Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
A field experiment was conducted in Denmark in order to evaluate the fate of 13 volatile organic compounds (VOCs) that were buried as an artificial fuel source in the unsaturated zone. Compound-specific isotope analysis showed distinct... more
A field experiment was conducted in Denmark in order to evaluate the fate of 13 volatile organic compounds (VOCs) that were buried as an artificial fuel source in the unsaturated zone. Compound-specific isotope analysis showed distinct phases in the 13C/12C ratio evolution in VOC vapors within 3 m from the source over 114 days. At day 3 and to a lesser extent at day 6, the compounds were depleted in 13C by up to -5.7% per hundred with increasing distance from the source compared to the initial source values. This trend can be explained by faster outward diffusion of the molecules with 12C only compared to molecules with a 13C. Then, the isotope profile leveled out, and several compounds started to become enriched in 13C by up to 9.5% per hundred with increasing distance from the source, due to preferential removal of the molecules with 12C only, through biodegradation. Finally, as the amount of a compound diminished in the source, a 13C enrichment was also observed close to the source. The magnitude of isotope fractionation tended to be larger the smaller the mass of the molecule was. This study demonstrates that, in the unsaturated zone, carbon isotope ratios of hydrocarbons are affected by gas-phase diffusion in addition to biodegradation, which was confirmed using a numerical model. Gas-phase diffusion led to shifts in delta(13)C >1% per hundred during the initial days after the spill, and again during the final stages of source volatilization after >75% of a compound had been removed. In between, diffusion has less of an effect, and thus isotope data can be used as an indicator for hydrocarbon biodegradation.
The natural attenuation of volatile organic compounds (VOCs) in the unsaturated zone can only be predicted when information about microbial biodegradation rates and kinetics are known. This study aimed at determining first-order rate... more
The natural attenuation of volatile organic compounds (VOCs) in the unsaturated zone can only be predicted when information about microbial biodegradation rates and kinetics are known. This study aimed at determining first-order rate coefficients for the aerobic biodegradation of 13 volatile petroleum hydrocarbons which were artificially emplaced as a liquid mixture during a field experiment in an unsaturated sandy soil. Apparent first-order biodegradation rate coefficients were estimated by comparing the spatial evolution of the resulting vapor plumes to an analytical reactive transport model. Two independent reactive numerical model approaches have been used to simulate the diffusive migration of VOC vapors and to estimate degradation rate coefficients. Supplementary laboratory column and microcosm experiments were performed with the sandy soil at room temperature under aerobic conditions. First-order kinetics adequately matched the lab column profiles for most of the compounds. Consistent compound-specific apparent first-order rate coefficients were obtained by the three models and the lab column experiment, except for benzene. Laboratory microcosm experiments lacked of sensitivity for slowly degrading compounds and underestimated degradation rates by up to a factor of 5. Addition of NH3 vapor was shown to increase the degradation rates for some VOCs in the laboratory microcosms. All field models suggested a significantly higher degradation rate for benzene than the rates measured in the lab, suggesting that the field microbial community was superior in developing benzene degrading activity.
ABSTRACT The pore structure and pore size distribution (PSD) in the clayey till matrix from three Danish field sites were investigated by image analysis to assess the matrix migration of dechlorinating bacteria in clayey till. Clayey till... more
ABSTRACT The pore structure and pore size distribution (PSD) in the clayey till matrix from three Danish field sites were investigated by image analysis to assess the matrix migration of dechlorinating bacteria in clayey till. Clayey till samples had a wide range of pore sizes, with diameters of 0.1–100 μm, and two typical peaks of pore sizes were observed in all clayey till samples. A large area fraction of the individual pores centered around 2 μm in diameter, and another fraction centered around 20 μm. In general, the typical macropore sizes (1 μm D Keywords: backscatter scanning electron microscopy; dechlorinating bacteria; fracture aperture; fractured clayey till; pore size distribution (PSD) Document Type: Research Article DOI: http://dx.doi.org/10.1080/10889868.2014.939133 Affiliations: 1: Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, China 2: CERE, Department of Civil Engineering, Technical University of Denmark, Kongens Lyngby, Denmark 3: Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark Publication date: October 2, 2014 $(document).ready(function() { var shortdescription = $(".originaldescription").text().replace(/\\&/g, '&').replace(/\\, '<').replace(/\\>/g, '>').replace(/\\t/g, ' ').replace(/\\n/g, ''); if (shortdescription.length > 350){ shortdescription = "" + shortdescription.substring(0,250) + "... more"; } $(".descriptionitem").prepend(shortdescription); $(".shortdescription a").click(function() { $(".shortdescription").hide(); $(".originaldescription").slideDown(); return false; }); }); Related content In this: publication By this: publisher By this author: Lu, Cong ; Broholm, Mette M. ; Fabricius, Ida L. ; Bjerg, Poul L. GA_googleFillSlot("Horizontal_banner_bottom");
A continuous, natural gradient, field injection experiment, involving six herbicides and a tracer, was performed in a shallow aerobic aquifer near Vejen, Denmark. Bentazone, (+/-)-2-(4-chloro-2-methylphenoxy) propanoic acid (MCPP),... more
