Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Coactive design: designing support for interdependence in joint activity

Published: 28 February 2014 Publication History

Abstract

Coactive Design is a new approach to address the increasingly sophisticated roles that people and robots play as the use of robots expands into new, complex domains. The approach is motivated by the desire for robots to perform less like teleoperated tools or independent automatons and more like interdependent teammates. In this article, we describe what it means to be interdependent, why this is important, and the design implications that follow from this perspective. We argue for a human-robot system model that supports interdependence through careful attention to requirements for observability, predictability, and directability. We present a Coactive Design method and show how it can be a useful approach for developers trying to understand how to translate high-level teamwork concepts into reusable control algorithms, interface elements, and behaviors that enable robots to fulfill their envisioned role as teammates. As an example of the coactive design approach, we present our results from the DARPA Virtual Robotics Challenge, a competition designed to spur development of advanced robots that can assist humans in recovering from natural and man-made disasters. Twenty-six teams from eight countries competed in three different tasks providing an excellent evaluation of the relative effectiveness of different approaches to human-machine system design.

References

[1]
Allen, J. E., Guinn, C. I., & Horvitz, E. (1999). Mixed-initiative interaction. IEEE Intelligent Systems, 14(5), 14--23.
[2]
Annett, J. (2003). Hierarchical task analysis. In Handbook of Cognitive Task Design (pp. 17--35). London: Lawrence Erlbaum Associates.
[3]
Bradshaw, J. M., Feltovich, P. J., & Johnson, M. (2011). Human-agent interaction. In G. Boy (Ed.), Handbook of Human-Machine Interaction (pp. 293--302). Farnham, Surrey, UK: Ashgate.
[4]
Bradshaw, J. M., Feltovich, P. J., Jung, H., Kulkarni, S., Taysom, W., & Uszok, A. (2004). Dimensions of adjustable autonomy and mixed-initiative interaction. In M. Klusch & G. Weiss (Eds.), Agents and Computational Autonomy (Vol. 2969, pp. 17--39). Berlin/Heidelberg: Springer.
[5]
Bradshaw, J. M., Jung, H., Kulkarni, S., Johnson, M., Feltovich, P., Allen, J., ... Uszok, A. (2005). KAA: Policy-based explorations of a richer model for adjustable autonomy. In Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems. The Netherlands: ACM.
[6]
Bradshaw, J. M., Jung, H., Kulkarni, S., Johnson, M., Feltovich, P., Allen, J., ... Uszok, A. (2008). Toward trustworthy adjustable autonomy and mixed-initiative interaction in KAoS. Springer. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary10.1.1.108.1619
[7]
Bradshaw, J. M., Sierhuis, M., Acquisti, A., Feltovich, P., Hoffman, R., Jeffers, R., ... Van Hoof, R. (2003). Adjustable autonomy and human-agent teamwork in practice: An interim report on space applications. In H. Hexmoor, R. Falcone, & C. Castelfranchi (Eds.), Agent Aunomy (pp. 243--280). Boston, MA: Kluwer Academic Publishers. Retrieved from http://www.loc.gov/catdir/toc/fy036/2003040054.html
[8]
Bradshaw, J. M., Dignum, V., Jonker, C. M., & Sierhuis, M. (2012). Introduction to special issue on human-agent-robot teamwork. IEEE Intelligent Systems, 27, 8--13.
[9]
Christoffersen, K., & Woods, D. D. (2002). How to make automated systems team players. Advances in Human Performance and Cognitive Engineering Research, 2, 1--12. Elsevier Science Ltd.
[10]
Clark, H H, & Brennan, S. (1991). Grounding in communication. In L. B. Resnick, J. M. Levine, & S. D. Teasley (Eds.), Perspectives on Socially Shared Cognition (127--149). Washington, D.C.: American Psychological Association.
[11]
Clark, Herbert H. (1996). Using language. New York, NY: Cambridge University Press. Retrieved from http://www.loc.gov/catdir/toc/cam023/95038401.html
[12]
Crandall, B., & Klein, G. (2006). Working minds: A practitioner's guide to cognitive task analysis. Cambridge, MA: MIT Press.
[13]
Endsley, M. R., Bolté, B., & Jones, D. G. (2003). Designing for situation awareness: An approach to user-centered design. Boca Raton, FL: Taylor & Francis.
[14]
Feltovich, P. J., Bradshaw, J. M., Clancey, W. J., & Johnson, M. (2007). Toward an ontology of regulation: Socially-based support for coordination in human and machine joint activity. In G. O'Hare, M. O'Grady, A. Ricci, & O. Dikenelli (Eds.), Engineering Societies in the Agents World VII (Vol. Lecture No, pp. 175--192). Heidelberg, Germany: Springer.
