Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Barry Himes

    ABSTRACT
    Research Interests:
    Adult mammalian CNS neurons do not normally regenerate their severed axons. This failure has been attributed to scar tissue and inhibitory molecules at the injury site that block the regenerating axons, a lack of trophic support for the... more
    Adult mammalian CNS neurons do not normally regenerate their severed axons. This failure has been attributed to scar tissue and inhibitory molecules at the injury site that block the regenerating axons, a lack of trophic support for the axotomized neurons, and intrinsic neuronal changes that follow axotomy, including cell atrophy and death. We studied whether transplants of fibroblasts genetically engineered to produce brain-derived neurotrophic factor (BDNF) would promote rubrospinal tract (RST) regeneration in adult rats. Primary fibroblasts were modified by retroviral-mediated transfer of a DNA construct encoding the human BDNF gene, an internal ribosomal entry site, and a fusion gene of lacZ and neomycin resistance genes. The modified fibroblasts produce biologically active BDNF in vitro. These cells were grafted into a partial cervical hemisection cavity that completely interrupted one RST. One and two months after lesion and transplantation, RST regeneration was demonstrated w...
    Cytoskeletal proteins are axonally transported with slow components a and b (SCa and SCb). In peripheral nerves, the transport velocity of SCa, which includes neurofilaments and tubulin, is 1-2 mm/d, whereas SCb, which includes actin,... more
    Cytoskeletal proteins are axonally transported with slow components a and b (SCa and SCb). In peripheral nerves, the transport velocity of SCa, which includes neurofilaments and tubulin, is 1-2 mm/d, whereas SCb, which includes actin, tubulin, and numerous soluble proteins, moves as a heterogeneous wave at 2-4 mm/d. We have shown that two isoforms of microtubule-associated protein 1B (MAP1B), which can be separated on SDS polyacrylamide gels on the basis of differences in their phosphorylation states (band I and band II), were transported at two different rates. All of band I MAP1B moved as a coherent wave at a velocity of 7-9 mm/d, distinct from slow axonal transport components SCa and SCb. Several other proteins were detected within the component that moved at the velocity of 7-9 mm/d, including the leading wave of tubulin and actin. The properties of this component define a distinct fraction of the slow axonal transport that we suggest to term slow component c (SCc). The relative...
    The primary sensory axons injured by spinal root injuries fail to regenerate into the spinal cord, leading to chronic pain and permanent sensory loss. Regeneration of dorsal root (DR) axons into spinal cord is prevented at the dorsal root... more
    The primary sensory axons injured by spinal root injuries fail to regenerate into the spinal cord, leading to chronic pain and permanent sensory loss. Regeneration of dorsal root (DR) axons into spinal cord is prevented at the dorsal root entry zone (DREZ), the interface between the CNS and PNS. Our understanding of the molecular and cellular events that prevent regeneration at DREZ is incomplete, in part because complex changes associated with nerve injury have been deduced from postmortem analyses. Dynamic cellular processes, such as axon regeneration, are best studied with techniques that capture real-time events with multiple observations of each living animal. Our ability to monitor neurons serially in vivo has increased dramatically owing to revolutionary innovations in optics and mouse transgenics. Several lines of thy1-GFP transgenic mice, in which subsets of neurons are genetically labeled in distinct fluorescent colors, permit individual neurons to be imaged in vivo(1). These mice have been used extensively for in vivo imaging of muscle(2-4) and brain(5-7), and have provided novel insights into physiological mechanisms that static analyses could not have resolved. Imaging studies of neurons in living spinal cord have only recently begun. Lichtman and his colleagues first demonstrated their feasibility by tracking injured dorsal column (DC) axons with wide-field microscopy(8,9). Multi-photon in vivo imaging of deeply positioned DC axons, microglia and blood vessels has also been accomplished(10). Over the last few years, we have pioneered in applying in vivo imaging to monitor regeneration of DR axons using wide-field microscopy and H line of thy1-YFP mice. These studies have led us to a novel hypothesis about why DR axons are prevented from regenerating within the spinal cord(11). In H line of thy1-YFP mice, distinct YFP+ axons are superficially positioned, which allows several axons to be monitored simultaneously. We have learned that DR axons arriving at DREZ are better imaged in lumbar than in cervical spinal cord. In the present report we describe several strategies that we have found useful to assure successful long-term and repeated imaging of regenerating DR axons. These include methods that eliminate repeated intubation and respiratory interruption, minimize surgery-associated stress and scar formation, and acquire stable images at high resolution without phototoxicity.
    To determine whether embryonic spinal cord transplants retained the ability to prevent retrograde death of Clarke's nucleus (CN) neurons if supplied after a delay, we hemisected adult rats at the T8 spinal cord segment and placed... more
    To determine whether embryonic spinal cord transplants retained the ability to prevent retrograde death of Clarke's nucleus (CN) neurons if supplied after a delay, we hemisected adult rats at the T8 spinal cord segment and placed transplants of fetal tissue into the hemisection cavity immediately or up to 14 days later. Transplants provided in the first 7 days after injury prevented virtually all of the 30% loss of CN neurons at L1 ipsilateral to hemisection that occurs without a transplant. Transplants supplied at 14 days post-hemisection were ineffective. Because prevention of retrograde neuron death is one mechanism by which transplants may contribute to locomotor recovery after spinal cord injury, this window of effectiveness should be considered in the design of clinical trials.