A continuous, natural gradient, field injection experiment, involving six herbicides and a tracer, was performed in a shallow aerobic aquifer near Vejen, Denmark. Bentazone, (+/-)-2-(4-chloro-2-methylphenoxy) propanoic acid (MCPP), dichlorprop, isoproturon, and the dichlobenil metabolite 2,6-dichlor-benzamide (BAM) were injected along with 2-methyl-4,6-dinitrophenol (not discussed in this paper) and the tracer bromide. The injection lasted for 216 days and created a continuous
A series of laboratory scale batch slurry experiments were conducted in order to establish a data set for oxidant demand by sandy and clayey subsurface materials as well as to identify the reaction kinetic rates of permanganate... more
A series of laboratory scale batch slurry experiments were conducted in order to establish a data set for oxidant demand by sandy and clayey subsurface materials as well as to identify the reaction kinetic rates of permanganate (MnO(4)(-)) consumption and PCE oxidation as a function of the MnO(4)(-) concentration. The laboratory experiments were carried out with 31 sandy and clayey subsurface sediments from 12 Danish sites. The results show that the consumption of MnO(4)(-) by reaction with the sediment, termed the natural oxidant demand (NOD), is the primary reaction with regards to quantification of MnO(4)(-) consumption. Dissolved PCE in concentrations up to 100 mg/l in the sediments investigated is not a significant factor in the total MnO(4)(-) consumption. Consumption of MnO(4)(-) increases with an increasing initial MnO(4)(-) concentration. The sediment type is also important as NOD is (generally) higher in clayey than in sandy sediments for a given MnO(4)(-) concentration. For the different sediment types the typical NOD values are 0.5-2 g MnO(4)(-)/kg dry weight (dw) for glacial meltwater sand, 1-8 g MnO(4)(-)/kg dw for sandy till and 5-20 g MnO(4)(-)/kg dw for clayey till. The long term consumption of MnO(4)(-) and oxidation of PCE can not be described with a single rate constant, as the total MnO(4)(-) reduction is comprised of several different reactions with individual rates. During the initial hours of reaction, first order kinetics can be applied, where the short term first order rate constants for consumption of MnO(4)(-) and oxidation of PCE are 0.05-0.5 h(-1) and 0.5-4.5 h(-1), respectively. The sediment does not act as an instantaneous sink for MnO(4)(-). The consumption of MnO(4)(-) by reaction with the reactive species in the sediment is the result of several parallel reactions, during which the reaction between the contaminant and MnO(4)(-) also takes place. Hence, application of low MnO(4)(-) concentrations can cause partly oxidation of PCE, as the oxidant demand of the sediment does not need to be met fully before PCE is oxidised.
The effect of in situ chemical oxidation (ISCO) with permanganate (MnO4-) on tetrachloroethene (PCE) in a dual permeability system consisting of low permeability clay with high permeability sand lenses was investigated by two-dimensional... more
The effect of in situ chemical oxidation (ISCO) with permanganate (MnO4-) on tetrachloroethene (PCE) in a dual permeability system consisting of low permeability clay with high permeability sand lenses was investigated by two-dimensional laboratory experiments. The experiments imitate a field remediation at a former dry cleaning facility in Denmark. Results from laboratory experiments and field observations both show that after an application of MnO4- in the sand layer, the diffusion rate into the matrix is decreased due to reaction with PCE and the natural oxidant demand (NOD) related to the clayey till. A narrow but very efficient reaction zone is created in the clayey till. Initiallythe zone developed rapidlyfollowed by a slower expansion with time. PCE will counter diffuse into the reaction zone, where it will be degraded as long as MnO4- is present. A mass balance for the laboratory experiment revealed that the reaction between MnO4- and the clayey till was responsible for up to 90% of the total MnO4- consumption. Based on laboratory experiments, the high MnO4- consumption from reaction with clayey till appears to have been the limiting factor for the oxidation of PCE at the field site and is thus impairing the efficiency of ISCO as a remedy.
The fate and treatability of 1,1,1-TCA by natural and enhanced reductive dechlorination was studied in laboratory microcosms. The study shows that compound-specific isotope analysis (CSIA) identified an alternative 1,1,1-TCA degradation... more
The fate and treatability of 1,1,1-TCA by natural and enhanced reductive dechlorination was studied in laboratory microcosms. The study shows that compound-specific isotope analysis (CSIA) identified an alternative 1,1,1-TCA degradation pathway that cannot be explained by assuming biotic reductive dechlorination. In all biotic microcosms 1,1,1-TCA was degraded with no apparent increase in the biotic degradation product 1,1-DCA. 1,1,1-TCA degradation was documented by a clear enrichment in (13)C in all biotic microcosms, but not in the abiotic control, which suggests biotic or biotically mediated degradation. Biotic degradation by reductive dechlorination of 1,1-DCA to CA only occurred in bioaugmented microcosms and in donor stimulated microcosms with low initial 1,1,1-TCA or after significant decrease in 1,1,1-TCA concentration (after∼day 200). Hence, the primary degradation pathway for 1,1,1-TCA does not appear to be reductive dechlorination via 1,1-DCA. In the biotic microcosms, the degradation of 1,1,1-TCA occurred under iron and sulfate reducing conditions. Biotic reduction of iron and sulfate likely resulted in formation of FeS, which can abiotically degrade 1,1,1-TCA. Hence, abiotic degradation of 1,1,1-TCA mediated by biotic FeS formation constitute an explanation for the observed 1,1,1-TCA degradation. This is supported by a high 1,1,1-TCA (13)C enrichment factor consistent with abiotic degradation in biotic microcosms. 1,1-DCA carbon isotope field data suggest that this abiotic degradation of 1,1,1-TCA is a relevant process also at the field site.
