Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Duane Eichler

    Acute hyperglycemia may contribute to the progression of atherosclerosis by regulating protein kinase C (PKC) isozymes and by accelerating vascular smooth muscle cell (VSMC) proliferation. We investigated acute glucose regulation of... more
    Acute hyperglycemia may contribute to the progression of atherosclerosis by regulating protein kinase C (PKC) isozymes and by accelerating vascular smooth muscle cell (VSMC) proliferation. We investigated acute glucose regulation of PKCbeta gene expression in A10 cells, a rat aortic smooth muscle cell line. Western blot analysis showed that PKCbetaII protein levels decreased with high glucose (25 mM) compared to normal glucose (5.5 mM), whereas PKCbetaI levels were unaltered. PKCbeta mRNA levels were depleted by 60-75% in hyperglycemic conditions. To elucidate whether high glucose regulated PKCbeta expression via the common promoter for PKCbetaI and PKCbetaII, deletion constructs of the PKCbeta promoter ligated to CAT as reporter gene were transfected into A10 cells. Construct D (-411 to +179CAT) showed quenching in high glucose (25 mM) and suggested the involvement of a carbohydrate response element in the 5' promoter region of the PKCbeta gene. In actinomycin D-treated A10 cel...
    The enzyme endothelial nitric oxide synthase (eNOS) catalyzes the conversion of arginine, oxygen and NADPH to NO and citrulline. Previous results suggest an efficient, compartmentalized system for recycling of citrulline to arginine... more
    The enzyme endothelial nitric oxide synthase (eNOS) catalyzes the conversion of arginine, oxygen and NADPH to NO and citrulline. Previous results suggest an efficient, compartmentalized system for recycling of citrulline to arginine utilized for NO production. In support of this hypothesis, the recycling enzymes, argininosuccinate synthase (AS) and argininosuccinate lyase (AL), have been shown to colocalize with eNOS in caveolae, a subcompartment of the plasma membrane. Under unstimulated conditions, the degree of recycling is minimal. Upon stimulation of NO production by bradykinin, however, recycling is co-stimulated to the extent that more than 80% of the citrulline produced is recycled to arginine. These results suggest an efficient caveolar recycling complex that supports the receptor-mediated stimulation of endothelial NO production. To investigate the molecular basis for the unique location and function of endothelial AS and AL, endothelial AS mRNA was compared with liver AS ...
    Nitric oxide (NO) is an important vasorelaxant produced along with L-citrulline from L-arginine in a reaction catalyzed by endothelial nitric oxide synthase (eNOS). Previous studies suggested that the recycling of L-citrulline to... more
    Nitric oxide (NO) is an important vasorelaxant produced along with L-citrulline from L-arginine in a reaction catalyzed by endothelial nitric oxide synthase (eNOS). Previous studies suggested that the recycling of L-citrulline to L-arginine is essential for NO production in endothelial cells. However, there is no direct evidence demonstrating the degree to which the recycling of L-citrulline to L-arginine is coupled to NO production. We hypothesized that the amount of NO formed would be significantly higher than the amount of L-citrulline formed due to the efficiency of L-citrulline recycling via the citrulline-NO cycle. To test this hypothesis, endothelial cells were incubated with [14C]-L-arginine and stimulated by various agents to produce NO. The extent of NO and [14C]-L-citrulline formation were simultaneously determined. NO production exceeded apparent L-citrulline formation of the order of 8 to 1, under both basal and stimulated conditions. As further support, alpha-methyl-DL-aspartate, an inhibitor of argininosuccinate synthase (AS), a component of the citrulline-NO cycle, inhibited NO production in a dose-dependent manner. The results of this study provide evidence for the essential and efficient coupling of L-citrulline recycling, via the citrulline-NO cycle, to endothelial NO production.