    This study evaluates functional recovery after transplanting human bone marrow-derived stromal cells (BMSCs) into contusion models of spinal cord injury (SCI). The authors used a high-throughput process to expand BMSCs and characterized... more
    This study evaluates functional recovery after transplanting human bone marrow-derived stromal cells (BMSCs) into contusion models of spinal cord injury (SCI). The authors used a high-throughput process to expand BMSCs and characterized them by flow cytometry, ELISA, and gene expression. They found that BMSCs secrete neurotrophic factors and cytokines with therapeutic potential for cell survival and axon growth. In adult immune-suppressed rats, mild, moderate, or severe contusions were generated using the MASCIS impactor. One week following injury, 0.5 to 1 x 106 BMSCs were injected into the lesioned spinal cord; control animals received vehicle injection. Biweekly behavioral tests included the Basso, Beattie, and Bresnahan Locomotor Rating Scale (BBB), exploratory rearing, grid walking, and thermal sensitivity. Animals receiving moderate contusions followed by BMSC grafts showed significant behavioral recovery in BBB and rearing tests when compared to controls. Animals receiving BMSC grafts after mild or severe contusion showed trends toward improved recovery. Immunocytochemistry identified numerous axons passing through the injury in animals with BMSC grafts but few in controls. BMSCS were detected at 2 weeks after transplantation; however, at 11 weeks very few grafted cells remained. The authors conclude that BMSCs show potential for repairing SCI. However, the use of carefully characterized BMSCs improved transplantation protocols ensuring BMSC, survival, and systematic motor and sensory behavioral testing to identify robust recovery is imperative for further improvement.
    ABSTRACT We examined the distribution of several extracellular matrix molecules (ECM) and their relationship to regenerating axons in embryonic day 14 spinal cord transplants 1 to 12 weeks after transplantation into adult rats. We used... more
    ABSTRACT We examined the distribution of several extracellular matrix molecules (ECM) and their relationship to regenerating axons in embryonic day 14 spinal cord transplants 1 to 12 weeks after transplantation into adult rats. We used immunocytochemical tech niques to label chondroitin sulfate proteoglycans (CSPGs) and tenascin-C in adjacent sections. Synthesis of these molecules by astrocytes is thought to be one mechanism by which astrocytes inhibit regeneration in the central nervous system (CNS); glial fibrillary acidic protein antibody was used to label astrocytes and examine their rela tionship to both the ECM molecules and regenerating calcitonin gene-related pep tide (CORP)-contammg dorsal roots. We also compared the expression and distribu tion of these five markers in transplants with normal spinal cord development.
    The authors investigated the feasibility of using injectable hydrogels, based on poly(N-isopropylacrylamide) (PNIPAAm), lightly cross-linked with polyethylene glycol (PEG) or methylcellulose (MC), to serve as injectable scaffolds for... more
    The authors investigated the feasibility of using injectable hydrogels, based on poly(N-isopropylacrylamide) (PNIPAAm), lightly cross-linked with polyethylene glycol (PEG) or methylcellulose (MC), to serve as injectable scaffolds for local delivery of neurotrophins and cellular transplants into the injured spinal cord. The primary aims of this work were to assess the biocompatibility of the scaffolds by evaluating graft cell survival and the host tissue immune response. The scaffolds were also evaluated for their ability to promote axonal growth through the action of released brain-derived neurotrophic factor (BDNF). The in vivo performance of PNIPAAm-g-PEG and PNIPAAm-g-MC was evaluated using a rodent model of spinal cord injury (SCI). The hydrogels were injected as viscous liquids into the injury site and formed space-filling hydrogels. The host immune response and biocompatibility of the scaffolds were evaluated at 2 weeks by histological and fluorescent immunohistochemical analysis. Commercially available matrices were used as a control and examined for comparison. Experiments showed that the scaffolds did not contribute to an injury-related inflammatory response. PNIPAAm-g-PEG was also shown to be an effective vehicle for delivery of cellular transplants and supported graft survival. Additionally, PNIPAAm-g-PEG and PNIPAAm-g-MC are permissive to axonal growth and can serve as injectable scaffolds for local delivery of BDNF. Based on the results, the authors suggest that these copolymers are feasible injectable scaffolds for cell grafting into the injured spinal cord and for delivery of therapeutic factors.