Abstract. The Rexco coal carbonization plant near Mansfield in the UK East Midlands produced coke by the process known as 'Rexco' in the 1950s to early 1960s. In the process gas and coal-tar were also produced. The gas was... more
Abstract. The Rexco coal carbonization plant near Mansfield in the UK East Midlands produced coke by the process known as 'Rexco' in the 1950s to early 1960s. In the process gas and coal-tar were also produced. The gas was cooled with water whereby ammonia and ...
Groundwater contamination by chlorinated solvents, such as perchloroethylene (PCE), often occurs via leaching from complex sources located in low permeability sediments such as clayey tills overlying aquifers. Clayey tills are mostly... more
Groundwater contamination by chlorinated solvents, such as perchloroethylene (PCE), often occurs via leaching from complex sources located in low permeability sediments such as clayey tills overlying aquifers. Clayey tills are mostly fractured, and contamination migrating through the fractures spreads to the low permeability matrix by diffusion. This results in a long term source of contamination due to back-diffusion. Leaching from such sources is further complicated by microbial degradation under anaerobic conditions to sequentially form the daughter products trichloroethylene, cis-dichloroethylene (cis-DCE), vinyl chloride (VC) and ethene. This process can be enhanced by addition of electron donors and/or bioaugmentation and is termed Enhanced Reductive Dechlorination (ERD). This work aims to improve our understanding of the physical, chemical and microbial processes governing source behaviour under natural and enhanced conditions. That understanding is applied to risk assessment...
Research Interests:
Enhanced Reductive Dechlorination (ERD) has been successfully used in high permeability media, such as sand aquifers, and is considered to be a promising technology for low permeability settings. Pilot and full-scale applications of ERD... more
Enhanced Reductive Dechlorination (ERD) has been successfully used in high permeability media, such as sand aquifers, and is considered to be a promising technology for low permeability settings. Pilot and full-scale applications of ERD at several sites in Denmark have shown that the main challenge is to get contact between the injected bacteria and electron donor and the contaminants trapped in the low-permeability matrix. Sampling of intact cores from the low-permeability matrix has shown that the bioactive zones (where degradation occurs) are limited in the matrix, due to the slow diffusion transport processes, and this affects the timeframes for the remediation. Due to the limited ERD applications and the complex transport and reactive processes occurring in low-permeability media, design guidelines are currently not available for ERD in such settings, and remediation performance assessments are limited. The objective of this study is to combine existing knowledge from several s...
ABSTRACT
ABSTRACT Groundwater contamination by chlorinated solvents, such as perchloroethylene (PCE), often occurs via leaching from complex sources located in low permeability sediments such as clayey tills overlying aquifers. Clayey tills are... more
ABSTRACT Groundwater contamination by chlorinated solvents, such as perchloroethylene (PCE), often occurs via leaching from complex sources located in low permeability sediments such as clayey tills overlying aquifers. Clayey tills are mostly fractured, and contamination migrating through the fractures spreads to the low permeability matrix by diffusion. This results in a long term source of contamination due to back-diffusion. Leaching from such sources is further complicated by microbial degradation under anaerobic conditions to sequentially form the daughter products trichloroethylene, cis-dichloroethylene (cis-DCE), vinyl chloride (VC) and ethene. This process can be enhanced by addition of electron donors and/or bioaugmentation and is termed Enhanced Reductive Dechlorination (ERD). This work aims to improve our understanding of the physical, chemical and microbial processes governing source behaviour under natural and enhanced conditions. That understanding is applied to risk assessment, and to determine the relationship and time frames of source clean up and plume response. To meet that aim, field and laboratory observations are coupled to state of the art models incorporating new insights of contaminant behaviour. The long term leaching of chlorinated ethenes from clay aquitards is currently being monitored at a number of Danish sites. The observed data is simulated using a coupled fracture flow and clay matrix diffusion model. Sequential degradation is represented by modified Monod kinetics accounting for competitive inhibition between the chlorinated ethenes. The model is constructed using Comsol Multiphysics, a generic finite- element partial differential equation solver. The model is applied at two well characterised field sites with respect to hydrogeology, fracture network, contaminant distribution and microbial processes (lab and field experiments). At the study sites (Sortebrovej and Vadsbyvej), the source areas are situated in a clayey till with fractures and interbedded sand lenses. The field sites are both highly contaminated with chlorinated ethenes which impact the underlying sand aquifer. Anaerobic dechlorination is taking place, and cis-DCE and VC have been found in significant amounts in the matrix. Full scale remediation using ERD was implemented at Sortebrovej in 2006, and ERD has been suggested as a remedy at Vadsbyvej. Results reveal several interesting findings. The physical processes of matrix diffusion and advection in the fractures seem to be more important than the microbial degradation processes for estimation of the time frames and the distance between fractures is amongst the most sensitive model parameters. However, the inclusion of sequential degradation is crucial to determining the composition of contamination leaching into the underlying aquifer. Degradation products like VC will peak at an earlier stage compared to the mother compound due to a higher mobility. The findings highlight a need for improved characterization of low permeability aquitards lying above aquifers used for water supply. The fracture network in aquitards is currently poorly described at larger depths (below 5-8 m) and the effect of sand lenses on leaching behaviour is not well understood. The microbial processes are assumed to be taking place in the fracture system, but the interaction with and processes in the matrix need to be further explored. Development of new methods for field site characterisation and integrated field and model expertise are crucial for the design of remedial actions and for risk assessment of contaminated sites in low permeability settings.
