Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Hanna Hlawaty

    ABSTRACT Biocompatible and biodegradable polymers are widely used in the medical field. In some cases, the biopolymer is accompanied by an active drug, which is delivered locally in a controlled manner in order to improve the healing... more
    ABSTRACT Biocompatible and biodegradable polymers are widely used in the medical field. In some cases, the biopolymer is accompanied by an active drug, which is delivered locally in a controlled manner in order to improve the healing conditions. Poly([R,S]-3,3-dimethylmalic acid) (PDMMLA) is a synthetic amphiphilic biodegradable polymer, which unlike PLA, can be chemically modified to adapt hydrophilic/hydrophobic balance, degradation kinetics, and physicochemical and biological properties. It may contain a lateral alkyl group or a functional group for coupling bioactive molecules to release during its degradation. In this work, we realized the chemical grafting of paclitaxel (PTX), a microtubule stabilizing anti-cancer agent on PDMMLA derivatives bio-polyesters following a Steglich esterification protocol. 1D and 2D NMR analyses validated the reaction with 10% (using 0.1 equivalent) of PTX on the copolymer PDMMLAH40-co-Hex60 (PDMMLA 40/60) and a maximal PTX grafting rate of 55% on the homopolymer PDMMLAH (PDMMLA 100/0). In vitro adhesion and cytotoxicity assays were carried out on HUVEC cells with PDMMLA 40/60, PDMMLA-PTX 30/10/60 and PLA.
    Background/Aim: There is an unsatisfied clinical demand to develop new anticancer agents. The aim of the current study was to synthesize new coumarin derivatives using two different synthetic methodologies and to evaluate their anticancer... more
    Background/Aim: There is an unsatisfied clinical demand to develop new anticancer agents. The aim of the current study was to synthesize new coumarin derivatives using two different synthetic methodologies and to evaluate their anticancer activity. Materials and methods: Four coumarin derivatives were synthesized and evaluated for their anticancer activities. The structures of all compounds were confirmed by infrared (IR), UV-vis, Nuclear magnetic resonance (NMR) 13 C NMR, 1 H NMR, and high-resolution mass spectrometry (HRMS) analysis. All the synthesized compounds ( 4, 5 , 8 and 9 ) were analyzed for their anti-proliferative (MTT and LDH assays and cell cycle studied with flow cytometry) and anti-invasive activity (spreading and invasion tests) on human hepatoma cell lines Huh-7 in vitro. Doxorubicin was used as control in order to compare their anti-tumoral effects. Results. All the synthesized compounds are potential inhibitors of proliferation, viability, spreading and invasion ...
    Objectives: Atherosclerosis is an inflammatory disease in which the coordination of angiogenesis and inflammation is achieved by the ability of both endothelial cells and leukocytes to respond to chemokines. We assessed in vitro and in... more
    Objectives: Atherosclerosis is an inflammatory disease in which the coordination of angiogenesis and inflammation is achieved by the ability of both endothelial cells and leukocytes to respond to chemokines. We assessed in vitro and in vivo the influence of RANTES/CCL5 on angiogenesis and the role of its cellular ligands CCR1, CCR5, syndecan-1 (SDC-1), syndecan-4 (SDC-4), CD-44. Methods and results: We evidenced i/ in a rat-sponge model, the angiogenic effects of RANTES/CCL5 or its mutants, [E66A]-RANTES/CCL5 with impaired ability to oligomerize, and [ 44 AANA 47 ]-RANTES/CCL5 mutated in the principal RANTES/ CCL5-GAGs binding site, ii/ the direct effect of RANTES/CCL5 or its mutants on endothelial cell proliferation, migration, spreading and ability to form vessels in 2D and 3D angiogenesis in vitro assays, iii/ the involvement of RANTES/CCL5 cellular ligands such as G Protein-Coupled Receptors and proteoglycans in RANTES/CCL5-induced biological effects. Conclusions: Our data sugge...
