–12. [Google Scholar] [CrossRef]
- Polidori, A.; Papapostolou, V.; Feenstra, B.; Zhang, H. Field Evaluation of Low-Cost Air Quality Sensors Field Setup and Testing Protocol; The Robotics Institute Carnegie Mellon University: Pittsburgh, PA, USA, 2017. [Google Scholar]
- AQ-SPEC. Aeroqual PM Sensor Evaluation Summary. n.d.; AQ-SPEC: Diamond Bar, CA, USA, 2019. [Google Scholar]
- AQ-SPEC. Air Quality Egg Evaluation Summary; AQ-SPEC: Diamond Bar, CA, USA, 2019. [Google Scholar]
- AQ-SPEC. Particle Sensor Dylos/DC1700-PM Evaluation Summary. n.d.; AQ-SPEC: Diamond Bar, CA, USA, 2019. [Google Scholar]
- AQ-SPEC. Shinyei PM Sensor Evaluation Kit Summary. n.d.; AQ-SPEC: Diamond Bar, CA, USA, 2019. [Google Scholar]
- AQ-SPEC. Field Evaluation Footbot Sensor. n.d.; AQ-SPEC: Diamond Bar, CA, USA, 2019. [Google Scholar]
- AQ-SPEC. Model AQY v0.5 Evaluation; AQ-SPEC: Diamond Bar, CA, USA, 2019. [Google Scholar]
- AQ-SPEC. Field Evaluation Air Quality Egg v.2 Ozone Sensor; AQ-SPEC: Diamond Bar, CA, USA, 2017. [Google Scholar]
- AQ-SPEC. Field Evaluation Spec Gaseous Sensors; AQ-SPEC: Diamond Bar, CA, USA, 2019. [Google Scholar]
- AQ-SPEC. Field Evaluation uHoo PM2.5, Ozone, and CO Sensor; AQ-SPEC: Diamond Bar, CA, USA, 2019. [Google Scholar]
- Manjunatha, P.; Verma, A.K.; Srividya, A. Multi-sensor data fusion in cluster based wireless sensor networks using fuzzy logic method. In Proceedings of the IEEE Region 10 Colloquium 3rd International Conference on Industrial and Information Systems ICIIS 2008, Kharagpur, India, 8–10 December 2008; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Wang, G.; Yu, X. Design for indoor environment monitoring system based on embedded system and multi-sensor data fusion algorithm. Int. J. Smart. Home 2016, 10, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.; Wu, X.; Agrawal, P.; Pongpaichet, S.; Jain, R. Integration of Diverse Data Sources for Spatial PM2.5 Data Interpolation. IEEE Trans. Multimed. 2017, 19, 408–417. [Google Scholar] [CrossRef]
- Lin, Y.S.; Chang, Y.H.; Chang, Y.S. Constructing PM2.5 map based on mobile PM2.5 sensor and cloud platform. In Proceedings of the 2016 16th IEEE International Conference on Computer and Information Technology (CIT), Nadi, Fiji, 8–10 December 2016; pp. 702–707. [Google Scholar] [CrossRef]
- Das, P.; Shrubsole, C.; Jones, B.; Hamilton, I.; Chalabi, Z.; Davies, M.; Mavrogiannia, A.; Taylora, J. Using probabilistic sampling-based sensitivity analyses for indoor air quality modelling. Build. Environ. 2014, 78, 171–182. [Google Scholar] [CrossRef]
- Kadiyala, A.; Kumar, A. An examination of the sensitivity of sulfur dioxide, nitric oxide, and nitrogen dioxide concentrations to the important factors affecting air quality inside a public transportation bus. Atmosphere (Basel) 2012, 3, 266–287. [Google Scholar] [CrossRef] [Green Version]
- Rackes, A.; Ben-David, T.; Waring, M.S. Sensor networks for routine indoor air quality monitoring in buildings: Impacts of placement, accuracy, and number of sensors. Sci. Technol. Built. Environ. 2018, 24, 188–197. [Google Scholar] [CrossRef]
- Kar, S.; Varshney, P.K. Accurate estimation of indoor occupancy using gas sensors. In Proceedings of the ISSNIP 2009—Proceedings of 2009 5th International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Melbourne, VIC, Australia, 7–10 December 2009; pp. 355–360. [Google Scholar] [CrossRef]
- Dai, X.; Liu, J.; Zhang, X. Monte Carlo simulation to control indoor pollutants from indoor and outdoor sources for residential buildings in Tianjin, China. Build. Environ. 2019, 165, 106376. [Google Scholar] [CrossRef]
Measured Parameter | Example Product | Manufacturer | Measurement Tolerance/ Repeatability | Measuring Range | Circuit Voltage | Response Time | Approx. Price (USD). 2019 |
---|---|---|---|---|---|---|---|
O3 | SR-G04 [93] | BW Technologies/ Honeywell | ±5% | 0~1 ppm | Not Provided | Not Provided | ≈$500 |
