Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Michael Salomon

    Michael Salomon

    Human adipose-derived stem cells (hADSCs) have the capacity for osteogenic differentiation and, in combination with suitable biomaterials and growth factors, the regeneration of bone defects. In order to differentiate hADSCs into the... more
    Human adipose-derived stem cells (hADSCs) have the capacity for osteogenic differentiation and, in combination with suitable biomaterials and growth factors, the regeneration of bone defects. In order to differentiate hADSCs into the osteogenic lineage, bone morphogenetic proteins (BMPs) have been proven to be highly effective, especially when expressed locally by route of gene transfer, providing a constant stimulus over an extended period of time. However, the creation of genetically modified hADSCs is laborious and time-consuming, which hinders clinical translation of the approach. Instead, expedited single-surgery gene therapy strategies must be developed. Therefore, in an in vitro experiment, we evaluated a novel growth factor delivery system, comprising adenoviral BMP-2 transduced fascia tissue in terms of BMP-2 release kinetics and osteogenic effects, on hADSCs seeded on an innovative biomimetic spongiosa-like scaffold. As compared to direct BMP-2 transduction of hADSCs or ad...
    Einleitung: Die Geschmackswahrnehmung wird durch Rezeptorzellen auf unserer Zunge vermittelt. Die beteiligten Geschmackszellen sind hochdifferenzierte epitheliale Zellen mit einzigartigen histologischen, molekularen und physiologischen... more
    Einleitung: Die Geschmackswahrnehmung wird durch Rezeptorzellen auf unserer Zunge vermittelt. Die beteiligten Geschmackszellen sind hochdifferenzierte epitheliale Zellen mit einzigartigen histologischen, molekularen und physiologischen Charakteristiken. Stabil in Zellkultur proliferierende Geschmackszellen[for full text, please go to the a.m. URL]
    No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas... more
    No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of the rapid advances in the medical sciences, the Publisher recommends that independent verification of diagnoses and drug dosages should be made. Special regulations for readers in the USA-This publication has been registered with the Copyright Clearance Center Inc. (CCC) Salem, Massachusetts. Information can be obtained from the CCC about conditions under which photocopies of parts of this publication may be made in the USA. All other copyright questions, including photocopying outside of the USA, should be referred to the copyright owner, Elsevier Science Publishers B.V., unless otherwise specified.
    The human adenovirus type 19a/64 (hAd19a) is a rare serotype in the human population that transduces human dendritic cells (DCs) and human muscle cells more efficiently than the well-characterized human adenovirus type 5 (hAd5). To... more
    The human adenovirus type 19a/64 (hAd19a) is a rare serotype in the human population that transduces human dendritic cells (DCs) and human muscle cells more efficiently than the well-characterized human adenovirus type 5 (hAd5). To further characterize the potential of this vector as a vaccine we designed replication deficient hAd19a, hAd5 and MVA vectors expressing a papillomavirus (PV) antigen fused to the human MHC class II associated invariant chain T cell adjuvant (hIi) and investigated their immunogenicity in vivo in mice and cynomolgus macaques. We initially showed that the hIi encoded in the hAd5 enhanced PV specific CD8+ T cell responses in mice. The T cell responses induced after hAd19a vaccination was similar to those induced by hAd5 vaccination. The hAd19a induced responses were not reduced in presence of preexisting Ad5 immunity in mice. In macaques both vaccines were equally potent at inducing CD8+ T cells after MVA boost, while the level of CD4+ T cell responses were found to be broader in hAd19a primed animals. These data demonstrate the potential of hAd19a as an alternative vector to hAd5 to elicit potent T cell responses to PV.
    The possible correlation between blue light-dependent phosphorylation of a 116-kD protein and phototropic responses of etiolated oat (Avena sativa L.) seedlings was tested by a micromethod for protein phosphorylation. Quantitation of the... more
    The possible correlation between blue light-dependent phosphorylation of a 116-kD protein and phototropic responses of etiolated oat (Avena sativa L.) seedlings was tested by a micromethod for protein phosphorylation. Quantitation of the basipetal distribution of this protein showed that the in vitro 32P phosphorylation values declined exponentially from tip to node, with more than 50% of the total label being found in the uppermost 5 mm. Nonsaturating preirradiation of the coleoptiles in vivo resulted in partial phosphorylation with endogenous ATP. Subsequent in vitro phosphorylation under saturating irradiation allowed the determination of the degree of in vivo phosphorylation. Unilateral preirradiation resulted in higher in vivo phosphorylation on the irradiated than on the shaded side of the coleoptile. The fluence-response curve for the difference in phosphorylation between both sides of the coleoptile resembles the fluence-response curve for first-positive phototropic curvatur...