    Atherosclerosis, in the ultimate stage of cardiovascular diseases, causes an obstruction of vessels leading to ischemia and finally to necrosis. To restore vascularization and tissue regeneration, stimulation of angiogenesis is necessary.... more
    Atherosclerosis, in the ultimate stage of cardiovascular diseases, causes an obstruction of vessels leading to ischemia and finally to necrosis. To restore vascularization and tissue regeneration, stimulation of angiogenesis is necessary. Chemokines and microRNAs (miR) were studied as pro‐angiogenic agents. We analysed the miR‐126/CXCL12 axis and compared impacts of both miR‐126‐3p and miR‐126‐5p strands effects in CXCL12‐induced angiogenesis. Indeed, the two strands of miR‐126 were previously shown to be active but were never compared together in the same experimental conditions regarding their differential functions in angiogenesis. In this study, we analysed the 2D‐angiogenesis and the migration assays in HUVEC in vitro and in rat's aortic rings ex vivo, both transfected with premiR‐126‐3p/‐5p or antimiR‐126‐3p/‐5p strands and stimulated with CXCL12. First, we showed that CXCL12 had pro‐angiogenic effects in vitro and ex vivo associated with overexpression of miR‐126‐3p in HU...
    Inflammation and angiogenesis are two tightly linked processes in arthritis, and therapeutic targeting of pro-angiogenic factors may contribute to control joint inflammation and synovitis progression. In this work, we explored whether... more
    Inflammation and angiogenesis are two tightly linked processes in arthritis, and therapeutic targeting of pro-angiogenic factors may contribute to control joint inflammation and synovitis progression. In this work, we explored whether vaccination against vascular endothelial growth factor (VEGF) ameliorates collagen-induced arthritis (CIA). Anti-VEGF vaccines were heterocomplexes consisting of the entire VEGF cytokine (or a VEGF-derived peptide) linked to the carrier protein keyhole limpet hemocyanin (KLH). Two kinds of vaccines were separately tested in two independent experiments of CIA. In the first, we tested a kinoid of the murine cytokine VEGF (VEGF-K), obtained by conjugating VEGF-A to KLH. For the second, we selected two VEGF-A-derived peptide sequences to produce heterocomplexes (Vpep1-K and Vpep2-K). DBA/1 mice were immunized with either VEGF-K, Vpep1-K, or Vpep2-K, before CIA induction. Clinical and histological scores of arthritis, anti-VEGF, anti-Vpep Ab titers, and ant...
    Leukotriene B4 (LTB4) induces proinflammatory signaling through BLT receptors expressed in atherosclerotic lesions. Either genetic or pharmacological targeting of the high affinity LTB4 receptor, BLT1, reduces atherosclerosis in different... more
    Leukotriene B4 (LTB4) induces proinflammatory signaling through BLT receptors expressed in atherosclerotic lesions. Either genetic or pharmacological targeting of the high affinity LTB4 receptor, BLT1, reduces atherosclerosis in different mouse models. The low affinity BLT2 receptor for LTB4 may transduce additional pro-atherogenic signaling, but combined BLT1 and BLT2 receptor antagonism has not previously been explored in atherosclerosis. The aim of the present study was to unravel the effects of the BLT receptor antagonist BIIL284 in apolipoprotein E deficient mice in terms of atherosclerotic lesion size and composition, as well as on arterial matrixmetalloproteinase (MMP) activity and plasma cytokines. Oral administration of BIIL284 (0.3-3mg/kg) dose-dependently decreased atherosclerotic lesion size after 12 weeks. In addition, significantly smaller aortic lesions were observed in mice treated with BIIL284 (3mg/kg) for 24 weeks. The reduced atherosclerosis was associated with less lesion smooth muscle cells, less arterial MMP activities and lower plasma levels of TNF-α and IL-6. Taken together, these results suggest a therapeutic value of BLT receptor antagonism in atherosclerosis.
    The perpetuation of angiogenesis is involved in certain chronic inflammatory diseases. The accelerated neovascularisation may result from an inflammatory status with a response of both endothelial cells and monocytes to inflammatory... more
    The perpetuation of angiogenesis is involved in certain chronic inflammatory diseases. The accelerated neovascularisation may result from an inflammatory status with a response of both endothelial cells and monocytes to inflammatory mediators such as chemokines. We have previously described in vitro and in vivo the pro-angiogenic effects of the chemokine Regulated on Activation, Normal T Cell Expressed and Secreted (RANTES)/CCL5. The effects of RANTES/CCL5 may be related to its binding to G protein-coupled receptors and to proteoglycans such as syndecan-1 and -4. The aim of this study was to evaluate the functionality of syndecan-4 as a co-receptor of RANTES/CCL5 by the use of mutated syndecan-4 constructs. Our data demonstrate that site-directed mutations in syndecan-4 modify RANTES/CCL5 biological activities in endothelial cells. The SDC4S179A mutant, associated with an induced protein kinase C (PKC)α activation, leads to higher RANTES/CCL5 pro-angiogenic effects, whereas the SDC4...