uHoo-O3 [94] | uHoo | ±10 ppb or 5% of reading | 0~1000 ppb | 5.0 V | Not Provided | $300–500 | |
ME3-O3 [95] | Winsen | <2% (/Month) | 0~20 ppm | Not Provided | ≤120 s | $100–300 | |
DGS-O3 968-042 [96] | SPEC | ±15% | 0~5 ppm | 3.3 v | <30 s | $50–100 | |
ULPSM-O3 968-005 [97] | SPEC | ±2% | 0~20 ppm | 2.7 V~3.3 V | <30 s | $1–50 | |
ZE25-O3 [98] | Winsen | Not Provided | 0~10 ppm | 3.7 V~5.5 V | ≤90 s | $1–50 | |
MQ131 [99] | Winsen | Not Provided | 10~1000 ppm | ≤24 V DC | Not Provided | $1–50 | |
MiCS-2610 [100] | SGX SensorTech | Not Provided | 10~1000 ppb | 5.0 v | Not Provided | $1–50 | |
CO | uHoo-CO [101] | uHoo | ±10 ppm | 0~1000 ppm | 5.0 v | Not Provided | $300–500 |
CO-B4 [102,103] | Alphasense | ±1 ppm | 0~1000 ppm | Not Provided | 1 s | $100–300 | |
MNS-9-W2-GS-C1 [104] | Monnit | ±2% of reading or 1 ppm | 0~1000 ppm | 2.0~3.6 v | <40 s (at 20 °C) | $100–300 | |
DGS-CO 968-034 [105] | SPEC | <±3% of reading or 2 ppm | 0 to 1000 ppm | 3.3 v | <30 s | $50–100 | |
MiCS-4514/CJMCU4541 [106] | SGX SensorTech | Not Provided | 1~1000 ppm | 5.0 v | Not Provided | $1–50 | |
TGS 5342 [107] | FIGARO | ±10 ppm | 0~10,000 ppm | 5.0 v | 60 s | $1–50 | |
TGS 2442 [108] | FIGARO | Not SProvided | 30~1000 ppm | 5.0 v | 1 s | $1–50 | |
HS-134 [109] | Sencera | Not Provided | 20~1000 ppm | 5.0 v | <2 s | $1–50 | |
MiCS-5524 [110] | SGX SensorTech | Not Provided | 1~1000 ppm | 5.0 v | <25 s | $1–50 | |
TGS5042 [111] | FIGARO | <±10 ppm | 0~10,000 ppm | 5.0 v | 5.0 v | $1–50 | |
MQ-7 [112] | HANWEI | Not Provided | 20~2000 ppm | 5.0 v | ≤150 s | $1–50 | |
CO2 | uHoo-CO2 [101] | uHoo | ±50 ppm or 3% of reading | 400~10,000 ppm | 5.0 v | Not Provided | $300–500 |
GC0028/CM-40301 [113] | The SprintIR®-6S | ±70 ppm ±5% of reading | 0–5% | 3.25~5.5 v | Flow Rate Dependent | $100–300 | |
AW6404 [114] | AWAIR | ±75 ppm (400 to 6000 ppm) | 0~4000 ppm | 5.0 v | 3 min | $100–300 | |
B-530 [115] | ELT SENSOR | ±30 ppm ±3% reading | 0~50,000 ppm | 9~15 v | 120 s | $100–300 | |
FBT0002100 [116] | Foobot (Airboxlab) | ±1.0 ppm (400 to 6000 ppm) | 400~6000 ppm | Not Provided | Not Provided | $100–300 | |
8096-AP [117] | Air Mentor Pro | ±5% | 400~2000 ppm | 3.7 v | Not Provided | $100–300 | |
Yocto-CO2 [118] | Yoctopuce | ±30 ppm ±55% | 0–10,000 ppm | 4.75~5.25 | 2 s @ 0.5 L/min | $100–300 | |
NWS01-EU [119] | Netatmo | ±5% (1000 to 5000 ppm) | 0~5000 ppm | 5.0 v | Not Provided | $100–300 | |
CozIR®-LP2 [120] | GSS | ±30 ppm ±3% reading | 0–5000 ppm | 3.25–5.5 v | 30 s | $100–300 | |
K-30 [121] | CO2Meter | ±30 ppm/ ±3% of reading | 0~5000 ppm | 4.5–14 v | 2 s @ 0.5 L/min | $50–100 | |
D-400 [122] | ELT SENSOR | ±30 ppm ±3% of Reading | 0~2000 ppm | 4.75~12 v | 30 s | $100–300 | |
GC-0015 [123] | MinIR™ | ±70 ppm ±5% of reading | 0–5% | 3.3 ± 0.1 v | 4~2 min | $100–300 | |
ELT T110 [124] | ELT SENSOR | ±50 ppm ±3% reading | 400~2000 ppm | 3.2 v~3.55 v | 90 s | $50–100 | |
MT-100 [125] | ELT SENSOR | ±70 ppm ±3% of reading | 0~10,000 ppm | 3.5~5.2 V | 120 s | $50–100 | |
S-300 [126] | ELT SENSOR | ±30 ppm, ±3% measure | 0~2000 ppm | 5.0 V ± 5% | 60 s | $50–100 | |
T6713 [127] | Telaire | ±3% | 0~5000 ppm | 4.5–5.5 v | 3 min | $50–100 | |
T6615 [128] | Telaire | ±10% of reading | 0~50,000 ppm | 5 v | 2 min | $50–100 | |
MG811 [129] | Winsen | ±75 ppm | 350~10,000 ppm | 7.5–12 v | Not Provided | $1–50 | |
TGS4161 [130] | FIGARO | ±20% at 1000 pm | 350~10,000 ppm | 5.0 ± 0.2 v | 1.5 min | $1–50 | |
MH-Z16 NDIR CO2 [131] | Winsen | ±50 ppm ±5% of reading | 0~5000 ppm | 3.3 v | 30 s | $1–50 | |
MH-Z19 [132] | Winsen | ±50 ppm ±5% reading | 0~5000 ppm | 3.3 v | 60 s | $1–50 | |
SO2 | B4 SO2 [133] | Alphasense | ±5 ppb | 0~100 ppm | 3 v | 30 s | $100–300 |
ME4-SO2 [134] | Winsen | ±2% | 200 ppm | Not Provided | 30 s | $100–300 | |
DGS-SO2 968-038 [135] | SPEC | ±15% | 0~20 ppm | 3.0 v | 30 s | $50–100 | |
