Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Billy Yiu

    Plane wave compounding is a useful mode for ultrasound imaging because it can make a good compromise between imaging quality and frame rate. It is also useful for broad view ultrasound imaging. Traditional coherent plane wave compounding... more
    Plane wave compounding is a useful mode for ultrasound imaging because it can make a good compromise between imaging quality and frame rate. It is also useful for broad view ultrasound imaging. Traditional coherent plane wave compounding coherently sums the echo data of different steered transmitting waves as the output. The data correlation information of different emissions is not considered. Therefore, some adaptive techniques can be introduced into the compounding procedure. In this paper, we propose a Joint Transmitting-Receiving (JTR) adaptive beamforming scheme for plane wave compounding. Unlike traditional adaptive beamformers, the proposed beamforming scheme is designed for the 2-D data set obtained from multiple plane wave firings. It calculates both the transmitting aperture weights and the receiving aperture weights and then combines them into a 2-D adaptive weight function for compounding. Experiments are conducted on both simulated and phantom data. Results show that t...
    Field-programmable gate arrays (FPGAs) can potentially be configured as beamforming platforms for ultrasound imaging, but a long design time and skilled expertise in hardware programming are typically required. In this article, we present... more
    Field-programmable gate arrays (FPGAs) can potentially be configured as beamforming platforms for ultrasound imaging, but a long design time and skilled expertise in hardware programming are typically required. In this article, we present a novel approach to the efficient design of FPGA beamformers for synthetic aperture (SA) imaging via the use of software-based high-level synthesis techniques. Software kernels (coded in OpenCL) were first developed to stage-wise handle SA beamforming operations, and their corresponding FPGA logic circuitry was emulated through a high-level synthesis framework. After design space analysis, the fine-tuned OpenCL kernels were compiled into register transfer level descriptions to configure an FPGA as a beamformer module. The processing performance of this beamformer was assessed through a series of offline emulation experiments that sought to derive beamformed images from SA channel-domain raw data (40-MHz sampling rate, 12 bit resolution). With 128 channels, our FPGA-based SA beamformer can achieve 41 frames per second (fps) processing throughput (3.44 × 10(8) pixels per second for frame size of 256 × 256 pixels) at 31.5 W power consumption (1.30 fps/W power efficiency). It utilized 86.9% of the FPGA fabric and operated at a 196.5 MHz clock frequency (after optimization). Based on these findings, we anticipate that FPGA and high-level synthesis can together foster rapid prototyping of real-time ultrasound processor modules at low power consumption budgets.
    Minimum variance (MV) beamforming has emerged as an adaptive apodization approach to bolster the quality of images generated from synthetic aperture ultrasound imaging methods that are based on unfocused transmission principles. In this... more
    Minimum variance (MV) beamforming has emerged as an adaptive apodization approach to bolster the quality of images generated from synthetic aperture ultrasound imaging methods that are based on unfocused transmission principles. In this article, we describe a new high-speed, pixel-based MV beamforming framework for synthetic aperture imaging to form entire frames of adaptively apodized images at real-time throughputs and document its performance in swine eye imaging case examples. Our framework is based on parallel computing principles, and its real-time operational feasibility was realized on a six-GPU (graphics processing unit) platform with 3,072 computing cores. This framework was used to form images with synthetic aperture imaging data acquired from swine eyes (based on virtual point-source emissions). Results indicate that MV-apodized image formation with video-range processing throughput (>20 fps) can be realized for practical aperture sizes (128 channels) and frames with ...
    ABSTRACT Analysis of the complex blood flow pattern in the carotid bifurcation is clinically important to the diagnosis of carotid stenoses. We hypothesize that the use of high frame rate imaging methods such as plane wave excitation,... more
    ABSTRACT Analysis of the complex blood flow pattern in the carotid bifurcation is clinically important to the diagnosis of carotid stenoses. We hypothesize that the use of high frame rate imaging methods such as plane wave excitation, together with vector flow estimators like block matching, may potentially be a suitable imaging problem to this problem. This paper presents our team's initial efforts in developing a high frame rate vector flow imaging framework that is based on plane wave excitation principles and a high dynamic range block matching algorithm that incorporates least squares fitting principles. We have conducted a series of Field II simulations on straight tubes and carotid bifurcation to evaluate the estimation accuracy and imaging performance of our framework. Results indicate that high-frame-rate vector flow imaging is capable of visualizing complex blood flow. It has potential to be further developed into a new clinical technique for vascular diagnoses.