    Atherosclerosis is a major cardiovascular disease. One of the side effects is restenosis. The aim of this work was to study the coating of stents by dextran derivates based polyelectrolyte’s multilayer (PEM) films in order to increase... more
    Atherosclerosis is a major cardiovascular disease. One of the side effects is restenosis. The aim of this work was to study the coating of stents by dextran derivates based polyelectrolyte’s multilayer (PEM) films in order to increase endothelialization of injured arterial wall after stent implantation. Films were composed with diethylaminoethyl dextran (DEAE) as polycation and dextran sulphate (DS) as polyanion. One film was composed with 4 bilayers of (DEAE-DS)4and was labeled D−. The other film was the same as D− but with an added terminal layer of DEAE polycation: (DEAE-DS)4-DEAE (labeled D+). The dynamic adsorption/desorption of proteins on the films were characterized by dynamic contact angle (DCA) and atomic force microscopy (AFM). Human endothelial cell (HUVEC) adhesion and proliferation were quantified and correlated to protein adsorption analyzed by DCA for fibronectin, vitronectin, and bovine serum albumin (BSA). Our results showed that the endothelial cell response was o...
    BackgroundSmall interfering RNA (siRNA) delivery is a promising approach for the treatment of cardiovascular diseases. Matrix metalloproteinase (MMP) 2 over‐expression in the arterial wall has been implicated in restenosis after... more
    BackgroundSmall interfering RNA (siRNA) delivery is a promising approach for the treatment of cardiovascular diseases. Matrix metalloproteinase (MMP) 2 over‐expression in the arterial wall has been implicated in restenosis after percutaneous coronary intervention, as well as in spontaneous atherosclerotic plaque rupture. We hypothesized that in vivo local delivery of siRNA targeted at MMP2 (MMP2‐siRNA) in the balloon‐injured carotid artery of hypercholesterolemic rabbits may lead to inhibition of MMP2 expression.MethodsTwo weeks after balloon injury, 5 µmol/l of Tamra‐tagged MMP2‐siRNA, scramble siRNA or saline was locally injected in the carotid artery and incubated for 1 h.ResultsFluorescent microscopy studies showed the circumferential uptake of siRNA in the superficial layers of neointimal cells. MMP2 mRNA levels, measured by the real‐time reverse transcriptase‐polymerase chain reaction, was decreased by 79 ± 25% in MMP2‐siRNA‐ versus scramble siRNA‐transfected arteries (p < ...
    In the present study, we measured the ability of various cationized pullulan tubular hydrogels to retain plasmid DNA, and tested the ability of retained plasmid DNA to transfect vascular smooth muscle cells (VSMCs). Cationized pullulans... more
    In the present study, we measured the ability of various cationized pullulan tubular hydrogels to retain plasmid DNA, and tested the ability of retained plasmid DNA to transfect vascular smooth muscle cells (VSMCs). Cationized pullulans were obtained by grafting at different charge densities ethylamine (EA) or diethylaminoethylamine (DEAE) on the pullulan backbone. Polymers were characterized by elemental analysis, acid‐base titration, size exclusion chromatography, Fourier‐transform infrared spectroscopy, and proton nuclear magnetic resonance. The complexation of cationized pullulans in solution with plasmid DNA was evidenced by fluorescence quenching with PicoGreen. Cationized pullulans were then chemically crosslinked with phosphorus oxychloride to obtain tubular cationized pullulan hydrogels. Native pullulan tubes did not retain loaded plasmid DNA. In contrast, the ability of cationized pullulan tubes to retain plasmid DNA was dependent on both the amine content and the type of ...