    Adiponectin is an adipocyte secreted protein that has been reported to increase fatty acid oxidation and improve insulin sensitivity. Our aim was to study the relationship between adiponectin and leptin, body fat, insulin and lipoproteins... more
    Adiponectin is an adipocyte secreted protein that has been reported to increase fatty acid oxidation and improve insulin sensitivity. Our aim was to study the relationship between adiponectin and leptin, body fat, insulin and lipoproteins in obese compared to non-obese children matched for age and gender. Adiponectin serum concentrations were significantly lower in the obese compared to the non-obese children (9.1+/-3.7 vs 17.1+/-12.3 microg/ml, p <0.05), in contrast to serum leptin concentrations which were greater in the obese compared to the non-obese subjects (31.8+/-11.1 vs 8.2+/-5.7 ng/ml, p <0.001). When considered as a single group to assess adiponectin concentrations over a spectrum of body size, adiponectin values correlated inversely with body weight (r = -0.33, p <0.05) and BMI (r = -0.35, p <0.05). Adiponectin values correlated directly with HDL-C (r = 0.47, p <0.005), but not with total cholesterol, IGF-I, or leptin binding activity. Since leptin and adiponectin change inversely in relation to BMI, the leptin/adiponectin (L/A) ratio was determined as a potential index relating adiposity to the development of complications of obesity. The L/A ratio was eight-fold greater in the obese compared to the non-obese children, and correlated more strongly with BMI (r = 0.779, p <0.0001) and with HDL-C (r = -0.53, p <0.001), than did adiponectin alone. The L/A ratio also correlated significantly with triceps skinfold thickness (TSF) (r = 0.77, p <0.001) and percent body fat (r = 0.79, p <0.0001) in non-obese children. These data suggest that adiponectin concentrations are already differentially regulated in childhood obesity. The index of increased leptin concentration corrected by reduced adiponectin values (L/A ratio) merits investigation as a marker for morbidities associated with childhood obesity.
    Rapid growth in infancy may be associated with later onset childhood obesity. The aim in this study was to evaluate the relationships of adipokines to growth of infants at 6-10 months of age and to serum insulin, glucose, and auxological... more
    Rapid growth in infancy may be associated with later onset childhood obesity. The aim in this study was to evaluate the relationships of adipokines to growth of infants at 6-10 months of age and to serum insulin, glucose, and auxological parameters of infants and their mothers. Thirty-seven healthy term AGA formula fed infants, 21 males, mean age 7.0 +/- 1.2 (SD) months, were evaluated during a nutritional assessment at a county health department. Length, weight, head circumference, waist circumference, mid-arm circumference, and subscapular skin fold and triceps skin fold thickness were determined. Mothers were weighed and their height measured, birth weight recorded from clinic records, and the infant's dietary history reviewed. Following finger stick for assessment of hemoglobin, a bedside blood glucose was determined and 250 microl of additional serum taken for assay of total adiponectin, high molecular weight (HMW) adiponectin (n=12), leptin, and insulin. The infants' total adiponectin to leptin ratio correlated significantly with the change in body weight from birth to mid-infancy (r = 0.349, p < 0.05). The mean total adiponectin was 34.2 - 16.6 microg/ml (n=37), mean HMW adiponectin 12.2 +/- 9.0 microg/ml (n=12), mean HMW/total adiponectin ratio 34.3 +/- 17.6%, and mean leptin 1.3 +/- 1.2 ng/ml. Neither total nor HMW adiponectin, leptin, nor the leptin/adiponectin ratio, correlated with serum insulin, glucose/insulin ratio, hemoglobin, birth weight, or auxological determinations of the infants or mothers. As leptin and adiponectin are both insulin sensitizing hormones that change inversely with acquisition of body fat, and the leptin/adiponectin ratio correlates significantly with weight gain in mid-infancy, we postulate that this ratio might provide a marker relating to infantile growth and later adiposity.
    Arginine depletion by the enzyme Arginase I, decreases expression of the TCR zeta chain preventing T-cell activation and causing T-cell dysfunction. We hypothesized that citrulline could substitute for arginine under conditions of... more
    Arginine depletion by the enzyme Arginase I, decreases expression of the TCR zeta chain preventing T-cell activation and causing T-cell dysfunction. We hypothesized that citrulline could substitute for arginine under conditions of increased arginase expression. Thus, the goal was to establish a possible mechanism of how citrulline could overcome arginine depletion caused by arginase. Jurkat cells were cultured, with or without arginase, in media containing different amino-acid constituents: complete RPMI containing arginine (C-RPMI) (arginine), Arginine-Free-RPMI (Arg-Free RPMI) and Citrulline-containing RPMI (Cit RPMI). Incorporation of citrulline was measured via uptake of 3H-citrulline, whereas proliferation was measured via 3H-thymidine incorporation. zeta Chain was analyzed by 2-color flow cytometry. Argininosuccinate synthase (AS) and argininosuccinate lyase expression was detected using Northern blots, RT-PCR, and Western blots. Jurkat cells exhibited a significant decrease in proliferation and 5 chain expression when cultured in the presence of arginase or in the absence of arginine. With citrulline, zeta chain expression and proliferation were maintained in the absence of arginine or in the presence of the enzyme arginase. Jurkat cells, cultured in the absence of arginine, were associated with a 5-fold increase in citrulline uptake. The absence of arginine was also associated with increased expression of AS. T cells exhibit the molecular capability of increasing citrulline membrane transport and up-regulating AS expression, thus exhibiting the necessary mechanisms for converting citrulline into arginine and escaping the ill effects of arginine depletion. Therefore, citrulline has the potential to be a substitute for supplemental arginine in diseases associated with arginase-mediated T cell dysfunction.