EC-4SO2-2000 [136] | Qingdao Scienoc Chemical | ±2% | 0~2000 ppm | Not Provided | 60 s | $50–100 | |
MQ-136 [137] | HANWEI | ±2% | 1–100 ppm | 5 v ± 0.1 | 60 s | $1–50 | |
FECS43-20 [138] | FIGARO | ±2% | 0~20 ppm | Not Provided | 25 s | Not Provided | |
NO2 | uHoo-NO2 [101] | uHoo | ±10 ppb ±5% of reading | 0~1000 ppb | 5.0 v | Not Provided | $300–500 |
DGS-NO2 968-043 [139] | SPEC Sensors | ±15% | 0~10 ppm | 3 v | 30 s | $50–100 | |
Mics-6814 [140] | SGX SensorTech | ±10 ppb | 0.05–10 ppm | 5.0 v | 30 s | $1–50 | |
MiCS-4514/CJMCU4541 [106] | SGX SensorTech | Not Provided | 1~1000 ppm | 5.0 v | Not Provided | $1–50 | |
MiCS-2714 [141] | SGX SensorTech | Not Provided | 0.05~10 ppm | 4.9~5.1 v | 30 s | $1–50 | |
B4 NO2 [142] | Alphasense | ±12 ppb | 0~50 ppm | 3.5~6.4 v | 25 s | $1–50 | |
PM | uHoo-PM2.5 [101] | uHoo | ±20 μg/m3 | 0~200 µg/m3 | 5.0 v | Not Provided | $300–500 |
DC1100 Pro [143] | Dylos | Not Provided | 0~1000 µg/m3 | 9 v | Not Provided | $100–300 | |
OPC-N2 [144] | Alphasense | Not Provided | 0.38~17 µm | 4.8~5.2 v | Not Provided | $100–300 | |
FBT0002100 [145] | Foobot (Airboxlab) | ±20% | 0~1300 µg/m³ | Not Provided | Not Provided | $100–300 | |
AW6404 [146] | AWAIR | ±15 µg/m3 15% of reading | 0~1000 µg/m3 | 5 V/2.0 A | Not Provided | $100–300 | |
8096-AP [147] | Air Mentor Pro | Not Provided | 0~300 µg/m3 | 3.7 v | Not Provided | $100–300 | |
SPS30 [148] | Sensirion | ±10 μg/m3 | 0~1000 µg/m3 | 4.5~5.5 v | 60 s | $1–50 | |
PMS7003 [149] | Plantower | ±10 @ 100~500 µg/m3 | 0~500 µg/m3 | 5.0~5.5 v | 10 s | $1–50 | |
PMS5003 [150] | Plantower | ±10 @ 100~500 µg/m3 | 0~500 µg/m3 | 5.0~5.5 v | 10 s | $1–50 | |
HPMA115S0-XXX [151] | Honeywell | ±15 µg/m3 | 0~1000 µg/m3 | 5 ± 0.2 v | 6 s | $1–50 | |
DN7C3CA006 [152] | Sharp Microelectronics | ±0.2 | 25~500 µg/m3 | 5 ± 0.1 v | Not Provided | $1–50 | |
SDS011 [153] | Nova Fitness | 15% ±10 μg/m3 | 0.0–999.9 μg /m3 | 5 V | Not Provided | $1–50 | |
Shinyei PPD42NS [154] | Shinyei | Not Provided | 0~28,000 pcs/liter | 5.0~5.5 v | 60 s | $1–50 | |
TIDA-00378 [155] | TI Designs | 75% Over Detection Range | 12~35 pcs/cm3 | 3.3 V | Not Provided | Not Provided | |
t-VOCs | uHoo-TVOC [101] | uHoo | 10 ppb or 5% | 0–1000 ppb | 5.0 v | Not Provided | $300–500 |
8096-AP [117] | Air Mentor Pro | Not Provided | 0~300 µg/m3 | 3.7 v | Not Provided | $100–300 | |
AW6404 [146] | AWAIR | ±10% | 0~60,000 ppb | 5.0 v | 60 s | $100–300 | |
FBT0002100 [145] | Foobot (Airboxlab) | ±10% | 0~1000 ppb | Not Provided | Not Provided | $100–300 | |
ZMOD4410 [156] | IDT | ±10% | 0~1000 ppm | 1.7~3.6 v | 5 s | $50–100 | |
Yocto-VOC-V3 [157] | Yoctopuce | Not Provided | 0~65,000 ppb | Not Provided | Not Provided | $50–100 | |
uThing::VOC™- [158] | Ohmetech.io | ±15% | 0–500 | 5.0 v | 3 s | $50–100 | |
MiCS-5524 [159] | SGX SensorTech | Not Provided | 10~100 ppm | Not Provided | Not Provided | $1–50 | |
iAQ-100 C/110-802 [160] | SPEC | ±2 ppm | 0~100 ppm | 12 ± 2 VDC | 20 s | $1–50 | |
SP3_AQ2 [161] | Nissha FIS | Not Provided | 0~100 ppm | 5 v ± 4% | Not Provided | $1–50 | |
TGS2602 [162] | FIGARO | Not Provided | 1~30 ppm | 5 ± 0.2 v | 30 s | $1–50 | |
MICS-VZ-87 [163] | SGX SensorTech | Not Provided | 400–2000 ppm equivalent CO2 | 5.0 v | 30 s | $1–50 |
Measured Parameter | NAAQS/EPA (U.S. Enforceable) [164,165,166,167,168] | OSHA (U.S. Enforceable) [169] | WHO/Europe (Christopher et al., 2017; WHO, 2016b, WHO, 2010) [170,171] | ACGIH [172] | ANSI/ ASHRAE 62.1 [173] | NIOSH [173] | CAAQS (SCAQMD) [174] |
---|---|---|---|---|---|---|---|
O3 | 0.07 ppm (8-h mean) 0.12 ppm (1 h mean) 0.08 ppm | 0.1 ppm | 120 µg/m3 (8-h mean) | 0.3 ppm (15 min) 0.05 ppm (heavy work) 0.08 ppm (moderate work) 0.1 ppm (light work) 0.2 ppm (work ≤ 2 h) | 100 µg/m3; 50 ppb (8-h mean) | 0.1 ppm (0.2 mg/m3) | 0.07 ppm (8-h) 0.09 ppm (1-h) |
