Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Ulf Ahlgren

    Ulf Ahlgren

    Mouse models for streptozotocin (STZ) induced diabetes probably represent the most widely used systems for preclinical diabetes research, owing to the compound’s toxic effect on pancreatic β-cells. However, a comprehensive view of... more
    Mouse models for streptozotocin (STZ) induced diabetes probably represent the most widely used systems for preclinical diabetes research, owing to the compound’s toxic effect on pancreatic β-cells. However, a comprehensive view of pancreatic β-cell mass distribution subject to STZ administration is lacking. Previous assessments have largely relied on the extrapolation of stereological sections, which provide limited 3D-spatial and quantitative information. This data descriptor presents multiple ex vivo tomographic optical image datasets of the full β-cell mass distribution in mice subject to single high and multiple low doses of STZ administration, and in glycaemia recovered mice. The data further include information about structural features, such as individual islet β-cell volumes, spatial coordinates, and shape as well as signal intensities for both insulin and GLUT2. Together, they provide the most comprehensive anatomical record of the effects of STZ administration on the islet...
    We have previously shown that mice carrying a null mutation in the homeobox gene ipf1, now renamed to pdx1, selectively lack a pancreas. To elucidate the level at which PDX1 is required during the development of the pancreas, we have in... more
    We have previously shown that mice carrying a null mutation in the homeobox gene ipf1, now renamed to pdx1, selectively lack a pancreas. To elucidate the level at which PDX1 is required during the development of the pancreas, we have in this study analyzed the early stages of pancreas ontogeny in PDX−/− mice. These analyses have revealed that the early inductive events leading to the formation of the pancreatic buds and the appearance of the early insulin and glucagon cells occur in the PDX1-deficient embryos. However, the sub-sequent morphogenesis of the pancreatic epithelium and the progression of differentiation of the endocrine cells are arrested in the pdx1−/− embryos. In contrast, the pancreatic mesenchyme grows and develops, both morphologically and functionally, independently of the epithelium. We also show that the pancreatic epithelium in the pdx1 mutants is unable to respond to the mesenchymal-derived signal(s) which normally promote pancreatic morphogenesis. Together the...
    Early deficits in insulin secretion, β−cell mass and islet blood perfusion precedes onset of autoimmune Type 1 Diabetes in diabetes prone Bio-Breeding (BB) rats
    KULeuven. ...
    Differential regulation of myosin heavy chains
    Maturity‐onset diabetes of the young type 5 (MODY5) is due to heterozygous mutations or deletion of HNF1B. No mouse models are currently available to recapitulate the human MODY5 disease. Here, we investigate the pancreatic phenotype of a... more
    Maturity‐onset diabetes of the young type 5 (MODY5) is due to heterozygous mutations or deletion of HNF1B. No mouse models are currently available to recapitulate the human MODY5 disease. Here, we investigate the pancreatic phenotype of a unique MODY5 mouse model generated by heterozygous insertion of a human HNF1B splicing mutation at the intron‐2 splice donor site in the mouse genome. This Hnf1bsp2/+ model generated with targeted mutation of Hnf1b mimicking the c.544+1G>T (T) mutation identified in humans, results in alternative transcripts and a 38% decrease of native Hnf1b transcript levels. As a clinical feature of MODY5 patients, the hypomorphic mouse model Hnf1bsp2/+ displays glucose intolerance. Whereas Hnf1bsp2/+ isolated islets showed no altered insulin secretion, we found a 65% decrease in pancreatic insulin content associated with a 30% decrease in total large islet volume and a 20% decrease in total β‐cell volume. These defects were associated with a 30% decrease in ...
    Neurotropic virus infections cause tremendous disease burden. Methods visualizing infection in the whole brain remain unavailable which greatly impedes understanding of viral neurotropism and pathogenesis. We devised an approach to... more
    Neurotropic virus infections cause tremendous disease burden. Methods visualizing infection in the whole brain remain unavailable which greatly impedes understanding of viral neurotropism and pathogenesis. We devised an approach to visualize the distribution of neurotropic virus infection in whole mouse brain ex vivo. Optical projection tomography (OPT) signal was coregistered with a unique magnetic resonance imaging (MRI) brain template, enabling precise anatomical mapping of viral distribution, and the effect of type I interferon on distribution of infection was analyzed. Guided by OPT-MR, we show that Langat virus specifically targets sensory brain systems and the lack of type I interferon response results in an anatomical shift in infection patterns in the brain. We confirm this regional tropism, observed with whole brain OPT-MRI, by confocal and electron microscopy to provide unprecedented insight into viral neurotropism. This approach can be applied to any fluorescently labele...