    Argininosuccinate synthase (AS) catalyzes the rate-limiting step in the recycling of citrulline to arginine, which in endothelial cells, is tightly coupled to the production of nitric oxide (NO). In previous work, we established that... more
    Argininosuccinate synthase (AS) catalyzes the rate-limiting step in the recycling of citrulline to arginine, which in endothelial cells, is tightly coupled to the production of nitric oxide (NO). In previous work, we established that endothelial AS mRNA can be initiated from multiple start sites, generating co-expressed mRNA variants with different 5'-untranslated regions (5'-UTRs). One of the 5'-UTRs, the shortest form, represents greater than 90% of the total AS mRNA. Two other extended 5'-UTR forms of AS mRNA, resulting from upstream initiations, contain an out-of-frame, upstream open reading frame (uORF). In this study, the function of the extended 5'-UTRs of AS mRNA was investigated. Single base insertions to place the uORF in-frame, and mutations to extend the uORF, demonstrated functionality, both in vitro with AS constructs and in vivo with luciferase constructs. Overexpression of the uORF suppressed endothelial AS protein expression, whereas specific silencing of the uORF AS mRNAs resulted in the coordinate up-regulation of AS protein and NO production. Expression of the full-length of the uORF was necessary to mediate a trans-suppressive effect on endothelial AS expression, demonstrating that the translation product itself affects regulation. In conclusion, the uORF found in the extended, overlapping 5'-UTR AS mRNA species suppresses endothelial AS expression, providing a novel mechanism for regulating endothelial NO production by limiting the availability of arginine.
    Based on the integral role that argininosuccinate synthase (AS) plays in the production of nitric oxide in vascular endothelial cells and urea in liver, an analysis was carried out to determine whether signals reside in the AS mRNA to... more
    Based on the integral role that argininosuccinate synthase (AS) plays in the production of nitric oxide in vascular endothelial cells and urea in liver, an analysis was carried out to determine whether signals reside in the AS mRNA to account for tissue differences in AS function and location. Reverse transcriptase-PCR and sequence analysis showed that the AS mRNA coding region was the same for both endothelial cells and liver; however, 5'-RACE analysis (rapid amplification of cDNA ends) identified AS mRNA species in endothelial cells in addition to a major 43-nucleotide (nt) 5'-untranslated region (UTR) AS mRNA with overlapping extended 5'-UTRs of 66 and 92 nt. Comparison to the genomic sequence immediately upstream of the reported transcription start site for the human and mouse AS gene suggested that expression of all three species of bovine endothelial AS mRNA are driven by a common promoter and that 5'-UTR diversity in endothelial cells results from three transcriptional initiation sites within exon 1. RNase protection analysis and real-time reverse transcriptase-PCR verified and quantitated the differential expression of the extended 5'-UTR species relative to the major 43-nt 5'-UTR AS mRNA. In vitro translation studies showed a less pronounced but similar discordant expression. Sequential deletions starting from the 5' terminus of the 92-nt 5'-UTR construct resulted in a corresponding increase in translational efficiency, but the most pronounced effect resulted from mutation of an upstream open reading frame, which restored translational efficiency of the 92-nt 5'-UTR AS mRNA. When the different AS mRNA 5'-UTRs, cloned in front of a luciferase reporter gene, were transfected into endothelial cells, the pattern of luciferase expression was nearly identical to that observed for the different 5'-UTR AS mRNAs in endothelial cells. Given the different roles ascribed for argininosuccinate synthase, urea versus NO production, these results suggest that sequence in the AS gene represented by position -92 to -43 nt from the translation start site in the extended AS mRNA 5'-UTRs plays an important role in differential and tissue-specific expression.