CO | 9 ppm (8-h mean) 35 ppm (1 h mean) | 50 ppm | 100 mg/m3 (15-min mean) 35 mg/m3 (1-h mean) 10 mg/m3 (8-h mean) 7 mg/m3 (24-h mean) | 25 ppm (8-h) | 9 ppm (8-h mean) | 35 ppm 40 mg/m3 (8-h mean) 200 ppm (229 mg/m3) ceiling | 20 ppm, (1-H mean) 9.0 ppm, (8-H mean) |
CO2 | N/A | 5000 ppm | N/A | 5000 ppm (8-h) 30,000 ppm (15 min mean) | 5000 ppm 300~500 ppm (outdoor suggest) 1000 ppm (indoor suggest) | 5000 ppm (9000 mg/m3) 30,000 ppm (15 min) (54,000 mg/m3) | N/A |
SO2 | 75 ppb (1-h mean) | 5 ppm | 20 µg/m3 (24-h mean) 500 µg/m3 (10-min mean) | 0.25 ppm (15 min) | 80 µg/m3 (Annual mean) | 2 ppm (5 mg/m3) 5 ppm (10 mg/m3) | 0.25 ppm 1-H mean 0.04 ppm (24-h mean) |
NO2 | 100 ppb (1-h) 53 ppb (Annual mean) | 0.1 ppm | 200 µg/m3 (0.1 ppm) (1-h mean) 40 µg/m3 (0.02 ppm) (1-yr average) | 0.02 (15 min) | 200 µg/m3 (Annual mean) 470 µg/m3 (24-h mean) | 1 ppm (1.8 mg/m3) | 0.18 ppm, (1-H mean) 0.030 ppm, (Annual mean) |
PM2.5 | 35 µg/m3 (24-h mean) 12 µg/m3 (Annual mean) | 5 mg/m3 | 25 µg/m3 (24-h mean) 10 µg/m3 (Annual mean) | 3 mg/m3(8-h) | 15 µg/m3 | N/A | 12 µg/m3, Annual mean |
PM10 | 155 µg/m3 (24-h mean) (Not to be exceeded more than once per year on average over 3 years) | N/A | 50 µg/m3 (24-h mean) 20 µg/m3 (Annual mean) | 10 mg/m3(8-h) | 50 µg/m3 | N/A | 50 µg/m3 (24-H mean) 20 µg/m3 (Annual mean) |
t-VOCs | 200 μg/m3 AQI INDEX: 0~50 GOOD 51~100 Moderate 101~150 Unhealthy for Sensitive Group 151~200 Unhealthy 201~300 Very Unhealthy 301~500 Hazardous | N/A | 300 μg/m3 (8-h mean) | N/A | See full list on: ASHRAE Standard 62.1 TVOC guidance | N/A | N/A |
Study | Location | Subject | Indicators | Measuring Tool | Standard | Analysis/Program | Main Results |
---|---|---|---|---|---|---|---|
Ehsan et al., 2019 [195] | Mid-Atlantic region, the United States | 16 urban public schools | CO; NO2; CO2; PM2.5 | Sampler: Personal DataRam, model pDR-1200 monitor for PM; AdvancedSense Pro indoor air quality meter | WHO | Wilcoxon rank-sum, Kruskal-Wallis tests, Spearman rank correlation coefficient (I/O correlation). | Outdoor Condition, school, and room level found to contribute significantly to indoor pollutant concentration. |
Julie et al., 2019 [196] | Wellington, New Zealand | primary school | NO2: CO2; PM2.5; PM10 | TSI Dusttrak II Aerosol Monitors., Model 8530; TSI Q-Trak IAQ monitor Model 8552; low-cost metal oxide type sensor e2v MiCS-5525 (Air Quality Egg); E-BAM | ISO 12103-1 AI Test Dust; ASHRAE | Positive matrix factorizat, ion | PM2.5 associated with infiltration of TRAP; PM10 was significantly higher than the outdoor level; Natural ventilation as a key role dropped IAQ of the aquatic center. |
Nkosi et al., 2017 [197] | Gauteng and North West provinces, South Africa | Schools | PM10 and SO2 | AEROQUAL mobile air monitoring station | South African Air Quality Standard | Univariate and multiple backward hierarchical regression analysis; Spearman’s correlation coefficients; | A significant correlation between PM10 and indoor dust; Indoor coal or fossil fuel contributes to levels of SO2; pulmonary function and respiratory symptom are very sensitive to SO2 |
Raysoni et al., 2017 [198] | El Paso, the United States | School Building | VOCs; | Local central ambient monitoring site (CAMS 37); Passive badge samplers 3 M 3500 Organic Vapor Monitor | EPA; NAAQS | Spearman’s Rho correlations | All Indoor VOCs concentrations are impacted by traffic emissions; Toluene concentrations were the highest among the BTEX group; |
Kalimeri et al., 2016 [199] | Kozani, Greece | School Buildings | CO2; CO; O3 SO2; VOCs; PM10, PM2.5; VOCs; Radon | Radiello passive samplers; Gammadata RAPIDOS samplers; Telair 7001; aeroQUAL CO sensors; Derenda LVS3.1/PMS3.1-15; Grimm 1.108 | ENV 13419, 2003, ASTM 5116, 1997, ISO 16000–3, 2001, ISO 16000–6, 2004; ASTM D6245-07; SINPHONIE; EPA | The Limit of Detection | The ventilation effect is the major parameter affect IAQ. Cleaning products, do-it-yourself products might increase indoor Formaldehyde and benzene; Strong/positive correlation between indoor and outdoor NO2 and O3; pupils’ activities and outdoor source effect PM value; |