Research Interests:
Research Interests:
The natural attenuation of volatile organic compounds (VOCs) in the unsaturated zone can only be predicted when information about microbial biodegradation rates and kinetics are known. This study aimed at determining first-order rate... more
The natural attenuation of volatile organic compounds (VOCs) in the unsaturated zone can only be predicted when information about microbial biodegradation rates and kinetics are known. This study aimed at determining first-order rate coefficients for the aerobic biodegradation of 13 volatile petroleum hydrocarbons which were artificially emplaced as a liquid mixture during a field experiment in an unsaturated sandy soil. Apparent first-order biodegradation rate coefficients were estimated by comparing the spatial evolution of the resulting vapor plumes to an analytical reactive transport model. Two independent reactive numerical model approaches have been used to simulate the diffusive migration of VOC vapors and to estimate degradation rate coefficients. Supplementary laboratory column and microcosm experiments were performed with the sandy soil at room temperature under aerobic conditions. First-order kinetics adequately matched the lab column profiles for most of the compounds. Consistent compound-specific apparent first-order rate coefficients were obtained by the three models and the lab column experiment, except for benzene. Laboratory microcosm experiments lacked of sensitivity for slowly degrading compounds and underestimated degradation rates by up to a factor of 5. Addition of NH3 vapor was shown to increase the degradation rates for some VOCs in the laboratory microcosms. All field models suggested a significantly higher degradation rate for benzene than the rates measured in the lab, suggesting that the field microbial community was superior in developing benzene degrading activity.
An aerobic field-injection experiment was performed to study the degradation and migration of different herbicides at trace levels in an aerobic aquifer at Vejen, Denmark. Mecoprop (MCPP) and dichlorprop monitored in a dense network of... more
An aerobic field-injection experiment was performed to study the degradation and migration of different herbicides at trace levels in an aerobic aquifer at Vejen, Denmark. Mecoprop (MCPP) and dichlorprop monitored in a dense network of multilevel samplers were both degraded within a distance of 1 m after a period of 120 days. The study showed that no preferential degradation of the (R)- and (S)-enantiomers of MCPP and of dichlorprop took place as the enantiomeric forms of the phenoxy acids were degraded simultaneously in the aquifer.
Isotopfraktionering kan anvendes til dokumentation af naturlig nedbrydning af miljøfremmede organiske stoffer i grundvand ved forurenede lokaliteter. Ved nedbrydning af perchlorethylen (PCE) og andre organiske stoffer sker en ændring i... more
Isotopfraktionering kan anvendes til dokumentation af naturlig nedbrydning af miljøfremmede organiske stoffer i grundvand ved forurenede lokaliteter. Ved nedbrydning af perchlorethylen (PCE) og andre organiske stoffer sker en ændring i forholdet mellem ...
ABSTRACT Methods for effective delivery of remediation amendments for in situ remediation of contaminated clay till sites are sought. The capabilities of direct-push delivery are promising but not yet scientifically documented. Therefore,... more
ABSTRACT Methods for effective delivery of remediation amendments for in situ remediation of contaminated clay till sites are sought. The capabilities of direct-push delivery are promising but not yet scientifically documented. Therefore, a field study of direct-push delivery was carried out at an uncontaminated, naturally fractured, basal clay till site (K similar to 10(-7)-10(-10) m/s) in 2008-2009. A mixture of tracers (brilliant blue, fluorescein, and Rhodamine WT), the characteristics of which are comparable to several current remediation amendments, was delivered in aqueous solution at pressures of similar to 5-10 bar at several locations and depth intervals [2.5-9.5 m below surface (b.s.)], representing both the vadose and saturated zones. Extensive coring to 12 m b.s. and excavation to 5 m b.s. were carried out to identify the lateral and vertical extent of tracer distribution. A tracer distribution radius of minimum 1 m was achieved at all depths. Close vertical spacing of delivery points (10-25 cm) provided good vertical distribution without significant merging of individual delivery propagation paths. The results are promising with regard to achieving adequate distribution of remediation amendments in clay till. DOI: 10.1061/(ASCE)EE.1943-7870.0000451. (C) 2012 American Society of Civil Engineers.