    The possibility to quantitatively study specific molecular/cellular features of complete human organs with preserved spatial 3D context would have widespread implications for pre-clinical and clinical medicine. Whereas optical 3D imaging... more
    The possibility to quantitatively study specific molecular/cellular features of complete human organs with preserved spatial 3D context would have widespread implications for pre-clinical and clinical medicine. Whereas optical 3D imaging approaches have experienced a formidable revolution, they have remained limited due to current incapacities in obtaining specific labelling within large tissue volumes. We present a simple approach enabling reconstruction of antibody labeled cells within entire human organs with preserved organ context. We demonstrate the utility of the approach by providing volumetric data and 3D distribution of hundreds of thousands of islets of Langerhans within the human pancreas. By assessments of pancreata from non-diabetic and type 2 diabetic individuals, we display previously unrecognized features of the human islet mass distribution and pathology. As such, this method may contribute not only in unraveling new information of the pancreatic anatomy/pathophysi...
    The exocrine-endocrine multipart organization of the pancreas makes it an exceedingly challenging organ to analyze, quantitatively and spatially. Both in rodents and humans, estimates of the pancreatic cellular composition, including... more
    The exocrine-endocrine multipart organization of the pancreas makes it an exceedingly challenging organ to analyze, quantitatively and spatially. Both in rodents and humans, estimates of the pancreatic cellular composition, including beta-cell mass, has been largely relying on the extrapolation of 2D stereological data originating from limited sample volumes. Alternatively, they have been obtained by low resolution non-invasive imaging techniques providing little detail regarding the anatomical organization of the pancreas and its cellular and/or molecular make up. In this mini-review, the state of the art and the future potential of currently existing and emerging high-resolution optical imaging techniques working in the mm-cm range with μm resolution, here referred to as mesoscopic imaging approaches, will be discussed regarding their contribution toward a better understanding of pancreatic anatomy both in normal conditions and in the diabetic setting. In particular, optical proje...
    Mouse models of Streptozotocin (STZ) induced diabetes represent the most widely used preclinical diabetes research systems. We applied state of the art optical imaging schemes, spanning from single islet resolution to the whole organ,... more
    Mouse models of Streptozotocin (STZ) induced diabetes represent the most widely used preclinical diabetes research systems. We applied state of the art optical imaging schemes, spanning from single islet resolution to the whole organ, providing a first longitudinal, 3D-spatial and quantitative account of β-cell mass (BCM) dynamics and islet longevity in STZ-treated mice. We demonstrate that STZ-induced β-cell destruction predominantly affects large islets in the pancreatic core. Further, we show that hyperglycemic STZ-treated mice still harbor a large pool of remaining β-cells but display pancreas-wide downregulation of glucose transporter type 2 (GLUT2). Islet gene expression studies confirmed this downregulation and revealed impaired β-cell maturity. Reversing hyperglycemia by islet transplantation partially restored the expression of markers for islet function, but not BCM. Jointly our results indicate that STZ-induced hyperglycemia results from β-cell dysfunction rather than β-c...
    The possibility to assess pancreatic anatomy with microscopic resolution in three dimensions (3D) would significantly add to pathological analyses of disease processes. Pancreatic ductal adenocarcinoma (PDAC) has a bleak prognosis with... more
    The possibility to assess pancreatic anatomy with microscopic resolution in three dimensions (3D) would significantly add to pathological analyses of disease processes. Pancreatic ductal adenocarcinoma (PDAC) has a bleak prognosis with over 90% of the patients dying within 5 years after diagnosis. Cure can be achieved by surgical resection, but the efficiency remains drearily low. Here we demonstrate a method that without prior immunohistochemical labelling provides insight into the 3D microenvironment and spread of PDAC and premalignant cysts in intact surgical biopsies. The method is based solely on the autofluorescent properties of the investigated tissues using optical projection tomography and/or light-sheet fluorescence microscopy. It does not interfere with subsequent histopathological analysis and may facilitate identification of tumor-free resection margins within hours. We further demonstrate how the developed approach can be used to assess individual volumes and numbers o...