Madureira et al., 2016 [200] | Portugal | School Buildings (73 primary classrooms) | VOCs, aldehydes, PM2.5, PM10, bacteria and fungi, CO2, CO | Thermally desorbed adsorbents; Dani STD 33.50; gas chromatography; Radiello® passive devices; TSI DustTrak DRX photometers; single-stage microbiological air impactor | WHO; ISO 16000-1, (2004). | PCA; Multilevel linear regression; | Ventilation, Building location, Occupant behavior, maintenance/cleaning activities associated with IAQ |
Madureira et al., 2016 [201] | Porto, Portugal | School Buildings 20 primary schools | CO2, PM10, VOCs | Low-drift NDIR sensors; light-scattering laser photometers | EPA ASHRAE | PCA; Multilevel linear regression; | Activities or building features as major sources of indoor CO2, PM10 and VOCs; PM10 levels increased by the mixed source from indoor activities |
Oliveira et al., 2016 [202] | Oporto, Portugal | School Buildings (Preschool) | TVOCs; CO2; Ozone; PM2.5; PM10, CO; HCHO | Samplers; polytetrafluoroethylene membrane disks; multiparametric probe (model TG 502; GrayWolf Sensing Solutions); | EPA; NIOSH | Non-parametric Mann−Whitney U analysis; | Indoor CO2 and TVOCs are significant than outdoor; Ozone is formed by electronic equipment (old printers and photocopy machines; air humidifier) and infiltration of outdoor air; |
Verriele et al., 2016 [203] | France | School buildings | CO2; TVOC; Ozone; NO2; Formaldehyde | Radial-type diffusion samplers; Radiello® 145 samplers | Radial-type diffusion samplers; Radiello® 145 samplers | Multiple regression analysis | Energy-efficient building and the standard building has similar IAQ conditions; acetone, 2-butanone, formaldehyde, acetaldehyde, hexaldehyde, toluene, heptane, and pentanal are the highest concentrations been found of VOCs; Strongly correlation between acetone, butanone, alkanes with occupants activities. |
Mainka et al., 2015 [204] | Gliwice, Poland (Urban and Rural Regions) | Nursery schools; Education Buildings | PM1, PM2.5, PM10; CO2 | 5 mm Nuclepore membranes;Teflon filters; Whatman QMA filters; automatic portable monitors | WHO and EU Legislation; ASHRAE; PN-EN 13779 | The Wilcoxon paired sign rank test | Low efficiency of ventilation systems caused high CO2 and PM concentration; older children’s classrooms have higher PM concentration than younger’s classroom. Teaching hours have the highest IAQ concentrations; |
Mainka et al., 2015 [205] | Gliwice, Poland | Nursery schools | PM1, PM2.5, PM10; CO2; VOCs | Thermal desorber TurboMatrix 100 connected to a gas chromatograph Clarus 500 with a flame ionization detector | WHO and EU Legislation; ASHRAE; PN-EN 13779,12341; US EPA TO-17 method | The Wilcoxon paired sign rank test, Statistical package | Indoor sources are the main contributors of IAQ in investigated schools; CO2 concentration reaches highest after slept during the afternoon; mitigation method included: Improving ventilation, decreasing the occupancy per room, modifying every-day vacuum cleaning into wet cleaning; |
Vassura et al., 2015 [206] | Bologna, Italy | School Building (educational institute, preschool and elementary Schools) | VOC; CO2; CO; NO2 | Sensors: Photoionization detector (PID); (Q-Track) non-dispersive infrared; Electrochemical; conductibility detector (Metrohom, 761 Compact IC) | WHO | Pearson correlation analysis | CO2 comes mainly from indoor; CO2 and TVOC have similar daily trend; |
Sunyer et al., 2015 [207] | Catalonia, Spain | Primary School | EC, NO2, and ultrafine particle number | MicroAeth AE51 (AethLabs) and DiSCmini (Matter Aerosol) meters; high-volume sampler (MCV); passive tube (Gradko) | WHO | Spearman Regression Analysis | Traffic-related air pollution is associated with a smaller increase in cognitive development; Brain development might be affected by TRAP |
