Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Ensembl (http://www.ensembl.org) integrates genomic information for a comprehensive set of chordate genomes with a particular focus on resources for human, mouse, rat, zebrafish and other high-value sequenced genomes. We provide complete... more
Ensembl (http://www.ensembl.org) integrates genomic information for a comprehensive set of chordate genomes with a particular focus on resources for human, mouse, rat, zebrafish and other high-value sequenced genomes. We provide complete gene annotations for all supported species in addition to specific resources that target genome variation, function and evolution. Ensembl data is accessible in a variety of formats including via our genome browser, API and BioMart. This year marks the tenth anniversary of Ensembl and in that time the project has grown with advances in genome technology. As of release 56 (September 2009), Ensembl supports 51 species including marmoset, pig, zebra finch, lizard, gorilla and wallaby, which were added in the past year. Major additions and improvements to Ensembl since our previous report include the incorporation of the human GRCh37 assembly, enhanced visualisation and data-mining options for the Ensembl regulatory features and continued development of our software infrastructure.
In December, 2006, a group of 26 software developers from some of the most widely used life science programming toolkits and phylogenetic software projects converged on Durham, North Carolina, for a Phyloinformatics Hackathon, an intense... more
In December, 2006, a group of 26 software developers from some of the most widely used life science programming toolkits and phylogenetic software projects converged on Durham, North Carolina, for a Phyloinformatics Hackathon, an intense five-day collaborative software coding event sponsored by the National Evolutionary Synthesis Center (NESCent). The goal was to help researchers to integrate multiple phylogenetic software tools into automated workflows. Participants addressed deficiencies in interoperability between programs by implementing “glue code” and improving support for phylogenetic data exchange standards (particularly NEXUS) across the toolkits. The work was guided by use-cases compiled in advance by both developers and users, and the code was documented as it was developed. The resulting software is freely available for both users and developers through incorporation into the distributions of several widely-used open-source toolkits. We explain the motivation for the hackathon, how it was organized, and discuss some of the outcomes and lessons learned. We conclude that hackathons are an effective mode of solving problems in software interoperability and usability, and are underutilized in scientific software development.
Ensembl Genomes (http://www.ensemblgenomes.org) is a new portal offering integrated access to genome-scale data from non-vertebrate species of scientific interest, developed using the Ensembl genome annotation and visualisation platform.... more
Ensembl Genomes (http://www.ensemblgenomes.org) is a new portal offering integrated access to genome-scale data from non-vertebrate species of scientific interest, developed using the Ensembl genome annotation and visualisation platform. Ensembl Genomes consists of five sub-portals (for bacteria, protists, fungi, plants and invertebrate metazoa) designed to complement the availability of vertebrate genomes in Ensembl. Many of the databases supporting the portal have been built in close collaboration with the scientific community, which we consider as essential for maintaining the accuracy and usefulness of the resource. A common set of user interfaces (which include a graphical genome browser, FTP, BLAST search, a query optimised data warehouse, programmatic access, and a Perl API) is provided for all domains. Data types incorporated include annotation of (protein and non-protein coding) genes, cross references to external resources, and high throughput experimental data (e.g. data from large scale studies of gene expression and polymorphism visualised in their genomic context). Additionally, extensive comparative analysis has been performed, both within defined clades and across the wider taxonomy, and sequence alignments and gene trees resulting from this can be accessed through the site.
TreeFam (http://www.treefam.org) was developed to provide curated phylogenetic trees for all animal gene families, as well as orthologue and paralogue assignments. Release 4.0 of TreeFam contains curated trees for 1314 families and... more
TreeFam (http://www.treefam.org) was developed to provide curated phylogenetic trees for all animal gene families, as well as orthologue and paralogue assignments. Release 4.0 of TreeFam contains curated trees for 1314 families and automatically generated trees for another 14 351 families. We have expanded TreeFam to include 25 fully sequenced animal genomes, as well as four genomes from plant and fungal outgroup species. We have also introduced more accurate approaches for automatically grouping genes into families, for building phylogenetic trees, and for inferring orthologues and paralogues. The user interface for viewing phylogenetic trees and family information has been improved. Furthermore, a new perl API lets users easily extract data from the TreeFam mysql database.
The Ensembl project (http://www.ensembl.org) seeks to enable genomic science by providing high quality, integrated annotation on chordate and selected eukaryotic genomes within a consistent and accessible infrastructure. All supported... more
The Ensembl project (http://www.ensembl.org) seeks to enable genomic science by providing high quality, integrated annotation on chordate and selected eukaryotic genomes within a consistent and accessible infrastructure. All supported species include comprehensive, evidence-based gene annotations and a selected set of genomes includes additional data focused on variation, comparative, evolutionary, functional and regulatory annotation. The most advanced resources are provided for key species including human, mouse, rat and zebrafish reflecting the popularity and importance of these species in biomedical research. As of Ensembl release 59 (August 2010), 56 species are supported of which 5 have been added in the past year. Since our previous report, we have substantially improved the presentation and integration of both data of disease relevance and the regulatory state of different cell types.