    Genetic studies show coupling of genes affecting beta cell function to type 1 diabetes, but hitherto no studies on whether beta cell dysfunction could precede insulitis and clinical onset of type 1 diabetes are available. We used... more
    Genetic studies show coupling of genes affecting beta cell function to type 1 diabetes, but hitherto no studies on whether beta cell dysfunction could precede insulitis and clinical onset of type 1 diabetes are available. We used 40-day-old BioBreeding (BB) DRLyp/Lyp rats (a model of spontaneous autoimmune type 1 diabetes) and diabetes-resistant DRLyp/+ and DR+/+ littermates (controls) to investigate beta cell function in vivo, and insulin and glucagon secretion in vitro. Beta cell mass was assessed by optical projection tomography (OPT) and morphometry. Additionally, measurements of intra-islet blood flow were performed using microsphere injections. We also assessed immune cell infiltration, cytokine expression in islets (by immunohistochemistry and qPCR), as well as islet Glut2 expression and ATP/ADP ratio to determine effects on glucose uptake and metabolism in beta cells. DRLyp/Lyp rats were normoglycaemic and without traces of immune cell infiltrates. However, IVGTTs revealed a...
    Single Photon Emission Computed Tomography (SPECT) has become a promising experimental approach to monitor changes in β-cell mass (BCM) during diabetes progression. SPECT imaging of pancreatic islets is most commonly cross-validated by... more
    Single Photon Emission Computed Tomography (SPECT) has become a promising experimental approach to monitor changes in β-cell mass (BCM) during diabetes progression. SPECT imaging of pancreatic islets is most commonly cross-validated by stereological analysis of histological pancreatic sections after insulin staining. Typically, stereological methods do not accurately determine the total β-cell volume, which is inconvenient when correlating total pancreatic tracer uptake with BCM. Alternative methods are therefore warranted to cross-validate β-cell imaging using radiotracers. In this study, we introduce multimodal SPECT - optical projection tomography (OPT) imaging as an accurate approach to cross-validate radionuclide-based imaging of β-cells. Uptake of a promising radiotracer for β-cell imaging by SPECT, (111)In-exendin-3, was measured by ex vivo-SPECT and cross evaluated by 3D quantitative OPT imaging as well as with histology within healthy and alloxan-treated Brown Norway rat pa...
    Tuberous Sclerosis Complex (TSC) is an autosomal dominant syndrome that is best characterised by neurodevelopmental deficits and the presence of benign tumours (called hamartomas) in affected organs. This multiorgan disorder results from... more
    Tuberous Sclerosis Complex (TSC) is an autosomal dominant syndrome that is best characterised by neurodevelopmental deficits and the presence of benign tumours (called hamartomas) in affected organs. This multiorgan disorder results from inactivating point mutations in either the TSC1 or the TSC2 genes and consequent activation of the canonical mammalian target of rapamycin complex 1 signalling (mTORC1) pathway. Since lesions to the eye are central to TSC diagnosis, we report here the generation and characterisation of the first eye-specific TSC mouse model. We demonstrate that conditional ablation of Tsc1 in eye committed progenitor cells leads to the accelerated differentiation and subsequent ectopic radial migration of retinal ganglion cells. This results in an increase in retinal ganglion cell apoptosis and consequent regionalized axonal loss within the optic nerve and topographical changes to the contra- and ipsilateral input within the dorsal lateral geniculate nucleus. Eyes f...
    In type 2 diabetes mellitus, there is a progressive loss of beta-cell mass. Bariatric surgery has in recent investigations showed promising results in terms of diabetes remission, but little is established regarding the effect of surgery... more
    In type 2 diabetes mellitus, there is a progressive loss of beta-cell mass. Bariatric surgery has in recent investigations showed promising results in terms of diabetes remission, but little is established regarding the effect of surgery on the survival or regeneration of pancreatic beta-cells. In this study, we aim to explore how bariatric surgery with its subsequent hormonal alterations affects the islets of Langerhans. Twenty-four Goto-Kakizaki rats were operated with duodenojejunostomy (DJ), sleeve gastrectomy (SG) or sham operation. From the 38th week after surgery, body weight, fasting blood glucose, glycosylated hemoglobin, mixed meal tolerance with repeated measures of insulin, glucagon-like peptide 1, gastrin and total ghrelin were evaluated. Forty-six weeks after surgery, the animals were euthanized and the total beta-cell mass in all animals was examined by three-dimensional volume quantification by optical projection tomography based on the signal from insulin-specific a...