Study | Location | Subject | Control Factor | Measuring Tool | Standard | Analysis/ Program | Main Results |
---|---|---|---|---|---|---|---|
Huang et al., 2018 [208] | Shenyang and Fushun Northeast China | Six residential buildings; 21 households | HCHO; VOCs; PM2.5; CO2 | Spectrophotometer based on phenol reagent(HCHO); Gas Chromatography-Mass Spectrometry (VOCs); Telaire 7001 CO2 testers (CO2); The TSI particle tester(PM2.5); | Chinese national standard GB/T 18204.2–2014 | Pearson correlation analysis (SPSS Ver.22); Crystal Ball software_ Monte Carlo simulation (The health risk analysis); | Indoor PM2.5 is closely correlated with outdoor contamination; HCHO and CO2 were significantly and correlated with the window-opening duration; TVOC had a positive correlation with indoor RH&T, the surface area of furniture; Outdoor PM2.5 was significantly correlated with the building heating load |
Zhao et al., 2018 [209] | Tianjin, China | Residential dwelling | PM10; CO2; | PM2.5, sensor; CO2, sensor; power sensor behavior recording sensors(Xiaomi) | Chinese National Standard GB/T 18883–2002; WHO | Data batch processing | Outdoor particle concentration and indoor activities affected IAQ; Natural ventilation with a portable air cleaner can remove mass particle and create good IAQ; |
Liu et al., 2018 [210] | Baoding, China | 85 residential buildings | Fungi; PM2.5, PM10; CO2 | TIS 7515; TIS 8520; six-stage Anderson impactor | N/A | Single hidden layer ANN models with a back-propagation algorithm; The | The ANN model for airborne culturable fungi reached 83.33% in the testing with 30% tolerance |
Quang et al., 2017 [211] | Hanoi, Vietnam | Residential Houses | Particle number (PN); PM2.5 | Aerasense NanoTracers (NTs); TSI model 3787 Air quality monitoring station | WHO | Descriptive statistics with t-test and ANOVA test | PM2.5 concentrations are not indicative of the PN concentrations; combustion (traffic emission) sources are the main contributor to PN value; PN concentrations lower in dry weather; |
Du et al., 2015 [212] | Finland and Lithuania | Multi-family buildings | CO2; CO; PM2.5; PM10; NO2; VOCs; radon; Formaldehyde | HD21AB/HD21AB17, Sensors; OPCs, Handheld 3016 IAQ; Difram100 Rapid air monitor; Radiello™ Cartridge Adsorbents | WHO; EC; Ministry of Social Affairs and health, “Finnish Housing Health Guide”; Lietuvos higienos norma HN 35:2007 | Spearman correlation Analysis; | Different insulation and ventilation system could be the primary reasons for the IAQ Concentrations; mechanical ventilation provides lower IAQ concentrations and infiltration of outdoor source; |
Meier et al., 2015 [213] | Basel, Geneva, Lugano, Switzerland | Residential, House | UFP, PM10, PM2.5, PMabsorbance, and NO2. | 37 mm Teflon filters (Pall Corporation); One MEDO vacuum pump VP0125 (MEDO USA); passive diffusion samplers (Passam AG); | EPA; | Pearson, STATA | The site allowed tobacco smoke had higher I/O value; Outdoor Concentrations associated with traffic conditions; PNC levels showed highest during lunchtime; PMabsorbance, the lowest for PNC and PMcoarse showed the highest correlation; |
Study | Location | Subject | Control Factor | Measuring Tool | Standard | Analysis/Program | Main Results |
---|---|---|---|---|---|---|---|
Kim et al., 2019 [214] | Seoul, Korea | Commercial office | CO2; PM2.5; PM10 | Wireless sensor: Wiseairsense (Wifi-Sensor) BR-Smart-126 (micro-SD Sensor) | ASHRAE A.N.S.I 55-2004; 62.1; EPA-Air Quality Criteria for Particulate Matter; Standardized EPA Protocol for Characterizing Indoor Air Quality in Large Office Buildings | Multivariate analysis of variance (MANOVA) Pearson correlation analysis | A non-woven fabric filter resulted in poor indoor air quality due to high resistance to flow (room A) and an electrostatic filter improved indoor air quality (room B) |