    Previously, we have presented an expedited strategy for sustained delivery of bone morphogenetic protein-2 (BMP-2) to bone lesions based on the implantation of gene-activated fat and muscle fragments. The aim of the present in vitro... more
    Previously, we have presented an expedited strategy for sustained delivery of bone morphogenetic protein-2 (BMP-2) to bone lesions based on the implantation of gene-activated fat and muscle fragments. The aim of the present in vitro experiments was to evaluate the potential of muscle with fascia as a BMP-2 delivering osteo-regenerative implant in comparison to fat tissue and muscle alone. Subcutaneous fat, muscle, and muscle with fascia were harvested from Fischer 344 rats. The tissues were cut into small pieces and cultured for up to 90 days after direct transduction with adenoviral BMP-2 or green fluorescence protein vectors. Different vector doses were applied, and proliferation, long-term BMP-2 production, and osteogenic differentiation of the 3 different tissues were investigated in vitro. Muscle with fascia produced the largest amounts of BMP-2. Expression of the transgene was detected for up to 90 days. Proliferation was reduced with increased vector doses. Muscle with fascia showed a higher potential for osteogenic differentiation than fat, but it was not improved as compared to muscle alone. A dose of 4 × 108 plaque forming units of the adenoviral BMP-2 vector appeared to be the optimal dose for transduction of muscle with fascia. Because muscle with fascia produced higher amounts of BMP-2 as compared to muscle alone or fat tissue grafts, showing a high potential for osteogenic differentiation, it might represent an improved osteo-regenerative implant facilitating endogenous repair. Future studies should investigate the effect of muscle with fascia transduced with 4 × 108 plaque forming units on bone healing in vivo.
    Previously published data indicate that BMP-2 gene activated muscle tissue grafts can repair large bone defects in rats. This innovative abbreviated ex vivo gene therapy is appealing because it does not require elaborative and... more
    Previously published data indicate that BMP-2 gene activated muscle tissue grafts can repair large bone defects in rats. This innovative abbreviated ex vivo gene therapy is appealing because it does not require elaborative and time-consuming extraction and expansion of cells. Hence, in the present study, we evaluated the potential of this expedited tissue engineering approach for regenerating osteochondral defects in rabbits. Autologous muscle tissue grafts from female White New Zealand rabbits were directly transduced with an adenoviral BMP-2 vector or remained unmodified. Osteochondral defects in the medial condyle of rabbit knees were treated with either BMP-2 activated muscle tissue implants or unmodified muscle tissue or remained empty. After 13 weeks, repair of osteochondral defects was examined by biomechanical indentation testing and by histology/imunohistochemistry applying an extended O'Driscoll scoring system and histomorphometry. Biomechanical investigations revealed a trend towards slightly improved mechanical properties of the group receiving BMP-2 activated muscle tissue compared to unmodified muscle treatment and empty defect controls. However, a statistically significant difference was noted only between BMP-2 muscle and unmodified muscle treatment. Also, histological evaluation resulted in slightly higher histological scores and improved collagen I/II ratio without statistical significance in the BMP-2 treatment group. Histomorphometry indicated enhanced repair of subchondral bone after treatment with BMP-2 muscle, with a significantly larger bone area compared to untreated defects. Gene activated muscle tissue grafts showed potential for osteochondral defect repair. There is room for improvement via the use of appropriate growth factor combinations.
    Delivery of Bone Morphogenetic Protein-7 (BMP-7) to bone defects can be improved applying gene transfer methods. However, traditional ex vivo gene therapy approaches are cumbersome and costly requiring the extraction and culturing of... more
    Delivery of Bone Morphogenetic Protein-7 (BMP-7) to bone defects can be improved applying gene transfer methods. However, traditional ex vivo gene therapy approaches are cumbersome and costly requiring the extraction and culturing of cells. Therefore, we evaluated a novel, expedited ex vivo BMP-7 gene transfer technology based on the use of fragments of subcutaneous fat tissue. We created 5 mm mid-femoral bone defects in the right femora of 23 male, syngeneic Fischer 344 rats. Adipose tissue was harvested from the subcutaneous fat depot of two donor rats. Bone defects were treated with either unmodified fat (control group) or adenovirally BMP-7 transduced fat fragments (treatment group). Healing of bone defects was assessed by radiographs, micro-computed tomography (μCT), and histology at six weeks after implantation of fat tissue fragments. Radiographs, μCT-imaging and histology revealed relevant bone formation in 6 out of 10 rats treated with BMP-7 activated fat grafts. Two of the...