[15]
Fong, T. W. (2001). Collaborative control: A robot-centric model for vehicle teleoperation. Pittsburgh, PA: Robotics Institute, Carnegie Mellon University.
[16]
Hoffman, R. R., & Deal, S. V. (2008). Influencing versus informing design, part 1: A gap analysis. IEEE Intelligent Systems, 23(5), 78--81.
[17]
Hoffman, R. R., Hayes, P., Ford, K. M., & Bradshaw, J. M. (Eds.). (2012). Collected Essays on Human-Centered Computing, 2001--2011. New York, NY: IEEE Press.
[18]
Jennings, N. R. (1996). Coordination techniques for distributed artificial intelligence. In G. M. P. O'Hare & N. R. Jennings (Eds.), Foundations of Distributed Artificial Intelligence (pp. 187--210). New York, NY: Wiley.
[19]
Johnson, M., Bradshaw, J., Feltovich, P., Jonker, C., van Riemsdijk, B., & Sierhuis, M. (2011). The fundamental principle of coactive design: Interdependence must shape autonomy. In M. De Vos, N. Fornara, J. Pitt, & G. Vouros (Eds.), Coordination, Organizations, Institutions, and Norms in Agent Systems VI (Vol. 6541, pp. 172--191). Springer Berlin/Heidelberg.
[20]
Johnson, M., Bradshaw, J. M., Feltovich, P. J., Jonker, C. M., van Riemsdijk, B., & Sierhuis, M. (2012). Analyzing autonomy and its relation to interdependence in human-machine systems. IEEE Intelligent Systems, 27(2), 43--51.
[21]
Klein, G., Feltovich, P. J., Bradshaw, J. M., & Woods, D. D. (2005). Common ground and coordination in joint activity. In W. B. Rouse & K. R. Boff (Eds.), Organizational Simulation (pp. 139--184). Retrieved from
[22]
Klein, G., Woods, D. D., Bradshaw, J. M., Hoffman, R. R., & Feltovich, P. J. (2004). Ten challenges for making automation a "team player" in joint human-agent activity. IEEE Intelligent Systems, 19(6), 91--95.
[23]
Koenig, N., & Howard, A. (2004). Design and use paradigms for Gazebo, an open-source multi-robot simulator. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (Vol. 3, pp. 2149--2154).
[24]
Larson, C. E., & LaFasto, F. M. J. (1989). Teamwork: What must go right, what can go wrong. Sage Series in Interpersonal Communication, 10, 150. Newbury Park, CA: SAGE Publications.
[25]
Malone, T. W., & Crowston, K. (1994). The interdisciplinary study of coordination. ACM Computing Surveys, 26(1), 87--119.
[26]
March, J. G., Simon, H. A., & Guetzkow, H. S. (1993). Organizations (2nd ed.). Cambridge, Mass., USA: Blackwell.
[27]
Murphy, R. R., & Burke, J. L. (2008). From remote tool to shared roles. IEEE Robotics & Automation Magazine, 15(4), 39--49.
[28]
Parasuraman, R., Sheridan, T., & Wickens, C. (2000). A model for types and levels of human interaction with automation. IEEE Transactions on Systems, Man and Cybernetics, Part A, 30(3), 286--297.
[29]
Schraagen, J. M., Chipman, S. F., & Shalin, V. L. (2009). Cognitive task analysis. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
[30]
Sheridan, T. B. (1992). Telerobotics, automation, and human supervisory control. Cambridge, MA: MIT Press.
[31]
Sierhuis, M., Bradshaw, J. M., Acquisti, R., Hoof, R. Van, & Jeffers, R. (2003). Human-agent teamwork and adjustable autonomy in practice. In Proceedings of the Seventh International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS). Nara, Japan.
[32]
Smith-Jentsch, K. A., Zeisig, R. L., Acton, B., & McPherson, J. A. (1998). Team dimensional training: A strategy for guided team self-correction. In J. B. Cannon-Bowers & E. Salas (Eds.), Making decisions under stress: Implications for individual and team training(271--297). Washington D.C., American Psychological Association.
[33]
Sycara, K. (2002). Integrating agents into human teams. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 46, pp. 413--417).
[34]
Sycara, K., & Sukthankar, G. (2006, November). Literature Review of Teamwork Models. Pittsburgh, PA: Tech. Report CMU-RI-TR-06-50, Robotics Institute, Carnegie Mellon University.
[35]
Thibaut, J. W., & Kelley, H. H. (1959). The social psychology of groups. New York, NY: Wiley.
[36]
Thompson, J. D. (1967). Organizations in action; social science bases of administrative theory. New York, NY: McGraw-Hill.
[37]
Wyrobek, K. A., Berger, E. H., Van der Loos, H. F. M., & Salisbury, J. K. (2008). Towards a personal robotics development platform: Rationale and design of an intrinsically safe personal robot. In Proceedings of the IEEE International Automation (ICRA).