The diffusion of coal–tar compounds in natural clayey till was studied experimentally. Cores were exposed to a solution with near constant concentration of coal–tar compounds in a multi-component mixture for 5 months, the cores were... more
The diffusion of coal–tar compounds in natural clayey till was studied experimentally. Cores were exposed to a solution with near constant concentration of coal–tar compounds in a multi-component mixture for 5 months, the cores were subsequently sub-sampled and analyzed. Diffusion profile data strongly indicates highly non-linear sorption isotherms. For dibenzofuran, dibenzothiophene, 2-methylquinoline, carbazole, phenanthrene, and fluorene, the profiles indicated significantly
The biodegradation of phenols (∼5, 60, 600 mg l−1) under anaerobic conditions (nitrate enriched and unamended) was studied in laboratory microcosms with sandstone material and groundwater from within an anaerobic ammonium plume in an... more
The biodegradation of phenols (∼5, 60, 600 mg l−1) under anaerobic conditions (nitrate enriched and unamended) was studied in laboratory microcosms with sandstone material and groundwater from within an anaerobic ammonium plume in an aquifer. The aqueous phase was sampled and analyzed for phenols and selected redox sensitive parameters on a regular basis. An experiment with sandstone material from specific
... The dramatic increase in sorption appears to be a result of multimolecular layer sorption orcondensation on surfaces in the clayey till at high surface density of organic compounds, and the data are fitted by BET (Brunauer, Emmet, and... more
... The dramatic increase in sorption appears to be a result of multimolecular layer sorption orcondensation on surfaces in the clayey till at high surface density of organic compounds, and the data are fitted by BET (Brunauer, Emmet, and Teller) type 2 isotherms. ...
ABSTRACT The sorption of benzofuran, dibenzofuran, benzothiophene, and dibenzothiophene from water on natural clayey till from two locations in Denmark was investigated in single solute systems for a large range of solute concentrations.... more
ABSTRACT The sorption of benzofuran, dibenzofuran, benzothiophene, and dibenzothiophene from water on natural clayey till from two locations in Denmark was investigated in single solute systems for a large range of solute concentrations. The variation in sorption of a basic (quinoline) and a neutral (dibenzofuran) heterocyclic compound in samples from different depths in the natural clayey till was also investigated. The sorption isotherms for all four compounds and both clayey tills were highly non-linear, and the overall best fits were obtained with Freundlich isotherms. These observations indicate that sorption is not strictly hydrophobic or that the affinity for organic material is influenced by the sorbed solute, and that multiple components contribute to the sorption. The foc normalized linear Kd-value and Freundlich Kf-coefficient were compared with estimated Koc values. Hydrophobic sorption appears to dominate for dibenzofuran, benzothiophene and dibenzothiophene, whereas benzofuran and in particular quinoline sorption is influenced by inorganic sorption sites. This corresponds reasonably well with expectations based on estimates of critical organic carbon content. The sorption of quinoline at the uppermost sample was slightly higher (10%–20%) than for the deeper locations. This is possibly related to a slightly higher clay content at this depth. The sorption of dibenzofuran was higher at the deepest location (approximately 65%) than for the above locations. The only measured geological parameter which was significantly different in the sample from the deep location was the content of fine silt.
An emplaced hydrocarbon source field experiment was conducted in the relatively homogeneous sandy geology of the vadose zone at Airbase Vaerløse, Denmark. The source (10.2 l of NAPL) consisted of 13 hydrocarbons (n-, iso- and... more
An emplaced hydrocarbon source field experiment was conducted in the relatively homogeneous sandy geology of the vadose zone at Airbase Vaerløse, Denmark. The source (10.2 l of NAPL) consisted of 13 hydrocarbons (n-, iso- and cyclo-alkanes and aromates) and CFC-113 as a tracer. Monitoring in the 107 soil gas probes placed out to 20 m from the centre of the source showed spreading of all the compounds in the pore air and all compounds were measured in the pore air within a few hours after source emplacement. Seven of the fourteen compounds were depleted from the source within the 1 year of monitoring. The organic vapours in the pore air migrated radially from the source. The CFC-113 concentrations seemed to be higher in the deeper soil gas probes compared with the hydrocarbons, indicating a high loss of CFC-113 to the atmosphere and the lack of degradation of CFC-113. For the first days after source emplacement, the transport of CFC-113, hexane and toluene was successfully simulated using a radial gas-phase diffusion model for the unsaturated zone. Groundwater pollution caused by the vadose zone hydrocarbon vapours was only detected in the upper 30 cm of the underlying groundwater and only during the first 3 months of the experiment. Only the most water-soluble compounds were detected in the groundwater and concentrations decreased sharply with depth (approximately one order of magnitude within 10 cm depth) to non-detect at 30 cm depth. The groundwater table varied more than 1 m within the measurement period. However that did not influence the direction of the groundwater flow. Approximately 7 months after source emplacement the groundwater table rose more than 1 m within 1 month. That did not cause additional pollution of the groundwater.
