Robust Stabilization for Uncertain Non-Minimum Phase Switched Nonlinear System under Arbitrary Switchings
Abstract
:1. Introduction
2. Background and Problem Formulation
3. Main Results
4. Stability Analysis
5. Numerical Examples
5.1. Example 1
5.2. Example 2
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varaiya, P. Smart car on smart roads: Problems of control. IEEE Trans. Autom. Control 1993, 38, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Long, L.J.; Wang, Z.; Zhao, J. Switched adaptive control of switched nonlinearly parameterized systems with unstable subsystems. Automatica 2015, 45, 217–228. [Google Scholar] [CrossRef]
- Amin, H.H.; Deabes, W.; Bouazza, K. Hybrid spiking neural model for clustering smart environment activities. In Proceedings of the 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), Emden, Germany, 24–26 July 2017; pp. 206–211. [Google Scholar]
- Kokotovic, P.V. The joy of feedback: Nonlinear and adaptive. IEEE Control. Syst. Mag. 1992, 12, 7–17. [Google Scholar]
- Malek, G.H.; Tamir, S. Multivariable advanced nonlinear controller for bioethanol production in a non-isothermal fermentation bioreactor. Bioresour. Technol. 2022, 348, 126810. [Google Scholar]
- Tamir, S. Robustness analysis of feedback linearisation and LQR control on quarter car model with cubic nonlinearity. Int. J. Veh. Noise Vib. 2018, 14, 238–250. [Google Scholar]
- Vadim, I.U. Sliding Modes in Control and Optimization; Springer-Verlag: Berlin/Heidelberg, Germany, 1992; pp. 1–264. [Google Scholar]
- Dai, M.; Qi, R.; Li, Y. Switching Control with Time Optimal Sliding Mode Control Strategy for Electric Load Simulator with Backlash. In Proceedings of the 22nd International Conference on Electrical Machines and Systems, Harbin, China, 11–14 August 2019; pp. 11–14. [Google Scholar]
- Denis, E.; Andrey, P.; Leonid, F.; Wilfrid, P.; Jean, P.R. Delayed sliding mode control. Automatica 2016, 64, 37–43. [Google Scholar]
- He, Z.W.; Xie, W. Control of non-linear switched systems with average dwell time: Interval observer-based framework. IET Control. Theory Appl. 2016, 10, 10–16. [Google Scholar] [CrossRef]
- Wu, D.; Sun, X.M.; Zhao, Y.B. Stability analysis of nonlinear switched networked control systems with periodical packet dropouts. Circuits Syst. Signal Process. 2012, 32, 1931–1947. [Google Scholar] [CrossRef]
- Zhao, J.; Hill, J.D.; Liu, T. Synchoronization of complex dynamical networks with switching switching topology: A switched system point of view. Automatica 2009, 5, 2502–2511. [Google Scholar] [CrossRef]
- Bender, C.M.; Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 1998, 80, 5243–5246. [Google Scholar] [CrossRef] [Green Version]
- Kulishov, M.; Kress, B.; Slavík, R. Resonant cavities based on Parity-Time-symmetric diffractive gratings. Opt. Express. 2013, 21, 9473–9483. [Google Scholar] [CrossRef] [PubMed]
- Homaee, O.; Zakariazadeh, A.; Jadid, S. Real-time voltage control algorithm with switched capacitors in smart distribution system in presence of renewable generations. Int. J. Electr. Power Energy Syst. 2014, 54, 187–197. [Google Scholar] [CrossRef]
- Chang, X.H.; Wang, Y.M. Peak-to-peak filtering for networked nonlinear DC motor systems with quantization. Trans. Ind. Inform. 2018, 25, 5378–5388. [Google Scholar] [CrossRef]
- Ma, R.C.; Zhao, J. Backstepping design for global stabilization of switched nonlinear systems in lower triangular form under arbitrary switchings. Automatica 2010, 46, 1819–1823. [Google Scholar] [CrossRef]
- Niu, B.; Zhao, X.D.; Fan, X.D. A new control method for state-constrained nonlinear switched systems with application to chemical process. Int. J. Control 2015, 88, 1693–1701. [Google Scholar] [CrossRef]
- Subahi, A.F.; Ouazza, K.E. An Intelligent IoT-Based System Design for Controlling and Monitoring Greenhouse Temperature. IEEE Access 2020, 8, 125488–125500. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J. Switched adaptive tracking control of robot manipulators with friction and changing loads. Int. J. Syst. Sci. 2015, 46, 955–964. [Google Scholar] [CrossRef]