    The use of adaptive beamforming is a viable solution to provide high-resolution real-time medical ultrasound imaging. However, the increase in image resolution comes at an expense of a significant increase in compute requirement over... more
    The use of adaptive beamforming is a viable solution to provide high-resolution real-time medical ultrasound imaging. However, the increase in image resolution comes at an expense of a significant increase in compute requirement over conventional algorithms. In a bedside diagnosis setting where plug-in power is available, GPUs are promising accelerators to address the processing demand. However, in the case of
    ... These trial runs are conducted on SAI and PWI test data acquired using a pre-beamform data acquisition system [15] that is connected to a reconfigured research scanner (Sonix-RP; Ultrasonix, Richmond, Canada). ... Symp., pp.... more
    ... These trial runs are conducted on SAI and PWI test data acquired using a pre-beamform data acquisition system [15] that is connected to a reconfigured research scanner (Sonix-RP; Ultrasonix, Richmond, Canada). ... Symp., pp. 1403-1406, 2009. [9] N. Deshmukh, H. Rivaz, and ...
    Page 1. A Modified Synthetic Aperture Imaging Approach with Axial Motion Compensation Billy YS Yiu, Ivan KH Tsang, and Alfred CH Yu Medical Engineering Program, The University of Hong Kong, Pokfulam, Hong Kong SAR ...
    Page 1. A Least-Squares Vector Flow Estimator for Synthetic Aperture Imaging Ivan KH Tsang, Billy YS Yiu, and Alfred CH Yu Medical Engineering Program, The University of Hong Kong, Pokfulam, Hong Kong SAR Emails: ivan_tsang@hku.hk,... more
    Page 1. A Least-Squares Vector Flow Estimator for Synthetic Aperture Imaging Ivan KH Tsang, Billy YS Yiu, and Alfred CH Yu Medical Engineering Program, The University of Hong Kong, Pokfulam, Hong Kong SAR Emails: ivan_tsang@hku.hk, ysyiu@hku.hk, alfred.yu@hku.hk ...
    ABSTRACT Vector Doppler ultrasound (VDUS) systems offer the potential for improved accuracy in mapping of complex flow parameters, such as recirculation, turbulence, and shear stress which are probable risk factors leading to vascular... more
    ABSTRACT Vector Doppler ultrasound (VDUS) systems offer the potential for improved accuracy in mapping of complex flow parameters, such as recirculation, turbulence, and shear stress which are probable risk factors leading to vascular disease and stroke. Cross-beam VDUS systems were evaluated for velocity accuracy to optimize the number of receivers for the inter-beam angle, wall filter, system orientation, and complexity of flow seen in a stenosed carotid artery. Preliminary results for velocity estimation show promise for validation of numerical results.
    ABSTRACT A real-time adaptive minimum variance (MV) beamformer realized using graphics processing units (GPUs) is presented. MV adaptive beamforming technique is attractive as it is capable of producing high quality images with narrow... more
    ABSTRACT A real-time adaptive minimum variance (MV) beamformer realized using graphics processing units (GPUs) is presented. MV adaptive beamforming technique is attractive as it is capable of producing high quality images with narrow mainlobe width and low sidelobe level. However, because of its substantially higher computational requirements, realizing MV in real-time has been prohibitively difficult. Recent advancements in commodity GPUs have made very high performance computing possible at very affordable price. Using a commercial off-the-shelf GPU, an MV beamformer achieving real-time performance has been realized. Tradeoffs between computational throughput and image quality have been studied. Careful selection of algorithm parameters, including receive aperture and sub-aperture size, was demonstrated to be imperative for achieving real-time performance without sacrificing image qualities.