    Insulin regulates the inclusion of the exon encoding protein kinase C (PKC) betaII mRNA. In this report, we show that insulin regulates this exon inclusion (alternative splicing) via the phosphatidylinositol 3-kinase (PI 3-kinase)... more
    Insulin regulates the inclusion of the exon encoding protein kinase C (PKC) betaII mRNA. In this report, we show that insulin regulates this exon inclusion (alternative splicing) via the phosphatidylinositol 3-kinase (PI 3-kinase) signaling pathway through the phosphorylation state of SRp40, a factor required for insulin-regulated splice site selection for PKCbetaII mRNA. By taking advantage of a well known inhibitor of PI 3-kinase, LY294002, we demonstrated that pretreatment of L6 myotubes with LY294002 blocked insulin-induced PKCbetaII exon inclusion as well as phosphorylation of SRp40. In the absence of LY294002, overexpression of SRp40 in L6 cells mimicked insulin-induced exon inclusion. When antisense oligonucleotides targeted to a putative SRp40-binding sequence in the betaII-betaI intron were transfected into L6 cells, insulin effects on splicing and glucose uptake were blocked. Taken together, these results demonstrate a role for SRp40 in insulin-mediated alternative splicing independent of changes in SRp40 concentration but dependent on serine phosphorylation of SRp40 via a PI 3-kinase signaling pathway. This switch in PKC isozyme expression is important for increases in the glucose transport effect of insulin. Significantly, insulin regulation of PKCbetaII exon inclusion occurred in the absence of cell growth and differentiation demonstrating that insulin-induced alternative splicing of PKCbetaII mRNA in L6 cells occurs in response to a metabolic change.
    Endothelial nitric-oxide synthase (eNOS) utilizes l-arginine as its principal substrate, converting it to l-citrulline and nitric oxide (NO). l-Citrulline is recycled to l-arginine by two enzymes, argininosuccinate synthase (AS) and... more
    Endothelial nitric-oxide synthase (eNOS) utilizes l-arginine as its principal substrate, converting it to l-citrulline and nitric oxide (NO). l-Citrulline is recycled to l-arginine by two enzymes, argininosuccinate synthase (AS) and argininosuccinate lyase, providing the substrate arginine for eNOS and NO production in endothelial cells. Together, these three enzymes, eNOS, AS, and argininosuccinate lyase, make up the citrulline-NO cycle. Although AS catalyzes the rate-limiting step in NO production, little is known about the regulation of AS in endothelial cells beyond the level of transcription. In this study, we showed that AS Ser-328 phosphorylation was coordinately regulated with eNOS Ser-1179 phosphorylation when bovine aortic endothelial cells were stimulated by either a calcium ionophore or thapsigargin to produce NO. Furthermore, using in vitro kinase assay, kinase inhibition studies, as well as protein kinase Cα (PKCα) knockdown experiments, we demonstrate that the calcium-dependent phosphorylation of AS Ser-328 is mediated by PKCα. Collectively, these findings suggest that phosphorylation of AS at Ser-328 is regulated in accordance with the calcium-dependent regulation of eNOS under conditions that promote NO production and are in keeping with the rate-limiting role of AS in the citrulline-NO cycle of vascular endothelial cells.
    Although adipose tissue has long been considered to be metabolically passive and primarily responsible for energy storage, recent scientific advances have dramatically altered our understanding of the function of this ubiquitous tissue.... more
    Although adipose tissue has long been considered to be metabolically passive and primarily responsible for energy storage, recent scientific advances have dramatically altered our understanding of the function of this ubiquitous tissue. The fat cell is a transducer of energy supply for the changing metabolic needs of the body, modulating glucose homeostasis, hypothalamic function, sympathetic output, vascular tone, immune response, and reproduction. Through endocrine/autocrine and paracrine actions, adipocyte-derived molecules defend the body during periods of energy deficit and stress. With the development of obesity, maladaptive responses to adipose excess result in pathologic states of inflammation, coagulopathy, and altered insulin sensitivity.
    A 2'-O-methyltransferase that transfers the methyl group from S-adenosylmethionine to the 2'-hydroxyl group of ribose moieties of RNA has been purified from Ehrlich ascites tumor cell nucleoli. The partially purified... more
    A 2'-O-methyltransferase that transfers the methyl group from S-adenosylmethionine to the 2'-hydroxyl group of ribose moieties of RNA has been purified from Ehrlich ascites tumor cell nucleoli. The partially purified enzyme is devoid of other RNA methylase activities and is free of ribonucleases. The enzyme has optimal activity in tris(hydroxymethyl)aminomethane buffer, pH 8.0, in the presence of 0.4 mM ethylenediaminetetraacetic acid, 2 mM dithiothreitol, and 50 mM KCl, and has an apparent Km for S-adenosylmethionine of 0.44 microM. Gel filtration studies of this enzyme gave a Stokes radius of 43 A. Sedimentation velocity measurements in glycerol gradients yield an S20,w of 8.0 S. From these values, a native molecular weight of 145,000 was calculated. The enzyme catalyzes the methylation of synthetic homoribopolymers as well as 18S and 28S rRNA; however, poly(C) is the preferred synthetic substrate, and preference for unmethylated sequences of rRNA was observed. For each RNA substrate examined, only methylation of the 2'-hydroxyl group of the ribose moieties was detected.