    The pancreas derives from the upper, duodenal part of the foregut via a dorsal and ventral protrusion of the epithelium directly posterior to the developing stomach, and in the mouse, the early pancreatic buds become evident on embryonic... more
    The pancreas derives from the upper, duodenal part of the foregut via a dorsal and ventral protrusion of the epithelium directly posterior to the developing stomach, and in the mouse, the early pancreatic buds become evident on embryonic day 9 (e9) (Figure 1). The part of the gut from which the pancreas originates becomes committed to a pancreatic fate already at the ∼10 somites stage, i.e. at e8.5 (1). A few somites later these regions of the duodenal epithelium will begin to evaginate, thus forming the dorsal and ventral pancreatic buds. During embryogenesis the pancreatic epithelium proliferates and invades the surrounding mesenchyme and the epithelial cells differentiate and segregate into duct, acinar and endocrine cells. As the stomach and duodenum rotates, the ventral bud will move around until it eventually comes in contact and fuses with its dorsal counterpart around e13-14 (Figure 1). Figure 1  Schematic drawing illustrating the morphological movements of the pancreatic anlagen during mouse development.The pancreatic buds form as a dorsal and ventral evagination of the foregut endoderm.The rotation of the stomach and duodenum positions the pancreatic buds at the same side of the duodenum where they will eventually fuse around e1314. In all drawings, green fields correspond to the pancreatic epithelium. Abbreviations; DP, dorsal pancreas; VP, ventral pancreas; BD, bile duct (Illustration by U. Ahlgren/S. Sandström).
    Glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells depends on coordinated glucose uptake, oxidative metabolism, and Ca(2+)-triggered insulin exocytosis. Impaired GSIS is a hallmark of type 2 diabetes. However, at present... more
    Glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells depends on coordinated glucose uptake, oxidative metabolism, and Ca(2+)-triggered insulin exocytosis. Impaired GSIS is a hallmark of type 2 diabetes. However, at present we know very little about the molecular mechanisms that induce and maintain the expression of genes required for GSIS in beta-cells. The transcription factor nuclear factor-kappaB (NF-kappaB) is activated by an increase in intracellular Ca(2+) in beta-cells. Here, we show that attenuation of NF-kappaB activation in beta-cells generates mice with impaired GSIS, and that the beta-cells show perturbed expression of genes required for glucose uptake, oxidative metabolism, and insulin exocytosis. Thus, NF-kappaB appears to be part of a positive regulatory circuit that maintains GSIS in pancreatic beta-cells.
    Insulin promoter factor 1 (IPF1), is a homeodomain protein which, in the adult mouse pancreas, is selectively expressed in beta-cells, and which binds to, and transactivates, the insulin promoter via the P1 element. In mouse embryos, IPF1... more
    Insulin promoter factor 1 (IPF1), is a homeodomain protein which, in the adult mouse pancreas, is selectively expressed in beta-cells, and which binds to, and transactivates, the insulin promoter via the P1 element. In mouse embryos, IPF1 expression is initiated when the foregut endoderm commits to a pancreatic fate, i.e. prior to both morphogenesis and hormone specific gene expression. At later stages of development the expression is restricted to the dorsal and ventral walls of the primitive foregut at the positions where the pancreases will form. Mice homozygous for a targeted mutation in the Ipf1 gene selectively lack the pancreas. The mutant pups develop to term and are born alive, but die after a few days. The gastrointestinal tract with its associated organs show no obvious malformations. No pancreatic tissue and no ectopic expression of insulin or pancreatic amylase could be detected in this region in mutant neonates or embryos. These findings demonstrate that IPF1 is needed...
    Reprogramming of pancreatic exocrine cells into cells resembling beta cells may provide a strategy for treating diabetes. Here we show that transient administration of epidermal growth factor and ciliary neurotrophic factor to adult mice... more
    Reprogramming of pancreatic exocrine cells into cells resembling beta cells may provide a strategy for treating diabetes. Here we show that transient administration of epidermal growth factor and ciliary neurotrophic factor to adult mice with chronic hyperglycemia efficiently stimulates the conversion of terminally differentiated acinar cells to beta-like cells. Newly generated beta-like cells are epigenetically reprogrammed, functional and glucose responsive, and they reinstate normal glycemic control for up to 248 d. The regenerative process depends on Stat3 signaling and requires a threshold number of Neurogenin 3 (Ngn3)-expressing acinar cells. In contrast to previous work demonstrating in vivo conversion of acinar cells to beta-like cells by viral delivery of exogenous transcription factors, our approach achieves acinar-to-beta-cell reprogramming through transient cytokine exposure rather than genetic modification.