    This study deals with the development of a novel biocompatible cationized pullulan three‐dimensional matrix for gene delivery. A water‐soluble cationic polysaccharide, diethylaminoethyl‐pullulan (DEAE‐pullulan), was first synthesized and... more
    This study deals with the development of a novel biocompatible cationized pullulan three‐dimensional matrix for gene delivery. A water‐soluble cationic polysaccharide, diethylaminoethyl‐pullulan (DEAE‐pullulan), was first synthesized and characterized. Fluorescence quenching and gel retardation assays evidenced the complexation in solution of DNA with DEAE‐pullulan, but not with neutral pullulan. On cultured smooth muscle cells (SMCs) incubated with DEAE‐pullulan and a plasmid vector expressing a secreted form of alkaline phosphatase (pSEAP), SEAP activity was 150‐fold higher than with pSEAP alone or pSEAP with neutral pullulan. DEAE‐pullulan was then chemically crosslinked using phosphorus oxychloride. The resulting matrices were obtained in less than a minute and molded as discs of 12 mm diameter and 2 mm thickness. Such DEAE‐pullulan 3D matrices were loaded with up to 50 μg of plasmid DNA, with a homogeneous plasmid loading observed with YOYO‐1 fluorescence staining. Moreover, th...
    The aim of our study was to investigate whether myofibroblasts and the chemokine monocyte chemoattractant protein‐1 (MCP‐1)/CCL2 may play a role in hepatocellular carcinoma progression. We observed that hepatic myofibroblast LI90 cells... more
    The aim of our study was to investigate whether myofibroblasts and the chemokine monocyte chemoattractant protein‐1 (MCP‐1)/CCL2 may play a role in hepatocellular carcinoma progression. We observed that hepatic myofibroblast LI90 cells express MCP‐1/CCL2 mRNA and secrete this chemokine. Moreover, myofibroblast LI90 cell‐conditioned medium (LI90‐CM) induces human hepatoma Huh7 cell migration and invasion. These effects are strongly reduced when a MCP‐1/CCL2‐depleted LI90‐CM was used. We showed that MCP‐1/CCL2 induces Huh7 cell migration and invasion through its G‐protein–coupled receptor CCR2 and, to a lesser extent, through CCR1 only at high MCP‐1/CCL2 concentrations. MCP‐1/CCL2's chemotactic activities rely on tyrosine phosphorylation of focal adhesion components and depend on matrix metalloproteinase (MMP)‐2 and MMP‐9. Furthermore, we observed that Huh7 cell migration and invasion induced by the chemokine are strongly inhibited by heparin, by β‐D‐xyloside treatment of cells an...
    In patients receiving drug eluting stents, there is a growing concern about both the long-term toxicity/degradability of the polymers used for the coating, and the nature of the therapeutic agents. We hypothesized that the use of a... more
    In patients receiving drug eluting stents, there is a growing concern about both the long-term toxicity/degradability of the polymers used for the coating, and the nature of the therapeutic agents. We hypothesized that the use of a functionalized biocompatible polymer for a stent coating could be appropriate for local arterial therapy. A cationized pullulan hydrogel was thus prepared to cover bare metal stents that could be further loaded with small interfering RNA (siRNA) targeted at MMP2 for gene silencing in vascular cells. The efficient coverage of the stent struts by a smooth polymeric layer, which can withstand the crimping of the stent on a balloon-catheter and its deployment, was demonstrated by fluorescence microscopy, scanning electron microscopy, and atomic force microscopy. The release of siRNA from the stents was modulated by the presence of the cationic groups, as compared to noncationized pullulan hydrogel. In vivo implantation of coated stents was successful and cationized pullulan-based hydrogels loaded with siRNA in rabbit balloon-injured carotid arteries induced an uptake of siRNA into the arterial wall and a decrease of pro-MMP2 activity. These results suggest that cationized pullulan-based hydrogel could be used as a new biocompatible and biodegradable stent coating for local gene therapy in the arterial wall.