Cited By

View all
  • (2024)Toward a Quality Model for Hybrid Intelligence TeamsProceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems10.5555/3635637.3662893(434-443)Online publication date: 6-May-2024
  • (2024)Who’s in Charge Here? A Survey on Trustworthy AI in Variable Autonomy Robotic SystemsACM Computing Surveys10.1145/364509056:7(1-32)Online publication date: 9-Apr-2024
  • (2024)A Survey of Algorithmic Methods for Competency Self-Assessments in Human-Autonomy TeamingACM Computing Surveys10.1145/361601056:7(1-31)Online publication date: 9-Apr-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Human-Robot Interaction
Journal of Human-Robot Interaction  Volume 3, Issue 1
Special Issue on Design in HRI: Past, Present, and Future
February 2014
139 pages

Publisher

Journal of Human-Robot Interaction Steering Committee

Publication History

Published: 28 February 2014

Author Tags

  1. coactive design
  2. collaboration
  3. human-agent-robot teamwork
  4. human-robot interaction
  5. interdependence
  6. joint activity
  7. teamwork

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1,002
  • Downloads (Last 6 weeks)73
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Toward a Quality Model for Hybrid Intelligence TeamsProceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems10.5555/3635637.3662893(434-443)Online publication date: 6-May-2024
  • (2024)Who’s in Charge Here? A Survey on Trustworthy AI in Variable Autonomy Robotic SystemsACM Computing Surveys10.1145/364509056:7(1-32)Online publication date: 9-Apr-2024
  • (2024)A Survey of Algorithmic Methods for Competency Self-Assessments in Human-Autonomy TeamingACM Computing Surveys10.1145/361601056:7(1-31)Online publication date: 9-Apr-2024
  • (2024)From Agent Autonomy to Casual Collaboration: A Design Investigation on Help-Seeking Urban RobotsProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3642389(1-14)Online publication date: 11-May-2024
  • (2024)Transparency Classification for HRI with Humanoid Service RobotsCompanion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction10.1145/3610978.3640739(798-802)Online publication date: 11-Mar-2024
  • (2024)Automation Doesn’t Work the Way We Think It DoesIEEE Software10.1109/MS.2023.332874641:1(138-141)Online publication date: 1-Jan-2024
  • (2023)Personalized Agent Explanations for Human-Agent Teamwork: Adapting Explanations to User Trust, Workload, and PerformanceProceedings of the 2023 International Conference on Autonomous Agents and Multiagent Systems10.5555/3545946.3598919(2316-2318)Online publication date: 30-May-2023
  • (2023)Collaborative Decision Support Systems Based on Neuro-Symbolic Artificial Intelligence: Problems and Generalized Conceptual ModelScientific and Technical Information Processing10.3103/S014768822306015150:6(635-645)Online publication date: 1-Dec-2023
  • (2023)Quantifying Levels of Influence and Causal Responsibility in Dynamic Decision Making EventsACM Transactions on Intelligent Systems and Technology10.1145/363161115:1(1-22)Online publication date: 19-Dec-2023
  • (2023)How Do Users Experience Traceability of AI Systems? Examining Subjective Information Processing Awareness in Automated Insulin Delivery (AID) SystemsACM Transactions on Interactive Intelligent Systems10.1145/358859413:4(1-34)Online publication date: 24-Mar-2023
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media