ABSTRACT Ammonia liquor with very high concentrations of phenol and alkylated phenols is known to have leaked into the subsurface at a former coal carbonization plant in the UK, giving high concentrations of ammonium in the groundwater.... more
ABSTRACT Ammonia liquor with very high concentrations of phenol and alkylated phenols is known to have leaked into the subsurface at a former coal carbonization plant in the UK, giving high concentrations of ammonium in the groundwater. In spite of this, no significant concentrations of phenols were found in the groundwater. The potential for biodegradation of the phenols in the sandstone aquifer at the site has been investigated in laboratory microcosms under aerobic (oxygen amended) and mixed nitrate and iron reducing (nitrate enriched and unamended) anaerobic conditions, at a range of concentrations (low: ∼5 mg l−1, high: ∼60 mg l−1, and very high: ∼600 mg l−1) and in the presence of other organic coal–tar compounds (mono- and polyaromatic hydrocarbons (BTEXs and PAHs) and heterocyclic compounds (NSOs)) and ammonia liquor. Sandstone cores and groundwater for the microcosms were collected from within the anaerobic ammonium plume at the field site.Fast and complete degradation of phenol, o- and p-cresol, 2,5- and 3,4-xylenol with no or very short initial lag-phases was observed under aerobic conditions at low concentrations. 2,6- and 3,5-Xylenol were degraded more slowly and 3,5-xylenol degradation was only just complete after about 1 year. The maximum rates of total phenols degradation in duplicate aerobic microcosms were 1.06 and 1.76 mg l−1 day−1.The degradation of phenols in nitrate enriched and unamended anaerobic microcosms was similar. Fast and complete biodegradation of phenol, cresols, 3,4-xylenol and 3,5-xylenol was observed after short lag-phases in the anaerobic microcosms. 2,5-xylenol was partially degraded after a longer lag-phase and 2,6-xylenol persisted throughout the 3 month long experiments. The maximum rates of total phenols degradation in duplicate nitrate enriched and unamended anaerobic microcosms were 0.30–0.38 and 0.29–0.31 mg l−1 day−1, respectively. The highest phenols concentrations in the anaerobic microcosms apparently required very long adaptation periods or inhibited biodegradation of the phenols. For the intermediate concentration level, degradation occurred after comparable lag-phases and at comparable rates to those observed at low concentration. However, after a while degradation of phenols suddenly decreased drastically and then stopped. Dilution by addition of anaerobic groundwater resulted in continued but slow degradation of phenols in unamended microcosms.The effect of other organic coal–tar compounds (BTEXs, PAHs, NSOs) on the degradation of the phenols under unamended conditions was limited to slightly longer lag-phases for some of the phenols. Other constituents of the ammonia liquor did not appear to significantly affect the degradation of the phenols. Fast and complete degradation of 2,3- and 2,4-xylenol was indicated. These experiments were continued for a longer period of time and revealed complete degradation of 2,5-xylenol and, after an approximately 6-month-long lag-phase partial degradation of 2,6-xylenol.The potential for natural attenuation of phenols from process effluents from coal carbonization under aerobic conditions and mixed nitrate and iron reducing conditions appears promising.
A numerical model of metabolic reductive dechlorination is used to describe the performance of enhanced bioremediation in fractured clay till. The model is developed to simulate field observations of a full scale bioremediation scheme in... more
A numerical model of metabolic reductive dechlorination is used to describe the performance of enhanced bioremediation in fractured clay till. The model is developed to simulate field observations of a full scale bioremediation scheme in a fractured clay till and thereby to assess remediation efficiency and timeframe. A relatively simple approach is used to link the fermentation of the electron donor soybean oil to the sequential dechlorination of trichloroethene (TCE) while considering redox conditions and the heterogeneous clay till system (clay till matrix, fractures and sand stringers). The model is tested on lab batch experiments and applied to describe sediment core samples from a TCE-contaminated site. Model simulations compare favorably to field observations and demonstrate that dechlorination may be limited to narrow bioactive zones in the clay matrix around fractures and sand stringers. Field scale simulations show that the injected donor is expected to be depleted after 5 years, and that without donor re-injection contaminant rebound will occur in the high permeability zones and the mass removal will stall at 18%. Long remediation timeframes, if dechlorination is limited to narrow bioactive zones, and the need for additional donor injections to maintain dechlorination activity may limit the efficiency of ERD in low-permeability media. Future work should address the dynamics of the bioactive zones, which is essential to understand for predictions of long term mass removal.
... David Werner,; Mette Broholm,; Patrick Höhener. ... A controlled hydrocarbon-emplaced source experiment was conducted at this site by the Danish Technical University to investigate the natural attenuation of volatile hydrocarbons in... more
... David Werner,; Mette Broholm,; Patrick Höhener. ... A controlled hydrocarbon-emplaced source experiment was conducted at this site by the Danish Technical University to investigate the natural attenuation of volatile hydrocarbons in the vadose zone (Christophersen et al. 2005). ...
ABSTRACT At a low permeability clay till site contaminated with chlorinated ethenes (Gl. Kongevej, Denmark), enhanced reductive dechlorination (ERD) was applied by direct push injection of molasses and dechlorinating bacteria. The... more
ABSTRACT At a low permeability clay till site contaminated with chlorinated ethenes (Gl. Kongevej, Denmark), enhanced reductive dechlorination (ERD) was applied by direct push injection of molasses and dechlorinating bacteria. The performance was investigated by long-term groundwater monitoring, and after 4 years of remediation, the development of degradation in the clay till matrix was investigated by high-resolution subsampling of intact cores. The formation of degradation products, the presence of specific degraders Dehalococcoides spp. with the vinyl chloride (VC) reductase gene vcrA, and the isotope fractionation of trichloroethene, cis-dichloroethene (cis-DCE), and VC showed that degradation of chlorinated ethenes occurred in the clay till matrix as well as in sand lenses, sand stringers, and fractures. Bioactive sections of up to 1.8 m had developed in the clay till matrix, but sections, where degradation was restricted to narrow zones around sand lenses and stringers, were also observed. After 4 years of remediation, an average mass reduction of 24% was estimated. Comparison of the results with model simulation scenarios indicate that a mass reduction of 85% can be obtained within approximately 50 years without further increase in the narrow reaction zones if no donor limitations occur at the site. Long-term monitoring of the concentration of chlorinated ethenes in the underlying chalk aquifer revealed that the aquifer was affected by the more mobile degradation products cis-DCE and VC generated during the remediation by ERD.