    Anatomically realistic flow phantoms are essential experimental tools for vascular ultrasound. Here we describe how these flow phantoms can be efficiently developed via a rapid prototyping (RP) framework that involves direct fabrication... more
    Anatomically realistic flow phantoms are essential experimental tools for vascular ultrasound. Here we describe how these flow phantoms can be efficiently developed via a rapid prototyping (RP) framework that involves direct fabrication of compliant vessel geometries. In this framework, anthropomorphic vessel models were drafted in computer-aided design software, and they were fabricated using stereolithography (one type of RP). To produce elastic vessels, a compliant photopolymer was used for stereolithography. We fabricated a series of compliant, diseased carotid bifurcation models with eccentric stenosis (50%) and plaque ulceration (types I and III), and they were used to form thin-walled flow phantoms by coupling the vessels to an agar-based tissue-mimicking material. These phantoms were found to yield Doppler spectrograms with significant spectral broadening and color flow images with mosaic patterns, as typical of disturbed flow under stenosed and ulcerated disease conditions. Also, their wall distension behavior was found to be similar to that observed in vivo, and this corresponded with the vessel wall's average elastic modulus (391 kPa), which was within the nominal range for human arteries. The vessel material's acoustic properties were found to be sub-optimal: the estimated average acoustic speed was 1801 m/s, and the attenuation coefficient was 1.58 dB/(mm·MHz(n)) with a power-law coefficient of 0.97. Such an acoustic mismatch nevertheless did not notably affect our Doppler spectrograms and color flow image results. These findings suggest that phantoms produced from our design framework have the potential to serve as ultrasound-compatible test beds that can simulate complex flow dynamics similar to those observed in real vasculature.
    Achieving non-invasive, accurate and time-resolved imaging of vascular flow with spatiotemporal fluctuations is well acknowledged to be an ongoing challenge. In this article, we present a new ultrasound-based framework called vector... more
    Achieving non-invasive, accurate and time-resolved imaging of vascular flow with spatiotemporal fluctuations is well acknowledged to be an ongoing challenge. In this article, we present a new ultrasound-based framework called vector projectile imaging (VPI) that can dynamically render complex flow patterns over an imaging view at millisecond time resolution. VPI is founded on three principles: (i) high-frame-rate broad-view data acquisition (based on steered plane wave firings); (ii) flow vector estimation derived from multi-angle Doppler analysis (coupled with data regularization and least-squares fitting); (iii) dynamic visualization of color-encoded vector projectiles (with flow speckles displayed as adjunct). Calibration results indicated that by using three transmit angles and three receive angles (-10°, 0°, +10° for both), VPI can consistently compute flow vectors in a multi-vessel phantom with three tubes positioned at different depths (1.5, 4, 6 cm), oriented at different angles (-10°, 0°, +10°) and of different sizes (dilated diameter: 2.2, 4.4 and 6.3 mm; steady flow rate: 2.5 mL/s). The practical merit of VPI was further illustrated through an anthropomorphic flow phantom investigation that considered both healthy and stenosed carotid bifurcation geometries. For the healthy bifurcation with 1.2-Hz carotid flow pulses, VPI was able to render multi-directional and spatiotemporally varying flow patterns (using a nominal frame rate of 416 fps or 2.4-ms time resolution). In the case of stenosed bifurcations (50% eccentric narrowing), VPI enabled dynamic visualization of flow jet and recirculation zones. These findings suggest that VPI holds promise as a new tool for complex flow analysis.
    Page 1. Design of a Multi-Channel Pre-Beamform Data Acquisition System for an Ultrasound Research Scanner Ivan KH Tsang*, Billy YS Yiu*, Dave KH Cheung*, Harry CT Chiu*, Chris CP Cheung†, and Alfred CH Yu* * Medical ...
    Realization of flow imaging at high frame rates is essential to the visualization of complex flow patterns with fast-changing spatiotemporal dynamics. In this study, we present an experimental demonstration of a novel ultrasound-based... more
    Realization of flow imaging at high frame rates is essential to the visualization of complex flow patterns with fast-changing spatiotemporal dynamics. In this study, we present an experimental demonstration of a novel ultrasound-based high-frame-rate flow visualization technique called color-encoded speckle imaging (CESI), which depicts flow information in a hybrid form comprising flow speckle pattern and color-encoded velocity mapping. This technique works by integrating two key principles: (i) using broad-view data acquisition schemes like plane wave compounding to obtain image data at frame rates well beyond the video display range and (ii) deriving and displaying both flow speckles and velocity estimates from the acquired broad-view image data. CESI was realized on a channel-domain ultrasound imaging research platform, and its performance was evaluated in the context of monitoring complex flow dynamics inside a carotid bifurcation flow phantom with 25% eccentric stenosis at the inlet of the internal carotid artery. Results show that, using an imaging frame rate of 2000 frames per second (based on plane wave compounding with five steering angles), CESI can effectively render flow acceleration and deceleration with visual continuity. It is also effective in depicting how stenosis-related flow disturbance events, such as flow jet formation and post-stenotic flow recirculation, evolve spatiotemporally over a pulse cycle. We anticipate that CESI can represent a rational approach to rendering flow information in ultrasound-based vascular diagnoses.
    ABSTRACT Non-invasive imaging of blood flow at over 100 fps (i.e. beyond video display range) is known to be of clinical interest given that such a high frame rate is essential for coherent visualization of complex hemodynamic events like... more
    ABSTRACT Non-invasive imaging of blood flow at over 100 fps (i.e. beyond video display range) is known to be of clinical interest given that such a high frame rate is essential for coherent visualization of complex hemodynamic events like flow turbulence. From a technical standpoint, getting into this frame rate range has became possible with the advent of broad-view ultrasound imaging paradigms that can track motion over an entire field-of-view using few pulse-echo firings. Leveraging on an imaging paradigm known as plane wave excitation, a novel high-frame-rate flow visualization technique has been developed to depict both blood speckle motion (using B-flow imaging principles) and flow velocities (using conventional color flow imaging principles). Experimental demonstration of this method has been carried out using a channel-domain research platform that supports real-time pre-beamformed data acquisition (SonixDAQ) and a high-throughput processing engine that is based upon graphical processing unit technology (developed in-house by the authors). In a case with a 417 fps frame rate (based on 5000 Hz pulse repetition frequency and slow-time ensemble size of 12), results show that high-frame-rate velocity-coded speckle imaging can more coherently trace fast-moving blood flow than conventional color flow imaging. Acknowledgement: Research Grants Council of Hong Kong (GRF 785811M).
    Although they show potential to improve ultrasound image quality, plane wave (PW) compounding and synthetic aperture (SA) imaging are computationally demanding and are known to be challenging to implement in real-time. In this work, we... more
    Although they show potential to improve ultrasound image quality, plane wave (PW) compounding and synthetic aperture (SA) imaging are computationally demanding and are known to be challenging to implement in real-time. In this work, we have developed a novel beamformer architecture with the real-time parallel processing capacity needed to enable fast realization of PW compounding and SA imaging. The beamformer hardware comprises an array of graphics processing units (GPUs) that are hosted within the same computer workstation. Their parallel computational resources are controlled by a pixel-based software processor that includes the operations of analytic signal conversion, delay-and-sum beamforming, and recursive compounding as required to generate images from the channel-domain data samples acquired using PW compounding and SA imaging principles. When using two GTX-480 GPUs for beamforming and one GTX-470 GPU for recursive compounding, the beamformer can compute compounded 512 x 255 pixel PW and SA images at throughputs of over 4700 fps and 3000 fps, respectively, for imaging depths of 5 cm and 15 cm (32 receive channels, 40 MHz sampling rate). Its processing capacity can be further increased if additional GPUs or more advanced models of GPU are used.
    ABSTRACT Medical ultrasound imaging stands out from other modalities in providing real-time diagnostic capability at an affordable price while being physically portable. This article explores the suitability of using GPUs as the primary... more
    ABSTRACT Medical ultrasound imaging stands out from other modalities in providing real-time diagnostic capability at an affordable price while being physically portable. This article explores the suitability of using GPUs as the primary signal and image processors for future medical ultrasound imaging systems. A case study on synthetic aperture (SA) imaging illustrates the promise of using high-performance GPUs in such systems.