Roshan et al., 2019 [215] | Tehran, Iran | Children’s Medical Center | Fungal bio-aerosols | Sampler | NIOSH | One-way ANOVA followed by post hoc Scheffe’s test. | The indoor fungal bio-aerosols may have originated from the outdoor environment |
Tolis et al., 2019 [216] | Kozani, Greece | An aquatic center | PM2.5; NO2; O3; VOCs | 47-mm quartz fiber filters; Low Volume Air Sampling Systems (Derenda LVS3.1/PMS3.1-15 and Teccora with a PM2.5 inlet); AEROQUAL (Series 500 IAQ) | WHO | TD-GC-MS analysis | Indoor PM2.5 in the aquatic center is mainly influenced by outdoor climatic conditions and pollutant concentrations; Indoor NO2 value is higher than outdoor due to indoor transport phenomena and combustion sources; Outdoor O3 higher than Indoor. |
Hwang et al., 2018 [217] | Seoul, Korea | 82 indoor-facilities (hospitals, geriatric hospitals, elderly care facilities, and postnatal care centers) | PM10; CO2; airborne bacteria (AB); TVOCs; Formaldehyde | Sampler SARA-4100; Microbial one-stage Buck Bio-Culture sampler; 2,4-dinitrophenylhydrazine cartridge and an MP-Σ100 pump; UV-VIS detector; Tenax-TA tubes; MP-Σ30 | Korean IAQ standard | Spearman’s correlation; Whitney analyses; | A significant correlation between indoor temperature and AB concentration, TVOCs, Formaldehyde. Indoor PM10 was higher than Outdoor concentration in all facilities. |
Deng et al., 2017 [218] | Beijing, China | Public buildings (basketball stadium, hotel, a shopping center, research center and commercial office and two residential homes) | PM2.5 | TSI 8530 instrument | Chinese standard, ‘‘Indoor-air-quality standard (GB/T18883-2002) | Linear regression analysis | Indoor PM2.5 mainly associated with the outdoor source; the natural Ventilation is more effective to reduce the PM2.5 Concentration; Ventilation system with fan-coil air cleaning system can remove approximately 90% of outdoor particles; |
Saraga et al., 2017 [219] | Doha, Qatar | An office building | PM2.5, PM10 | Samplers (LVS16 by WB Engineering GmbH) | WHO; EN 12341:2014 | Pearson correlation analysis; IBM SPSS | Outdoor and Indoor PM concentrations were significantly lower when reduced indoor activities; traffic-related sources and re-suspended dust were associated with OC/EC value; a positive correlation between indoor and outdoor pm and PM concentrations when HVAC in operation; |
Loupa et al., 2016 [220] | Kavala, Greece | Hospital | PM2.5; CO2, BC; | Sampler (90 mm diameter Dichotomous Stack Filter Units); Gas Card II, infrared gas monitor; Particle Soot Absorption Photometer; LASAIR Model 5295 | EN 13779, 2007; EN 779, 2012; WHO | Pearson correlation analysis | Indoor concentrations of PM2.5, BC, and CO2 were showed positively correlated; The average I/O PM2.5 ratios are less than one; PM2.5 and BC were strongly related to the outdoor value; PM increased in all particle sizes |
He et al., 2016 [221] | Guangdong, China | Hotel buildings | CO2; CO; PM10, PM2.5; VOCs | HP 6890 gas chromatograph/5973 mass selective detector; samples (Air-Check-52, (DC-LITE), portable analyzers, portable Q-Trak monitors (Model 8551 and 8520) | EPA method To-17; Chinese indoor air quality standard (IAQS); ASHRAE | Regression Analysis; PCA; | Occupants’ activities were the main source of PM10, PM2.5 concentrations; building materials, outdoor sources, human activities, cleaning products, and human respiration are the main source of indoor pollutants; |
Irga et al., 2016 [222] | Sydney, Australia | Office buildings | CO2; CO; SO2; VOCs; PM10, PM2.5; Total suspended particulate matter; VOCs; Airborne fungi | Yessair 8-channel IAQ Monitor (Critical Environment Technologies); DustTrack II Aerosol Monitor 8532 laser densitometer. a GasAlert Extreme T2A-7X9; a Reuter Centrifugal air sampler(RGS). | WHO; ISIAQ; ACGIH; AIHA | Univariate data analysis multivariate analysis; General linear model ANOVA; analyses of similarities (ANOSIM) using a 4th root transformation and the construction of a Euclidean distance similarity matrix; Similarity percentages analysis (SIMPER) | MVS buildings recorded the lowest PM and Airborne fungi; NV buildings and CVS buildings observed highest NO2; MVS showing higher CO2 than others; |