    Numerous muscle lineages are formed during myogenesis within both slow- and fast-specific cell groups. In this study, we show that six fast muscle–specific myosin heavy chain genes have unique expression patterns in the zebrafish embryo.... more
    Numerous muscle lineages are formed during myogenesis within both slow- and fast-specific cell groups. In this study, we show that six fast muscle–specific myosin heavy chain genes have unique expression patterns in the zebrafish embryo. The expression of tail-specific myosin heavy chain (fmyhc2.1) requires wnt signaling and is essential for fast muscle organization within the tail. Retinoic acid treatment results in reduced wnt signaling, which leads to loss of the fmyhc2.1 domain. Retinoic acid treatment also results in a shift of muscle identity within two trunk domains defined by expression of fmyhc1.2 and fmyhc1.3 in favor of the anteriormost myosin isoform, fmyhc1.2. In summary, we identify new muscle domains along the anteroposterior axis in the zebrafish that are defined by individual nonoverlapping, differentially regulated expression of myosin heavy chain isoforms.
    A predicament when assessing the mechanisms underlying the pathogenesis of type-1 diabetes (T1D) has been to maintain simultaneous global and regional information on the loss of insulin-cell mass and the progression of insulitis. We... more
    A predicament when assessing the mechanisms underlying the pathogenesis of type-1 diabetes (T1D) has been to maintain simultaneous global and regional information on the loss of insulin-cell mass and the progression of insulitis. We present a procedure for high-resolution 3-D analyses of regions of interest (ROIs), defined on the basis of global assessments of the 3-D distribution, size, and shape of molecularly labeled structures within the full volume of the intact mouse pancreas. We apply a refined protocol for optical projection tomography (OPT)-aided whole pancreas imaging in combination with confocal laser scanning microscopy of site-directed pancreatic microbiopsies. As such, the methodology provides a useful tool for detailed cellular and molecular assessments of the autoimmune insulitis in T1D. It is anticipated that the same approach could be applied to other areas of research where 3-D molecular distributions of both global and regional character is required.
    The capacity to record the spatial and quantitative distribution of cellular subtypes involved in diabetogenic processes is a key element in experimental diabetes research. A non-invasive technique to accurately monitor parameters such as... more
    The capacity to record the spatial and quantitative distribution of cellular subtypes involved in diabetogenic processes is a key element in experimental diabetes research. A non-invasive technique to accurately monitor parameters such as pancreatic β-cell mass (BCM) and its distribution would provide a stepping stone in understanding different aspects of diabetes pathogenesis. It would also assist in the development of therapeutic regimes by providing a tool for the evaluation of anti-diabetic drugs or other curative or diagnostic measures. At present, a range of imaging modalities are being explored for this purpose. Whereas nuclear imaging techniques, characterised by their high tissue penetration depth but relatively low spatial resolution, appear most promising for the study of humans and large animals, optical imaging enables a route to cost-effective, high sensitivity, high resolution imaging in rodent models for disease. In this commentary, the potential impact of infrared f...
    The establishment of improved technologies for imaging of the pancreas is a key element in addressing several aspects of diabetes pathogenesis. In this respect, the development of a protocol that allows for non-invasive scoring of human... more
    The establishment of improved technologies for imaging of the pancreas is a key element in addressing several aspects of diabetes pathogenesis. In this respect, the development of a protocol that allows for non-invasive scoring of human islets, or islet beta-cells, is of particular importance. The development of such a technology would have profound impact on both clinical and experimental medicine, ranging from early diagnosis of diabetes to the evaluation of therapeutic regimes. Another important task is the development of modalities for high-resolution imaging of experimental animal models for diabetes. Rodent models for diabetes research have for decades been instrumental to the diabetes research community. The ability to image, and to accurately quantify, key players of diabetogenic processes with molecular specificity will be of great importance for elucidating mechanistic aspects of the disease. This chapter aims to overview current progress within these research areas.
    Despite the extensive use of the mouse as a model for studies of pancreas development and disease, the development of the gastric pancreatic lobe has been largely overlooked. In this study we use optical projection tomography to provide a... more
    Despite the extensive use of the mouse as a model for studies of pancreas development and disease, the development of the gastric pancreatic lobe has been largely overlooked. In this study we use optical projection tomography to provide a detailed three-dimensional and quantitative description of pancreatic growth dynamics in the mouse. Hereby, we describe the epithelial and mesenchymal events leading to the formation of the gastric lobe of the pancreas. We show that this structure forms by perpendicular growth from the dorsal pancreatic epithelium into a distinct lateral domain of the dorsal pancreatic mesenchyme. Our data support a role for spleen organogenesis in the establishment of this mesenchymal domain and in mice displaying perturbed spleen development, including Dh +/-, Bapx1-/- and Sox11-/-, gastric lobe development is disturbed. We further show that the expression profile of markers for multipotent progenitors is delayed in the gastric lobe as compared to the splenic and...

    And 10 more