    A ribonuclease that hydrolyzes either linear duplex or single-stranded RNA in an exonucleolytic manner has been partially purified from Ehrlich ascites tumor cell nucleoli and is free from other ribonucleases. The enzyme will also degrade... more
    A ribonuclease that hydrolyzes either linear duplex or single-stranded RNA in an exonucleolytic manner has been partially purified from Ehrlich ascites tumor cell nucleoli and is free from other ribonucleases. The enzyme will also degrade the RNA complement of an RNA X DNA duplex; however, no nuclease activity is observed on linear duplex or single-stranded DNA. The exonuclease acts on RNA nonprocessively from the 3' end releasing 5'-mononucleotides. The enzyme has a broad pH optimum around pH 8.0, requires Mg2+ or Mn2+ (0.06 mM) for optimum activity, and is sensitive to ethylenediaminetetraacetic acid and N-ethylmaleimide inhibition. Monovalent cations including K+, Na+, and NH4+ are inhibitory. Gel filtration studies of this enzyme gave a Stokes radius of 40 A. Sedimentation velocity measurements in glycerol gradients yield a S20,W of 6.0 S. From these values a native molecular weight of 100 000 was calculated. Copurification of the single- and double-stranded activities, identical reaction requirements, and identical heat-inactivation curves strongly suggest that both activities reside with the same enzyme.
    In this study we examined the specificity of a nucleolar 2'-O-methyltransferase isolated from nucleoli of Ehrlich ascites tumor cells. The nucleolar methyltransferase was capable of methylating each of the four nucleosides of RNA,... more
    In this study we examined the specificity of a nucleolar 2'-O-methyltransferase isolated from nucleoli of Ehrlich ascites tumor cells. The nucleolar methyltransferase was capable of methylating each of the four nucleosides of RNA, however, the level of methylation at a particular nucleoside varied with the type of RNA. Both kinetic analysis and the stimulation of methylation by polyamines suggested that the structure of RNA was critical in influencing the discrimination and apparent specificity of nucleolar 2'-O-methyltransferase.
    ... BIOPHYSICAL RESEARCH COMMUNICATIONS July 30, 1981 Pages 396403 EFFECT OF HUMAN PLACENTAL RIBONUCLEASF INHIBITOR IN CELLFREE RIBOSOMAL RNA SYNTHESISDuane C. Eichler ... Other Methods Protein was determined by the method of Lowry et al.... more
    ... BIOPHYSICAL RESEARCH COMMUNICATIONS July 30, 1981 Pages 396403 EFFECT OF HUMAN PLACENTAL RIBONUCLEASF INHIBITOR IN CELLFREE RIBOSOMAL RNA SYNTHESISDuane C. Eichler ... Other Methods Protein was determined by the method of Lowry et al. ...
    Endothelial dysfunction associated with elevated serum levels of TNF-alpha observed in diabetes, obesity, and congenital heart disease results, in part, from the impaired production of endothelial nitric oxide (NO). Cellular NO production... more
    Endothelial dysfunction associated with elevated serum levels of TNF-alpha observed in diabetes, obesity, and congenital heart disease results, in part, from the impaired production of endothelial nitric oxide (NO). Cellular NO production depends absolutely on the availability of arginine, substrate of endothelial nitric oxide synthase (eNOS). In this report, evidence is provided demonstrating that treatment with TNF-alpha (10 ng/ml) suppresses not only eNOS expression but also the availability of arginine via the coordinate suppression of argininosuccinate synthase (AS) expression in aortic endothelial cells. Western blot and real-time RT-PCR demonstrated a significant and dose-dependent reduction of AS protein and mRNA when treated with TNF-alpha with a corresponding decrease in NO production. Reporter gene analysis demonstrated that TNF-alpha suppresses the AS proximal promoter, and EMSA analysis showed reduced binding to three essential Sp1 elements. Inhibitor studies suggested that the repression of AS expression by TNF-alpha may be mediated, in part, via the NF-kappaB signaling pathway. These findings demonstrate that TNF-alpha coordinately downregulates eNOS and AS expression, resulting in a severely impaired citrulline-NO cycle. The downregulation of AS by TNF-alpha is an added insult to endothelial function because of its important role in NO production and in endothelial viability.