- Bouazza, K.E. Global Stabilization of Nonlinear Networked Control System with System Delays and Packet Dropouts via Dynamic Output Feedback Controller. Math. Probl. Eng. 2015, 2015, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jouili, K.; Benhadj, B.N. Controllers design for stabilization of non-minimum phase of switched nonlinear systems. JCEAI 2019, 21, 21–30. [Google Scholar]
- Abdelkarim, A.; Jouili, K.; Benhadj, B.N. Stabilization of a class of non-minimum phase switched nonlinear systems based on backstepping method. IJMIC 2018, 29, 218–225. [Google Scholar] [CrossRef]
- Mehedi, I.M.; Aljohani, A.J.; Alam, M.M.; Mahmoud, M.; Abdulaal, M.J.; Bilal, M.; Alasmary, W. Intelligent Dynamic Inversion Controller Design for Ball and Beam System. Comput. Mater. Contin. 2022, 72, 2341–2355. [Google Scholar] [CrossRef]
- Lin, J.; Fei, S.; Gao, Z. Stabilization of discrete-time switched singular time-delay systems under asynchronous switching. J. Frankl. Inst. 2012, 349, 1808–1827. [Google Scholar] [CrossRef]
- Bouazza, K.E.; Ouali, M. Global stabilization of a class of delay discrete-time nonlinear systems via state and output feedback. Int. J. Control Autom. Syst. 2013, 11, 1084–1094. [Google Scholar] [CrossRef]
- Yang, H.; Jiang, B.; Zhang, H. Stabilization of non-minimum phase switched nonlinear systems with application to multi-agent systems. Syst. Control Lett. 2012, 61, 1023–1031. [Google Scholar] [CrossRef]
- Jouili, K.; Benhadj, B.N. Stabilization of non-minimum phase switched nonlinear systems with the concept of multi-diffeomorphism. J. Sci. Commun. 2015, 23, 282–293. [Google Scholar] [CrossRef]
- Oishi, M.; Tomlin, C. Switching in non-minimum phase systems: Applications to a VSTOL aircraft. In Proceedings of the American Control Conference, Chicago, IL, USA, 28–30 June 2000. [Google Scholar]
- Wang, M.; Dimirovski, G.M.; Zhao, J. H∞ control for a class of non-minimum phase cascade switched nonlinear systems. In Proceedings of the American Control Conference, Seattle, WA, USA, 11–13 June 2008. [Google Scholar]
- Jouili, K. Robust stabilization of non-minimum phase switched nonlinear systems with uncertainty. JSSC 2020, 33, 289–311. [Google Scholar]
- Losoncz, L. A generalization of the Gronwall-Bellman lemma and its applications. J. Math. Anal. Appl. 1973, 44, 701–709. [Google Scholar] [CrossRef] [Green Version]
- Isidori, A. Nonlinear Control Systems: An Introduction; Springer: New York, NY, USA, 1985. [Google Scholar]
- Mohammed, A.; Adib, M.; Brendan, H.; Federico, M. Application of Filippov Theory to the IEEE Standard 421.5-2016 Anti-windup PI Controller. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 23–27. [Google Scholar]
- Difonzo, F.V. A Note on Attractivity FOR THE Intersection of Two Discontinuity Manifolds. Opusc. Math. 2020, 40, 685–702. [Google Scholar] [CrossRef]
- Filippov, A.F. Differential Equations with Discontinuous Righthand Sides; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Giaouris, D.; Banerjee, S.; Zahawi, B.; Pickert, V. Stability analysis of the continuous-conduction-mode buck converter via Filippov’s method. IEEE Trans. Circuits Syst. I Regul. Pap. 2008, 55, 1084–1096. [Google Scholar] [CrossRef] [Green Version]
- Harte, P.; Blokhina, E.; Feely, O.; Fournier, P.D.; Galayko, D. Electrostatic vibration energy harvesters with linear and nonlinear resonators. Int. J. Bifurc. Chaos 2014, 24, 1430030. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jouili, K.; Belhadj, W. Robust Stabilization for Uncertain Non-Minimum Phase Switched Nonlinear System under Arbitrary Switchings. Symmetry 2023, 15, 596. https://doi.org/10.3390/sym15030596
Jouili K, Belhadj W. Robust Stabilization for Uncertain Non-Minimum Phase Switched Nonlinear System under Arbitrary Switchings. Symmetry. 2023; 15(3):596. https://doi.org/10.3390/sym15030596
Chicago/Turabian StyleJouili, Khalil, and Walid Belhadj. 2023. "Robust Stabilization for Uncertain Non-Minimum Phase Switched Nonlinear System under Arbitrary Switchings" Symmetry 15, no. 3: 596. https://doi.org/10.3390/sym15030596