... Comparison of Delivery Methods for Enhanced In Situ Remediation in Clay Till. Camilla M. Christiansen ,; Ida Damgaard ,; Mette Broholm ,; Timo Kessler ,; Knud E. Klint ,; Bertel Nilsson ,; Poul L. Bjerg. Article first published... more
... Comparison of Delivery Methods for Enhanced In Situ Remediation in Clay Till. Camilla M. Christiansen ,; Ida Damgaard ,; Mette Broholm ,; Timo Kessler ,; Knud E. Klint ,; Bertel Nilsson ,; Poul L. Bjerg. Article first published online: 7 OCT 2010. ...
A pulse (7 days) and a continuous (216 days), natural gradient field injection experiment with herbicides, including 2-methyl-4,6-dinitrophenol (4,6-dinitro-o-cresol, abbreviated DNOC), and a bromide tracer were conducted in a shallow,... more
A pulse (7 days) and a continuous (216 days), natural gradient field injection experiment with herbicides, including 2-methyl-4,6-dinitrophenol (4,6-dinitro-o-cresol, abbreviated DNOC), and a bromide tracer were conducted in a shallow, aerobic aquifer near Vejen, Denmark. The pulse and continuous plume were monitored in a dense, three-dimensional monitoring network installed in the aquifer downgradient of the injection. The sorption and degradation of DNOC were evaluated based on moment analysis of breakthrough curves, cross sections, and snapshots of the DNOC plume and supported by results from laboratory experiments. Significant and spatially variable sorption of DNOC (Kd range, 0.10-0.98 L/kg) was observed due to a specific binding of DNOC to clay minerals. The spatial variation was mainly a result of variation in pH, with stronger sorption at lower pH, whereas other factors such as cation composition on the solid matrix appeared to be negligible. Significant degradation of DNOC in the aquifer was revealed by moment analysis of data from the continuous field injection experiment. Degradation of DNOC in the field was slow and/or subject to long lag phases, and the data suggested spatially varying degradation potentials. This was supported by the laboratory experiments. The potential for natural attenuation of DNOC in aerobic aquifers appears promising.
The performance of enhanced reductive dechlorination (ERD) for in situ remediation of cis-1,2-dichloroethene (cDCE) and vinyl chloride in clayey till was investigated in a pilot test. A dilute groundwater solution containing emulsified... more
The performance of enhanced reductive dechlorination (ERD) for in situ remediation of cis-1,2-dichloroethene (cDCE) and vinyl chloride in clayey till was investigated in a pilot test. A dilute groundwater solution containing emulsified soybean oil and Dehalococcoides bacteria was injected into a sand-filled hydraulic fracture. Fermentation of the ERD solution caused the establishment of a dechlorinating bioactive zone in the fracture within 1 month of injection. By 148 days, all the cDCE in the fracture was dechlorinated to ethene. Analysis of a clay core from Day 150 indicated that electron donor and fermentation products diffused from the fracture at least 10 cm into clay and that stimulated dechlorination occurred in the clay in the presence of Dehalococcoides (7.9.10(4) cells g(-1)). Comparison of chloroethene profiles in the Day 150 core to modeled diffusion profiles indicated degradation occurred in a bioactive zone extending approximately 5 to 6 cm into the clay matrix. These data suggest that a bioactive zone established in a sand-filled fracture can expand into the adjacent clayey till matrix and facilitate mass transfer from the matrix to the bioactive zone. These findings offer promise for ERD and support further development of methods for deploying ERD in clayey till and other low-permeability deposits.
A field experiment was performed in a sandy vadose zone, studying the fate of an emplaced fuel-NAPL source, composed of 13 hydrocarbons and a tracer. The UNIFAC model was used to testthe nonideal behavior of the source, and the numerical... more
A field experiment was performed in a sandy vadose zone, studying the fate of an emplaced fuel-NAPL source, composed of 13 hydrocarbons and a tracer. The UNIFAC model was used to testthe nonideal behavior of the source, and the numerical model MIN3P was used for assessing the effect of biodegradation on source evolution. The diffusive loss to the surrounding vadose zone and the atmosphere created temporary gradients in mole fractions of the individual compounds within the source NAPL. The evolution of the source composition corresponded in general with expectations based on Raoult's Law, with the exception thatthe mole fractions of aromatic compounds in the source NAPL decreased faster than fractions of aliphatic compounds of similar volatility. Calculation of activity coefficients (y) using the UNIFAC model implied nonideal conditions, with composition-dependent gammas different from 1. Positive deviations were calculated for the aromatic compounds. The effect of biodegradation on source depletion, evaluated by numerical modeling, was greater for the aromatic as compared to the aliphatic compounds. Hence, the faster depletion of the aromatic relative to aliphatic compounds of similar volatility is both a result of the nonideality of the mixture and a result of partitioning and biodegradation in the pore-water. Vapor concentrations of the compounds in the source were in reasonable agreement with predictions based on the modified Raoult's Law with the UNIFAC predicted gammas and the NAPL composition for the most volatile compounds. For the less volatile compounds, the measured vapor concentrations were lower than predicted with the largest deviations for the least volatile compounds. This field experiment illustrated that nonideal behavior and bioenhanced source depletion need to be considered at multicomponent NAPL spill sites.