    Atherosclerosis is an inflammatory disease that is one of the leading causes of death in developed countries. This disease is defined by the formation of an atherosclerotic plaque, which is responsible for artery obstruction and affects... more
    Atherosclerosis is an inflammatory disease that is one of the leading causes of death in developed countries. This disease is defined by the formation of an atherosclerotic plaque, which is responsible for artery obstruction and affects the heart by causing myocardial infarction. The vascular wall is composed of three cell types and includes a monolayer of endothelial cells and is irrigated by a vasa vasorum. The formation of the vascular network from the vasa vasorum is a process involved in the destabilization of this plaque. Cellular and molecular approaches are studied by in vitro assay of activated endothelial cells and in in vivo models of neovascularization. Chemokines are a large family of small secreted proteins that have been shown to play a critical role in the regulation of angiogenesis during several pathophysiological processes such as ischaemia. Chemokines may exert their regulatory activity on angiogenesis directly by activating the vasa vasorum, or as a consequence ...
    Matrix metalloproteinase-2 (MMP-2) is constitutively expressed in vascular smooth muscle cells (VSMCs). Using small interfering RNA (siRNA), we evaluated the effect of MMP-2 inhibition in VSMCs in vitro and ex vivo. Rabbit VSMCs were... more
    Matrix metalloproteinase-2 (MMP-2) is constitutively expressed in vascular smooth muscle cells (VSMCs). Using small interfering RNA (siRNA), we evaluated the effect of MMP-2 inhibition in VSMCs in vitro and ex vivo. Rabbit VSMCs were transfected in vitro with 50 nmol/l MMP-2 siRNA or scramble siRNA. Flow cytometry and confocal microscopy showed cellular uptake of siRNA in ∼80% of VSMCs. MMP-2 mRNA levels evaluated by real-time RT-PCR, pro-MMP-2 activity from conditioned culture media evaluated by gelatin zymography, and VSMC migration were reduced by 44 ± 19%, 43 ± 14%, and 36 ± 14%, respectively, in MMP-2 siRNA-transfected compared with scramble siRNA-transfected VSMCs ( P < 0.005 for all). Ex vivo MMP-2 siRNA transfection was performed 2 wk after balloon injury of hypercholesterolemic rabbit carotid arteries. Fluorescence microscopy showed circumferential siRNA uptake in neointimal cells. Gelatin zymography of carotid artery culture medium demonstrated a significant decrease of...
    Decellularized porcine heart valves offer promising potential as biocompatible prostheses. However, this procedure alter matrix fibres and glycans, leading to lower biomechanical resistance and increased their thrombotic potential.... more
    Decellularized porcine heart valves offer promising potential as biocompatible prostheses. However, this procedure alter matrix fibres and glycans, leading to lower biomechanical resistance and increased their thrombotic potential. Therefore, their durability is limited due to calcification and weak regeneration in vivo. Surface modifications are highly requested to improve the scaffolds re-endothelialization required to restore functional and haemocompatible heart valve. Fucoidan, a natural sulphated polysaccharide, carries antithrombotic and anti-inflammatory properties and is known to enhance endothelial adhesion and proliferation when associated with vascular endothelial growth factor (VEGF). Based on these features, we constructed fucoidan/VEGF polyelectrolyte multilayer film (PEM) coated valve scaffold in an attempt to develop functional heart valve bioprosthesis. We investigated the haemocompatibility of the PEM coated valve scaffolds, the adhesion and growth potential of end...
    Induction of angiogenesis is a potential treatment for chronic ischemia. Low molecular weight fucoidan (LMWF), the sulfated polysaccharide from brown seaweeds, has been shown to promote revascularization in a rat limb ischemia, increasing... more
    Induction of angiogenesis is a potential treatment for chronic ischemia. Low molecular weight fucoidan (LMWF), the sulfated polysaccharide from brown seaweeds, has been shown to promote revascularization in a rat limb ischemia, increasing angiogenesis in vivo. We investigated the potential role of two heparan sulfate (HS) metabolism enzymes, exostosin-2 (EXT2) and heparanase (HPSE), and of two HS-membrane proteoglycans, syndecan-1 and -4 (SDC-1 and SDC-4), in LMWF induced angiogenesis. Our results showed that LMWF increases human vascular endothelial cell (HUVEC) migration and angiogenesis in vitro. We report that the expression and activity of the HS-degrading HPSE was increased after LMWF treatment. The phenotypic tests of LMWF-treated and EXT2- or HPSE-siRNA-transfected cells indicated that EXT2 or HPSE expression significantly affect the proangiogenic potential of LMWF. In addition, LMWF increased SDC-1, but decreased SDC-4 expressions. The effect of LMWF depends on SDC-4 expres...