Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
ABSTRACT We present a method for efficiently generating plausible dents and scratches due to collisions using bump maps instead of mesh deformation. We use a rigid body simulator based on that of Guendelman et al. [2003], with collisions... more
ABSTRACT We present a method for efficiently generating plausible dents and scratches due to collisions using bump maps instead of mesh deformation. We use a rigid body simulator based on that of Guendelman et al. [2003], with collisions detected by interpenetration ...
 The biomechanical and neural components that underlie locust jumping have been extensively studied [1–4]. Previous research suggested that energy for the jump is stored primarily in the extensor apodeme and in the semi-lunar process... more
 The biomechanical and neural components that underlie locust jumping have been extensively studied [1–4]. Previous research suggested that energy for the jump is stored primarily in the extensor apodeme and in the semi-lunar process (SLP) [5], a thickened band of cuticle at the distal end of the tibia. As it has thus far proven impossible to experimentally alter the SLP without rendering a locust unable to jump, it has not been possible to test whether the energy stored in the SLP has a significant impact on the jump, or how that energy is applied during the jump.To address problems such as this we have developed a software toolkit, AnimatLab, which allows researchers to build and test virtual organisms. We used this software to build a virtual locust, and then asked how the SLP is utilized during jumping, and how manipulation or removal of the virtual SLP influences jump dynamics (figures 1 and 2). The results show that without the SLP the jump distance was reduced by almost half. Fu
The leech heartbeat CPG is paced by the alternating bursting of pairs of mutually inhibitory heart interneurons that form elemental half-center oscillators. We explore the control of burst duration in heart interneurons using a hybrid... more
The leech heartbeat CPG is paced by the alternating bursting of pairs of mutually inhibitory heart interneurons that form elemental half-center oscillators. We explore the control of burst duration in heart interneurons using a hybrid system, where a living, pharmacologically isolated, heart interneuron is connected with artificial synapses to a model heart interneuron running in real-time, by focusing on a low-voltage-activated (LVA) calcium current I(CaS). The transition from silence to bursting in this half-center oscillator occurs when the spike frequency of the bursting interneuron declines to a critical level, f(Final), at which the inhibited interneuron escapes owing to a build-up of the hyperpolarization-activated cation current, I(h). We varied I(CaS) inactivation time constant either in the living heart interneuron or in the model heart interneuron. In both cases, varying I(CaS) inactivation time constant did not affect f(Final) of either interneuron, but in the varied interneuron, the time constant of decline of spike frequency during bursts to f(Final) and thus the burst duration varied directly and nearly linearly with I(CaS) inactivation time constant. Bursts of the opposite, nonvaried interneuron did not change. We show also that control of burst duration by I(CaS) inactivation does not require synaptic interaction by reconstituting autonomous bursting in synaptically isolated living interneurons with injected I(CaS). Therefore inactivation of LVA calcium current is critically important for setting burst duration and thus period in a heart interneuron half-center oscillator and is potentially a general intrinsic mechanism for regulating burst duration in neurons.
Biophysically realistic neuronal models are defined in high-dimensional parameter spaces. Brute-force database approaches have proven themselves fruitful in characterizing neuronal models [1, 3, 5]. In a brute-force database approach, the... more
Biophysically realistic neuronal models are defined in high-dimensional parameter spaces. Brute-force database approaches have proven themselves fruitful in characterizing neuronal models [1, 3, 5]. In a brute-force database approach, the corresponding activities and parameters of the simulated neuronal models are stored in a database, which is further efficiently searched for insightful information about the models. We present a novel technique which combines a brute-force approach with bifurcation continuation methods from the theory of dynamical systems. We considered a database of single compartment neuron model that can display, silence, tonic spiking and bursting activity [3]. A one-parameter bifurcation analysis allowed us to determine stable and unstable stationary states for each case from the database. Using this novel database technique, we systematically tested models for the coexistence of stable stationary states and bursting activity.Specifically we used this technique t
The leech neuron model studied here has a remarkable dynamical plasticity. It exhibits a wide range of activities including various types of tonic spiking and bursting. In this study we apply methods of the qualitative theory of dynamical... more
The leech neuron model studied here has a remarkable dynamical plasticity. It exhibits a wide range of activities including various types of tonic spiking and bursting. In this study we apply methods of the qualitative theory of dynamical systems and the bifurcation theory to analyze the dynamics of the leech neuron model with emphasis on tonic spiking regimes. We show that the model can demonstrate bi-stability, such that two modes of tonic spiking coexist. Under a certain parameter regime, both tonic spiking modes are represented by the periodic attractors. As a bifurcation parameter is varied, one of the attractors becomes chaotic through a cascade of period-doubling bifurcations, while the other remains periodic. Thus, the system can demonstrate co-existence of a periodic tonic spiking with either periodic or chaotic tonic spiking. Pontryagin’s averaging technique is used to locate the periodic orbits in the phase space.
We argue that the Lukyanov-Shilnikov bifurcation of a saddle-node periodic orbit with non- central homoclinics explains the effect of bi-stability observed in a neuron model based on a Hodgkin- Huxley formalism. In this model the... more
We argue that the Lukyanov-Shilnikov bifurcation of a saddle-node periodic orbit with non- central homoclinics explains the effect of bi-stability observed in a neuron model based on a Hodgkin- Huxley formalism. In this model the dominating regime, depending on the initial state, can be either spiking oscillations or weakly irregular bursting ones. It is also shown how the bifurcation of
Research Interests:
Research Interests: