Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Carl Caleman

    The first soft X-ray free-electron laser has recently been put into operation at DESY in Hamburg. Tunable soft X-ray coherent radiation can be generated at the FLASH (Free-electron LASer in Hamburg; formerly known as VUV FEL or TTF2 FEL).... more
    The first soft X-ray free-electron laser has recently been put into operation at DESY in Hamburg. Tunable soft X-ray coherent radiation can be generated at the FLASH (Free-electron LASer in Hamburg; formerly known as VUV FEL or TTF2 FEL). In the interaction experiments reported here, the laser system provided ~ 25-fs, ~ 10-μ J pulses of 32-nm radiation. We irradiated
    Serial femtosecond X-ray crystallography of protein nanocrystals using ultrashort and intense pulses from an X-ray free-electron laser has proved to be a successful method for structural determination. However, due to significant... more
    Serial femtosecond X-ray crystallography of protein nanocrystals using ultrashort and intense pulses from an X-ray free-electron laser has proved to be a successful method for structural determination. However, due to significant variations in diffraction pattern quality from pulse to pulse only a fraction of the collected frames can be used. Experimentally, the X-ray temporal pulse profile is not known and can vary with every shot. This simulation study describes how the pulse shape affects the damage dynamics, which ultimately affects the biological interpretation of electron density. The instantaneously detected signal varies during the pulse exposure due to the pulse properties, as well as the structural and electronic changes in the sample. Here ionization and atomic motion are simulated using a radiation transfer plasma code. Pulses with parameters typical for X-ray free-electron lasers are considered: pulse energies ranging from 10(4) to 10(7) J cm(-2) with photon energies fr...
    X-ray free-electron lasers have opened up the possibility of structure determination of protein crystals at room temperature, free of radiation damage. The femtosecond-duration pulses of these sources enable diffraction signals to be... more
    X-ray free-electron lasers have opened up the possibility of structure determination of protein crystals at room temperature, free of radiation damage. The femtosecond-duration pulses of these sources enable diffraction signals to be collected from samples at doses of 1000 MGy or higher. The sample is vaporized by the intense pulse, but not before the scattering that gives rise to the diffraction pattern takes place. Consequently, only a single flash diffraction pattern can be recorded from a crystal, giving rise to the method of serial crystallography where tens of thousands of patterns are collected from individual crystals that flow across the beam and the patterns are indexed and aggregated into a set of structure factors. The high-dose tolerance and the many-crystal averaging approach allow data to be collected from much smaller crystals than have been examined at synchrotron radiation facilities, even from radiation-sensitive samples. Here, we review the interaction of intense...
    In structural determination of crystalline proteins using intense femtosecond X-ray lasers, damage processes lead to loss of structural coherence during the exposure. We use a nonthermal description for the damage dynamics to calculate... more
    In structural determination of crystalline proteins using intense femtosecond X-ray lasers, damage processes lead to loss of structural coherence during the exposure. We use a nonthermal description for the damage dynamics to calculate the ultrafast ionization and the subsequent atomic displacement. These effects degrade the Bragg diffraction on femtosecond time scales and gate the ultrafast imaging. This process is intensity and resolution dependent. At high intensities the signal is gated by the ionization affecting low resolution information first. At lower intensities, atomic displacement dominates the loss of coherence affecting high-resolution information. We find that pulse length is not a limiting factor as long as there is a high enough X-ray flux to measure a diffracted signal.
    Proteins that contain metal cofactors are expected to be highly radiation sensitive since the degree of X-ray absorption correlates with the presence of high-atomic-number elements and X-ray energy. To explore the effects of local damage... more
    Proteins that contain metal cofactors are expected to be highly radiation sensitive since the degree of X-ray absorption correlates with the presence of high-atomic-number elements and X-ray energy. To explore the effects of local damage in serial femtosecond crystallography (SFX), Clostridium ferredoxin was used as a model system. The protein contains two [4Fe-4S] clusters that serve as sensitive probes for radiation-induced electronic and structural changes. High-dose room-temperature SFX datasets were collected at the Linac Coherent Light Source of ferredoxin microcrystals. Difference electron density maps calculated from high-dose SFX and synchrotron data show peaks at the iron positions of the clusters, indicative of decrease of atomic scattering factors due to ionization. The electron density of the two [4Fe-4S] clusters differs in the FEL data, but not in the synchrotron data. Since the clusters differ in their detailed architecture, this observation is suggestive of an influ...
    ABSTRACT The concentration of hydronium and hydroxide at the water-air interface has been debated for a long time. Recent evidence from a range of experiments and theoretical calculations strongly suggests the water surface to be somewhat... more
    ABSTRACT The concentration of hydronium and hydroxide at the water-air interface has been debated for a long time. Recent evidence from a range of experiments and theoretical calculations strongly suggests the water surface to be somewhat acidic. Using novel polarizable models we have performed potential of mean force calculations of a hydronium ion, a hydroxide ion and a water molecule in a water droplet and a water slab and we were able to rationalize that hydronium, but not hydroxide, is slightly enriched at the surface for two reasons. First, because the hydrogen bond acceptance capacity of hydronium is weaker than water and it is more favorable to have the hydronium oxygen on the surface. Second, hydroxide ions are expelled from the surface of the droplets, due to the entropy being lower when a hydroxide ion is hydrated on the surface. As a result, the water dissociation constant pKw increases slightly near the surface. The results are corroborated by calculations of surface tension of NaOH solutions that are in reasonable agreement with the experiment. The structural and thermodynamic interpretation of hydronium and hydroxide hydration provided by these calculations opens the route to a better understanding of atmospheric and surface chemistry.
    We present a study of the characteristics of secondary electron cascades in two photocathode materials, KI and CsI. To do so, we have employed a model that enables us to explicitly follow the electron trajectories once the dielectric... more
    We present a study of the characteristics of secondary electron cascades in two photocathode materials, KI and CsI. To do so, we have employed a model that enables us to explicitly follow the electron trajectories once the dielectric properties have been derived ...
    ... and Karol Nass“ and Dusko Odie“ and Emanuele Pedersoli“ and Christian Reich“ and Daniel Rollesci“ and Benedikt... more
    ... and Karol Nass“ and Dusko Odie“ and Emanuele Pedersoli“ and Christian Reich“ and Daniel Rollesci“ and Benedikt Rudek“'“ and Artem Rudenko“'“ and Carlo Schmidt“'“ and Joachim Schulz“ and M. Marvin Seibert“ and Robert L. Shoeman“ and Raymond G. Sierra“ and Heike ...
    At the recently built FLASH x-ray free-electron laser, we studied the reflectivity of Si/C multilayers with fluxes up to 3 x 10(14) W/cm2. Even though the nanostructures were ultimately completely destroyed, we found that they maintained... more
    At the recently built FLASH x-ray free-electron laser, we studied the reflectivity of Si/C multilayers with fluxes up to 3 x 10(14) W/cm2. Even though the nanostructures were ultimately completely destroyed, we found that they maintained their integrity and reflectance characteristics during the 25-fs-long pulse, with no evidence for any structural changes over lengths greater than 3 A. This experiment demonstrates that with intense ultrafast pulses, structural damage does not occur during the pulse, giving credence to the concept of diffraction imaging of single macromolecules.
    Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to... more
    Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth's oxygenic atmosphere. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the 'dangler' Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies. This…
    The motion of atoms on interatomic potential energy surfaces is fundamental to the dynamics of liquids and solids. An accelerator-based source of femtosecond x-ray pulses allowed us to follow directly atomic displacements on an optically... more
    The motion of atoms on interatomic potential energy surfaces is fundamental to the dynamics of liquids and solids. An accelerator-based source of femtosecond x-ray pulses allowed us to follow directly atomic displacements on an optically modified energy landscape, leading eventually to the transition from crystalline solid to disordered liquid. We show that, to first order in time, the dynamics are inertial, and we place constraints on the shape and curvature of the transition-state potential energy surface. Our measurements point toward analogies between this nonequilibrium phase transition and the short-time dynamics intrinsic to equilibrium liquids.
    Linear-accelerator-based sources will revolutionize ultrafast x-ray science due to their unprecedented brightness and short pulse duration. However, time-resolved studies at the resolution of the x-ray pulse duration are hampered by the... more
    Linear-accelerator-based sources will revolutionize ultrafast x-ray science due to their unprecedented brightness and short pulse duration. However, time-resolved studies at the resolution of the x-ray pulse duration are hampered by the inability to precisely synchronize an external laser to the accelerator. At the Sub-Picosecond Pulse Source at the Stanford Linear-Accelerator Center we solved this problem by measuring the arrival time of each high energy electron bunch with electro-optic sampling. This measurement indirectly determined the arrival time of each x-ray pulse relative to an external pump laser pulse with a time resolution of better than 60 fs rms.
    The melting dynamics of laser excited InSb have been studied with femtosecond x-ray diffraction. These measurements observe the delayed onset of diffusive atomic motion, signaling the appearance of liquidlike dynamics. They also... more
    The melting dynamics of laser excited InSb have been studied with femtosecond x-ray diffraction. These measurements observe the delayed onset of diffusive atomic motion, signaling the appearance of liquidlike dynamics. They also demonstrate that the root-mean-squared displacement in the [111] direction increases faster than in the [110] direction after the first 500 fs. This structural anisotropy indicates that the initially generated fluid differs significantly from the equilibrium liquid.
    X-ray free-electron lasers deliver intense femtosecond pulses that promise to yield high resolution diffraction data of nanocrystals before the destruction of the sample by radiation damage. Diffraction intensities of lysozyme... more
    X-ray free-electron lasers deliver intense femtosecond pulses that promise to yield high resolution diffraction data of nanocrystals before the destruction of the sample by radiation damage. Diffraction intensities of lysozyme nanocrystals collected at the Linac Coherent Light Source using 2 keV photons were used for structure determination by molecular replacement and analyzed for radiation damage as a function of pulse length and fluence. Signatures of radiation damage are observed for pulses as short as 70 fs. Parametric scaling used in conventional crystallography does not account for the observed effects.
    Molecular dynamics simulations were used to study the evaporation from water clusters containing either Cl(-), H(2)PO(4)(-), Na(+) or NH(4)(+) ions. The simulations ranged between 10 and 500 ns, and were performed in vacuum starting at... more
    Molecular dynamics simulations were used to study the evaporation from water clusters containing either Cl(-), H(2)PO(4)(-), Na(+) or NH(4)(+) ions. The simulations ranged between 10 and 500 ns, and were performed in vacuum starting at 275 K. A number of different models were used including polarizable models. The clusters contain 216 or 512 molecules, 0, 4 or 8 of which were ions. The ions with hydrogen bonding properties do not affect evaporation, even though the phosphate ions have a pronounced ion-ion structure and tend to be inside the cluster whereas ammonium shows little ion-ion structure and has a distribution within the cluster similar to that of the water molecules. Since the individual ion-water interactions are much stronger in the case of Na(+)-water and Cl(-)-water clusters, evaporation is somewhat slower for clusters containing these ions. It seems therefore that the main determinant of the evaporation rate in ion-water clusters is the strength of the interaction. Fission of droplets that contain more ions than allowed according to the Rayleigh limit seems to occur more rapidly in clusters containing ammonium and sodium ions.
    X-ray free-electron lasers have enabled new approaches to the structural determination of protein crystals that are too small or radiation-sensitive for conventional analysis(1). For sufficiently short pulses, diffraction is collected... more
    X-ray free-electron lasers have enabled new approaches to the structural determination of protein crystals that are too small or radiation-sensitive for conventional analysis(1). For sufficiently short pulses, diffraction is collected before significant changes occur to the sample, and it has been predicted that pulses as short as 10 fs may be required to acquire atomic-resolution structural information(1-4). Here, we describe a mechanism unique to ultrafast, ultra-intense X-ray experiments that allows structural information to be collected from crystalline samples using high radiation doses without the requirement for the pulse to terminate before the onset of sample damage. Instead, the diffracted X-rays are gated by a rapid loss of crystalline periodicity, producing apparent pulse lengths significantly shorter than the duration of the incident pulse. The shortest apparent pulse lengths occur at the highest resolution, and our measurements indicate that current X-ray free-electron laser technology(5) should enable structural determination from submicrometre protein crystals with atomic resolution.
    Evidence from mass-spectrometry experiments and molecular dynamics simulations suggests that it is possible to transfer proteins, or in general biomolecular aggregates, from solution to the gas-phase without grave impact on the structure.... more
    Evidence from mass-spectrometry experiments and molecular dynamics simulations suggests that it is possible to transfer proteins, or in general biomolecular aggregates, from solution to the gas-phase without grave impact on the structure. If correct, this allows interpretation of such experiments as a probe of physiological behavior. Here, we survey recent experimental results from mass spectrometry and ion-mobility spectroscopy and combine this with observations based on molecular dynamics simulation, in order to give a comprehensive overview of the state of the art in gas-phase studies. We introduce a new concept in protein structure analysis by determining the fraction of the theoretical possible numbers of hydrogen bonds that are formed in solution and in the gas-phase. In solution on average 43% of the hydrogen bonds is realized, while in vacuo this fraction increases to 56%. The hydrogen bonds stabilizing the secondary structure (α-helices, β-sheets) are maintained to a large degree, with additional hydrogen bonds occurring when side chains make new hydrogen bonds to rest of the protein rather than to solvent. This indicates that proteins that are transported to the gas phase in a native-like manner in many cases will be kinetically trapped in near-physiological structures. Simulation results for lipid- and detergent-aggregates and lipid-coated (membrane) proteins in the gas phase are discussed, which in general point to the conclusion that encapsulating proteins in "something" aids in the conservation of native-like structure. Isolated solvated micelles of cetyl-tetraammonium bromide quickly turn into reverse micelles whereas dodecyl phosphocholine micelles undergo much slower conversions, and do not quite reach a reverse micelle conformation within 100 ns.
    ABSTRACT The Linac Coherent Light Source (LCLS) is the first X-ray free electron laser to achieve lasing at subnanometer wavelengths (6 angstrom). LCLS is poised to reach even shorter wavelengths (1.5 angstrom) and thus holds the promise... more
    ABSTRACT The Linac Coherent Light Source (LCLS) is the first X-ray free electron laser to achieve lasing at subnanometer wavelengths (6 angstrom). LCLS is poised to reach even shorter wavelengths (1.5 angstrom) and thus holds the promise of single molecular imaging at atomic resolution. The initial operation at a photon energy of 2 keV provides the possibility to perform the first experiments on damage to biological particles, and to assess the limitations to coherent imaging of biological samples, which are directly relevant at atomic resolution. In this paper we theoretically investigate the damage formation and detection possibilities for a biological crystal, by employing and comparing two different damage models with complementary strengths. Molecular dynamics provides a discrete approach which investigates structural details at the atomic level by tracking all atoms in the real space. Our continuum model is based on a non-local thermodynamics equilibrium code with atomic kinetics and radiation transfer and can treat hydrodynamic expansion of the entire system. The latter approach captures the essential features of atomic displacements, without taking into account structural information and intrinsic atomic movements. This proves to be a powerful computational tool for many samples, including biological crystals, which will be studied with X-ray free electron lasers.
    ... M.Cornacchia, J.Arthur, L.Bentson, R.Carr, P.Emma, J.Galayda, P.Krejcik, I.Lindau, J.Safranek, J.Schmerge, J.Stohr, R.Tatchyn, and A.Wootton, SLAC-PUB Report No. 8950, 2001. J.Isberg, J.Hammersberg, H.Bernhoff, DJTwitchen, and... more
    ... M.Cornacchia, J.Arthur, L.Bentson, R.Carr, P.Emma, J.Galayda, P.Krejcik, I.Lindau, J.Safranek, J.Schmerge, J.Stohr, R.Tatchyn, and A.Wootton, SLAC-PUB Report No. 8950, 2001. J.Isberg, J.Hammersberg, H.Bernhoff, DJTwitchen, and AJWhitehead, Diamond Relat. Mater. ...
    Pulse intensities greater than 1017 Watt/cm2 were reached at the FLASH soft X-ray laser in Hamburg, Germany, using an off-axis parabolic mirror to focus 15 fs pulses of 5–70 μJ energy at 13.5 nm wavelength to a micron-sized spot. We... more
    Pulse intensities greater than 1017 Watt/cm2 were reached at the FLASH soft X-ray laser in Hamburg, Germany, using an off-axis parabolic mirror to focus 15 fs pulses of 5–70 μJ energy at 13.5 nm wavelength to a micron-sized spot. We describe the interaction of such pulses with niobium and vanadium targets and their deuterides. The beam produced craters in the solid targets, and we
    Extremely intense and ultrafast X-ray pulses from free-electron lasers offer unique opportunities to study fundamental aspects of complex transient phenomena in materials. Ultrafast time-resolved methods usually require highly... more
    Extremely intense and ultrafast X-ray pulses from free-electron lasers offer unique opportunities to study fundamental aspects of complex transient phenomena in materials. Ultrafast time-resolved methods usually require highly synchronized pulses to initiate a transition and then probe it after a precisely defined time delay. In the X-ray regime, these methods are challenging because they require complex optical systems and diagnostics. Here we propose and apply a simple holographic measurement scheme, inspired by Newton's 'dusty mirror' experiment, to monitor the X-ray-induced explosion of microscopic objects. The sample is placed near an X-ray mirror; after the pulse traverses the sample, triggering the reaction, it is reflected back onto the sample by the mirror to probe this reaction. The delay is encoded in the resulting diffraction pattern to an accuracy of one femtosecond, and the structural change is holographically recorded with high resolution. We apply the ...
    X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data... more
    X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and...
    X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage... more
    X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a si...
    Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo-grown crystals of... more
    Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo-grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology.
    X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction... more
    X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.
    Radiation damage is an unavoidable process when performing structural investigations of biological macromolecules with X-rays. In crystallography this process can be limited through damage distribution in a crystal, while for single... more
    Radiation damage is an unavoidable process when performing structural investigations of biological macromolecules with X-rays. In crystallography this process can be limited through damage distribution in a crystal, while for single molecular imaging it can be ...
    The molecular dynamics simulation package GROMACS is a widely used tool used in a broad range of different applications within physics, chemistry and biology. It is freely available, user friendly and extremely efficient. The GROMACS... more
    The molecular dynamics simulation package GROMACS is a widely used tool used in a broad range of different applications within physics, chemistry and biology. It is freely available, user friendly and extremely efficient. The GROMACS software is force field agnostic, and compatible with many molecular dynamics force fields; coarse-grained, unified atom, all atom as well as polarizable models based on the charge on a spring concept. To validate simulations, it is necessary to compare results from the simulations to experimental data. To ease the process of setting up topologies and structures for simulations, as well as providing pre-calculated physical properties along with experimental values for the same we provide a web-based database, containing 145 organic molecules at present. Liquid properties of 145 organic molecules have been simulated using two different force fields, OPLS all atom and Generalized Amber Force Field. So far, eight properties have been calculated (the density, enthalpy of vaporization, surface tension, heat capacity at constant volume and pressure, isothermal compressibility, volumetric expansion coefficient and the static dielectric constant). The results, together with experimental values are available through the database, along with liquid structures and topologies for the 145 molecules, in the two force fields. The database is freely available under http://virtualchemistry.org.
    We have used time-resolved X-ray diffraction to monitor the resolidification process of molten InSb. Melting was induced by an ultra-short laser pulse and the measurement conducted in a high-repetition-rate multishot experiment. The... more
    We have used time-resolved X-ray diffraction to monitor the resolidification process of molten InSb. Melting was induced by an ultra-short laser pulse and the measurement conducted in a high-repetition-rate multishot experiment. The method gives direct information about the nature of the transient regrowth and permanently damaged layers. It does not rely on models based on surface reflectivity or second harmonic
    The ultrafast pulses from X-ray free-electron lasers will enable imaging of non-periodic objects at near-atomic resolution [1, Neutze]. These objects could include single molecules, protein complexes, or virus particles. The specimen... more
    The ultrafast pulses from X-ray free-electron lasers will enable imaging of non-periodic objects at near-atomic resolution [1, Neutze]. These objects could include single molecules, protein complexes, or virus particles. The specimen would be completely destroyed by the pulse in a Coulomb explosion, but that destruction will only happen after the pulse. The scattering from the sample will give structural information about the undamaged object. There are many technical challenges that must be addressed before ...