Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Marcos Menárguez-tortosa

    Biomedical research usually requires combining large volumes of data from multiple heterogeneous sources. Such heterogeneity makes difficult not only the generation of research-oriented dataset but also its exploitation. In recent years,... more
    Biomedical research usually requires combining large volumes of data from multiple heterogeneous sources. Such heterogeneity makes difficult not only the generation of research-oriented dataset but also its exploitation. In recent years, the Open Data paradigm has proposed new ways for making data available in ways that sharing and integration are facilitated. Open Data approaches may pursue the generation of content readable only by humans and by both humans and machines, which are the ones of interest in our work. The Semantic Web provides a natural technological space for data integration and exploitation and offers a range of technologies for generating not only Open Datasets but also Linked Datasets, that is, open datasets linked to other open datasets. According to the Berners-Lee's classification, each open dataset can be given a rating between one and five stars attending to can be given to each dataset. In the last years, we have developed and applied our SWIT tool, whi...
    Electronic Health Record architectures based on the dual model architecture use archetypes for representing clinical knowledge. Therefore, ensuring their correctness and consistency is a fundamental research goal. In this work, we explore... more
    Electronic Health Record architectures based on the dual model architecture use archetypes for representing clinical knowledge. Therefore, ensuring their correctness and consistency is a fundamental research goal. In this work, we explore how an approach based on OWL technologies can be used for such purpose. This method has been applied to the openEHR archetype repository, which is the largest available one nowadays. The results of this validation are also reported in this study.
    Some modern Electronic Healthcare Record (EHR) architectures and standards are based on the dual model-based architecture, which defines two conceptual levels: reference model and archetype model. Such architectures represent EHR domain... more
    Some modern Electronic Healthcare Record (EHR) architectures and standards are based on the dual model-based architecture, which defines two conceptual levels: reference model and archetype model. Such architectures represent EHR domain knowledge by means of archetypes, which are considered by many researchers to play a fundamental role for the achievement of semantic interoperability in healthcare. Consequently, formal methods for validating archetypes are necessary. In recent years, there has been an increasing interest in exploring how semantic web technologies in general, and ontologies in particular, can facilitate the representation and management of archetypes, including binding to terminologies, but no solution based on such technologies has been provided to date to validate archetypes. Our approach represents archetypes by means of OWL ontologies. This permits to combine the two levels of the dual model-based architecture in one modeling framework which can also integrate terminologies available in OWL format. The validation method consists of reasoning on those ontologies to find modeling errors in archetypes: incorrect restrictions over the reference model, non-conformant archetype specializations and inconsistent terminological bindings. The archetypes available in the repositories supported by the openEHR Foundation and the NHS Connecting for Health Program, which are the two largest publicly available ones, have been analyzed with our validation method. For such purpose, we have implemented a software tool called Archeck. Our results show that around 1/5 of archetype specializations contain modeling errors, the most common mistakes being related to coded terms and terminological bindings. The analysis of each repository reveals that different patterns of errors are found in both repositories. This result reinforces the need for making serious efforts in improving archetype design processes.
    The semantic interoperability of clinical information requires methods able to transform heterogeneous data sources from both technological and structural perspectives, into representations that facilitate the sharing of meaning. The... more
    The semantic interoperability of clinical information requires methods able to transform heterogeneous data sources from both technological and structural perspectives, into representations that facilitate the sharing of meaning. The SemanticHealthNet (SHN) project proposes using semantic content patterns for representing clinical information based on a model of meaning, preventing users from a deep knowledge on ontology and description logics formalism. In this work we propose a flexible transformation method that uses semantic content patterns to guide the mapping between the source data and a target domain ontology. As use case we show how one of the semantic content patterns proposed in SHN can be used to transform heterogeneous data about medication administration.
    Archetypes facilitate the sharing of clinical knowledge and therefore are a basic tool for achieving interoperability between healthcare information systems. In this paper, a Semantic Web System for Managing Archetypes is presented. This... more
    Archetypes facilitate the sharing of clinical knowledge and therefore are a basic tool for achieving interoperability between healthcare information systems. In this paper, a Semantic Web System for Managing Archetypes is presented. This system allows for the semantic annotation of archetypes, as well for performing semantic searches. The current system is capable of working with both ISO13606 and OpenEHR archetypes.
    The semantic interoperability of electronic healthcare records (EHRs) systems is a major challenge in the medical informatics area. International initiatives pursue the use of semantically interoperable clinical models, and ontologies... more
    The semantic interoperability of electronic healthcare records (EHRs) systems is a major challenge in the medical informatics area. International initiatives pursue the use of semantically interoperable clinical models, and ontologies have frequently been used in semantic interoperability efforts. The objective of this paper is to propose a generic, ontology-based, flexible approach for supporting the automatic transformation of clinical models, which is illustrated for the transformation of Clinical Element Models (CEMs) into openEHR archetypes. Our transformation method exploits the fact that the information models of the most relevant EHR specifications are available in the Web Ontology Language (OWL). The transformation approach is based on defining mappings between those ontological structures. We propose a way in which CEM entities can be transformed into openEHR by using transformation templates and OWL as common representation formalism. The transformation architecture explo...