Shang et al., 2016 [223] | Western China | Shopping mall | CO2; TVOC; Formaldehyde; | Kanomax 6531; Telaire 7001; PGM-7240 ppb RAE; | China Energy Efficiency Testing of Public Buildings Standard (JGJ.T 177-2009; Formaldehyde™ 400; China Indoor Air Standard (GB/T 18883-2002) | Spearman rank correlation; Multiple Regression Analysis | A strong correlation of customer flow rate with TVOC and CO2; pre-ventilation rate decreased the first-hour formaldehyde concentrations |
Hu et al., 2015 [224] | Yangtze River Region, China | Museums | NO2; SO2; O3 PM2.5; PM10; | Q-Trak Plus IAQ monitors (Model 7565, 4150, 4240, 4480); mini-vol portable sampler; TSI 8520; | ASHRAE 2011; | N/A | In certain seasons, Investigated buildings are not able to effectively against outdoor air pollutants. Mechanical ventilation equipped system had better perform on IAQ control; |
Montgomery et al., 2015 [225] | Vancouver, Canada | OfficeBuilding | PM10, PM2.5; PM1; TVOCs; CO2 | TSI aps 3321; Tsi Velocicalc 8386; PPBrae pgm-7240; Honeywell c7632; Omega px274-05di; | ASHRAE Standard 62.1-2010 | Pearson correlations analysis | The mechanical ventilation effectively control the TVOCs and CO2 regardless of occupant load; natural ventilation difficult to achieve standard flow rate; Ventilation scheduling significantly impact on indoor gas concentrations; The ventilation system should work before occupants arrival and shutdown after room empty and the IAQ reach the standard level; |
Challoner et al., 2015 [226] | Dublin, Ireland | Commercial Buildings | PM2.5; NO2 | (Environmental Devices Corporation, EPAM-5000, Haz-Dust; an M200E model; | WHO | The Personal-exposure Activity Location Model (PALM); Artificial Neural Networks; The Levenberg-Marquardt Algorithm (LMA); the Gauss-Newton Algorithm; “Neural Network Time-series Tool” using a non-linear auto-regression with external input networks (NARX) modeling technique; Pearson correlation Analysis | The ANN modeling showed PM2.5 data with a larger range of errors and lower Pearson’s R values for regressions. The model had better performance on Indoor NO2 than PM2.5 |
Kwon et al., 2015 [227] | Seoul, Korea | Metropolitan Subway Stations | PM10; PM2.5; PM1; CO2 | Optical particle sizer (OPS; TSI model 3330) | WHO; ASHRAE | PCA; Non-parametric Kolmogorov–Smirnov test; Self-Organizing Feature Mapping | Seasonal variable was the most significant factor when categorizing the data groups; PM size fraction was highly influenced by the air ventilation rate and depth of the stations; Outdoor PM10 if the main source of indoor PM10; Trains volume was associated with Indoor PM platforms; |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Srinivasan, R. A Systematic Review of Air Quality Sensors, Guidelines, and Measurement Studies for Indoor Air Quality Management. Sustainability 2020, 12, 9045. https://doi.org/10.3390/su12219045
Zhang H, Srinivasan R. A Systematic Review of Air Quality Sensors, Guidelines, and Measurement Studies for Indoor Air Quality Management. Sustainability. 2020; 12(21):9045. https://doi.org/10.3390/su12219045
Chicago/Turabian StyleZhang, He, and Ravi Srinivasan. 2020. "A Systematic Review of Air Quality Sensors, Guidelines, and Measurement Studies for Indoor Air Quality Management" Sustainability 12, no. 21: 9045. https://doi.org/10.3390/su12219045
APA StyleZhang, H., & Srinivasan, R. (2020). A Systematic Review of Air Quality Sensors, Guidelines, and Measurement Studies for Indoor Air Quality Management. Sustainability, 12(21), 9045. https://doi.org/10.3390/su12219045