A field experiment was conducted in Denmark in order to evaluate the fate of 13 volatile organic compounds (VOCs) that were buried as an artificial fuel source in the unsaturated zone. Compound-specific isotope analysis showed distinct... more
A field experiment was conducted in Denmark in order to evaluate the fate of 13 volatile organic compounds (VOCs) that were buried as an artificial fuel source in the unsaturated zone. Compound-specific isotope analysis showed distinct phases in the 13C/12C ratio evolution in VOC vapors within 3 m from the source over 114 days. At day 3 and to a lesser extent at day 6, the compounds were depleted in 13C by up to -5.7% per hundred with increasing distance from the source compared to the initial source values. This trend can be explained by faster outward diffusion of the molecules with 12C only compared to molecules with a 13C. Then, the isotope profile leveled out, and several compounds started to become enriched in 13C by up to 9.5% per hundred with increasing distance from the source, due to preferential removal of the molecules with 12C only, through biodegradation. Finally, as the amount of a compound diminished in the source, a 13C enrichment was also observed close to the source. The magnitude of isotope fractionation tended to be larger the smaller the mass of the molecule was. This study demonstrates that, in the unsaturated zone, carbon isotope ratios of hydrocarbons are affected by gas-phase diffusion in addition to biodegradation, which was confirmed using a numerical model. Gas-phase diffusion led to shifts in delta(13)C >1% per hundred during the initial days after the spill, and again during the final stages of source volatilization after >75% of a compound had been removed. In between, diffusion has less of an effect, and thus isotope data can be used as an indicator for hydrocarbon biodegradation.
A molecular study on how the abundance of the dechlorinating culture KB-1 affects dechlorination rates in clay till is presented. DNA extracts showed changes in abundance of specific dechlorinators as well as their functional genes.... more
A molecular study on how the abundance of the dechlorinating culture KB-1 affects dechlorination rates in clay till is presented. DNA extracts showed changes in abundance of specific dechlorinators as well as their functional genes. Independently of the KB-1 added, the microbial dechlorinator abundance increased to the same level in all treatments. In the non-bioaugmented microcosms the reductive dehalogenase gene bvcA increased in abundance, but when KB-1 was added the related vcrA gene increased while bvcA genes did not increase. Modeling showed higher vinyl-chloride dechlorination rates and shorter time for complete dechlorination to ethene with higher initial concentration of KB-1 culture, while cis-dichloroethene dechlorination rates were not affected by KB-1 concentrations. This study provides high resolution abundance profiles of Dehalococcoides spp. (DHC) and functional genes, highlights the ecological behavior of KB-1 in clay till, and reinforces the importance of using multiple functional genes as biomarkers for reductive dechlorination.
The sorption of chlorinated solvents and degradation products on seven natural clayey till samples from three contaminated sites was investigated by laboratory batch experiments in order to obtain reliable sorption coefficients (K(d)... more
The sorption of chlorinated solvents and degradation products on seven natural clayey till samples from three contaminated sites was investigated by laboratory batch experiments in order to obtain reliable sorption coefficients (K(d) values). The sorption isotherms for all compounds were nearly linear, but fitted by Freundlich isotherms slightly better over the entire concentration range. For chloroethylenes, tetrachloroethylene (PCE) was most strongly sorbed to the clayey till samples (K(d)=0.84-2.45Lkg(-1)), followed by trichloroethylene (TCE, K(d)=0.62-0.96Lkg(-1)), cis-dichloroethylene (cis-DCE, K(d)=0.17-0.82Lkg(-1)) and vinyl chloride (VC, K(d)=0.12-0.36Lkg(-1)). For chloroethanes, 1,1,1-trichloroethane (1,1,1-TCA) was most strongly sorbed (K(d)=0.2-0.45Lkg(-1)), followed by 1,1-dichloroethane (1,1-DCA, K(d)=0.16-0.24Lkg(-1)) and chloroethane (CA, K(d)=0.12-0.18Lkg(-1)). This is consistent with the order of hydrophobicity of the compounds. The octanol-water coefficient (logK(ow)) correlated slightly better with logK(d) values than logK(oc) values indicating that the K(d) values may be independent of the actual organic carbon content (f(oc)). The estimated logK(oc) or logK(d) for chlorinated solvents and degradation products determined by regression of data in this study were significantly higher than values determined by previously published empirical relationships. The site specific K(d) values as well as the new empirical relationship compared well with calculations on water and soil core concentration for cis-DCE and VC from the Rugårdsvej site. In conclusion, this study with a wide range of chlorinated ethenes and ethanes--in line with previous studies on PCE and TCE--suggest that sorption in clayey tills could be higher than typically expected.
Page 1. Hydrochemistry of pollutant attenuation in groundwater contaminated by coal tar wastes Daniel Torstensson, 1'2 Steven F. Thornton, 3 Mette M. Broholm 4 & David N. Lerner 3... more
Page 1. Hydrochemistry of pollutant attenuation in groundwater contaminated by coal tar wastes Daniel Torstensson, 1'2 Steven F. Thornton, 3 Mette M. Broholm 4 & David N. Lerner 3 lAB Jacobson and Widmark, Water and ...