    In a follow-up study to their prior work, the authors evaluated a novel delivery system for a previously established treatment for spinal cord injury (SCI), based on a poly(N-isopropylacrylamide) (PNIPAAm), lightly cross-linked with a... more
    In a follow-up study to their prior work, the authors evaluated a novel delivery system for a previously established treatment for spinal cord injury (SCI), based on a poly(N-isopropylacrylamide) (PNIPAAm), lightly cross-linked with a polyethylene glycol (PEG) injectable scaffold. The primary aim of this work was to assess the recovery of both spontaneous and skilled forelimb function following a cervical dorsolateral funiculotomy in the rat. This injury ablates the rubrospinal tract (RST) but spares the dorsal and ventral corticospinal tract and can severely impair reaching and grasping abilities. Animals received an implant of either PNIPAAm-g-PEG or PNIPAAm-g-PEG + brain-derived neurotrophic factor (BDNF). The single-pellet reach-to-grasp task and the staircase-reaching task were used to assess skilled motor function associated with reaching and grasping abilities, and the cylinder task was used to assess spontaneous motor function, both before and after injury. Because BDNF can stimulate regenerating RST axons, the authors showed that animals receiving an implant of PNIPAAm-g-PEG with codissolved BDNF had an increased recovery rate of fine motor function when compared with a control group (PNIPAAm-g-PEG only) on both a staircase-reaching task at 4 and 8 weeks post-SCI and on a single-pellet reach-to-grasp task at 5 weeks post-SCI. In addition, spontaneous motor function, as measured in the cylinder test, recovered to preinjury values in animals receiving PNIPAAm-g-PEG + BDNF. Fluorescence immunochemistry indicated the presence of both regenerating axons and BDA-labeled fibers growing up to or within the host-graft interface in animals receiving PNIPAAm-g-PEG + BDNF. Based on their results, the authors suggest that BDNF delivered by the scaffold promoted the growth of RST axons into the lesion, which may have contributed in part to the increased recovery rate.
    In the present investigation, we studied whether neurotrophin-3 (NT-3) contributes to the rescue of axotomized Clarke's nucleus (CN) neurons in adult rats. A significant (24%) loss of CN neurons occurred at L-1 ipsilateral to T-8... more
    In the present investigation, we studied whether neurotrophin-3 (NT-3) contributes to the rescue of axotomized Clarke's nucleus (CN) neurons in adult rats. A significant (24%) loss of CN neurons occurred at L-1 ipsilateral to T-8 hemisection by 14 days, which reached 31% at 2 months and then stabilized. Axotomized CN neurons had also atrophied by 14 days, but mean cell size did not decrease further. Animals that received gelfoam soaked in nerve growth factor, brain derived neurotrophic factor, or ciliary neurotrophic factor at the lesion site also showed a 30% neuron loss at 2 months, and a 40% reduction in average cell area. Rats receiving NT-3 showed a 15% neuron loss, which was not improved by additional neurotrophins in combination with NT-3. None of the treatments prevented neuron atrophy. Bioassay of the gelfoam showed that NT-3 bioactivity remained at 5 days after surgery but not at 14 days. Additional rats with hemisections that received NT-3 continuously via mini-pump for 2 months showed a 15% neuron loss, the same as with NT-3 given via gelfoam. These results indicate that even limited exposure of axotomized CN neurons to NT-3 produces permanent rescue of 50% of the neurons. The virtually complete rescue that we had previously observed with transplants of fetal central nervous system (CNS) tissues may, therefore, be due at least in part to NT-3, but the exogenous administration of a single neurotrophic factor or a combination of neurotrophic factors is less effective than transplants in producing long-term survival of axotomized CNS neurons.
    Bone marrow stromal cells (MSC) are attractive candidates for developing cell therapies for central nervous system (CNS) disorders. They can be easily obtained, expanded in culture, and promote modest functional recovery following... more
    Bone marrow stromal cells (MSC) are attractive candidates for developing cell therapies for central nervous system (CNS) disorders. They can be easily obtained, expanded in culture, and promote modest functional recovery following transplantation into animal models of injured or degenerative CNS. While syngeneic MSC grafts can be used efficiently, achieving long-term survival of allogeneic MSC grafts has been a challenge. We hypothesize that improved graft survival will enhance the functional recovery promoted by MSC. To improve MSC graft survival, we tested two dosages of the immune suppressant cyclosporin A (CsA) in an allogeneic model. Syngeneic transplantation of MSC where cells survive well without immune suppression was used as a control. Sprague-Dawley rats treated with standard dose (n = 12) or high-dose (n = 12) CsA served as allogeneic hosts; Fisher 344 rats (n = 12) served as syngeneic hosts. MSC were derived from transgenic Fisher 344 rats expressing human placental alkaline phosphatase and were grafted into cervical spinal cord. Animals treated with standard dose CsA showed significant decreases in allograft size 4 weeks posttransplantation; high CsA doses yielded significantly better graft survival 4 and 8 weeks posttransplantation compared to standard CsA. As expected, syngeneic MSC transplants showed good graft survival after 4 and 8 weeks. To investigate MSC graft elimination, we analyzed immune cell infiltration and cell death. Macrophage infiltration was high after 1 week in all groups. After 4 weeks, high-dose CsA and syngeneic animals showed significant reductions in macrophages at the graft site. Few T lymphocytes were detected in any group at each time point. Cell death occurred throughout the study; however, little apoptotic activity was detected. Histochemical analysis revealed no evidence of neural differentiation. These results indicate that allogeneic transplantation with appropriate immune suppression permits long-term survival of MSC; thus, both allogeneic and syngeneic strategies could be utilized in devising novel therapies for CNS injury.