    Spinal cord injury (SCI) is a complex disease requiring a concerted multi-target approach. The most appropriate combination of therapeutic gene, cellular vehicle, and space filling scaffold still has to be determined. We present an... more
    Spinal cord injury (SCI) is a complex disease requiring a concerted multi-target approach. The most appropriate combination of therapeutic gene, cellular vehicle, and space filling scaffold still has to be determined. We present an approach that employs syngeneic adipose tissue serving as a three-dimensional biological implant, source of progenitor cells, and delivery system for therapeutic genes. In this pilot experiment, we evaluated the feasibility and short-term effects using gene-activated autologous fat grafts after SCI. An experimental SCI model was established in syngeneic Fischer 344 rats by a T9-T10 hemimyelonectomy. Fat tissue was harvested from two donor rats. Animals were divided into four groups and treated with either (i) fat grafts activated by an adenoviral vector carrying the human NT-3 cDNA, (ii) or BDNF, (iii) or with untreated fat grafts or (iv) remained untreated. Animals were euthanized either 7 or 21 days after surgery, and spinal cord tissue was investigated...
    This study was conducted in order to investigate the effect of Bone Morphogenetic Protein-7 (BMP-7) transduced muscle cells on bone formation and to further develop an innovative abbreviated ex vivo gene therapy for bone repair. As... more
    This study was conducted in order to investigate the effect of Bone Morphogenetic Protein-7 (BMP-7) transduced muscle cells on bone formation and to further develop an innovative abbreviated ex vivo gene therapy for bone repair. As conventional ex vivo gene therapy methods require an elaborative and time-consuming extraction and expansion of cells we evaluated an expedited approach. Fragments of muscle tissue were directly activated by BMP-7 cDNA and implanted into bone defects. 25 male, syngeneic Fischer 344 rats were used in the present study. Muscle tissue was harvested from two donor rats and either transduced with an adenovirus carrying the BMP-7 cDNA or remained unmodified. 5mm osseous defects in the right femora of 23 rats were treated with either unmodified muscle tissue (control group) or BMP-7 activated muscle tissue (treatment group). Six weeks after surgery, rat femora were evaluated by radiographs, micro-computed tomography (μCT) and histology. Implantation of BMP-7 activated muscle grafts led to bony bridging in 5 out of 12 defects (41.7%) and to bone formation without bridging in 2 out of 12 defects. In 2 femoral defects of this group radiographs, μCT-imaging and histology did not reveal significant mineralization. Three animals of the BMP-7 treatment group had to be euthanized due to serious wound infection. The bone volume of the treatment group was significantly (p=0.007) higher compared to the control group. This study shows that BMP-7 gene activated muscle fragments have the potential to regenerate critical-size segmental bone defects in rats. However, further development of this promising expedited treatment modality is required to improve the healing rate and to investigate if the high infection rate is related to treatment with BMP-7 activated muscle grafts.
    Our approach aims to optimize postscreening target validation strategies using viral vector-driven RNA interference (RNAi) cell models. The RNAiONE validation platform is an array of plasmid-based expression vectors that each drives... more
    Our approach aims to optimize postscreening target validation strategies using viral vector-driven RNA interference (RNAi) cell models. The RNAiONE validation platform is an array of plasmid-based expression vectors that each drives tandem expression of the gene of interest (GOI) with one small hairpin RNA (shRNA) from a set of computed candidate sequences. The best-performing shRNA (>85% silencing efficiency) is then integrated in an inducible, all-in-one lentiviral vector to transduce pharmacologically relevant cell types that endogenously express the GOI. VariCHECK is used subsequently to combine the inducible knockdown with an equally inducible rescue of the GOI for ON-target phenotype verification. The complete RNAiONE-VariCHECK system relies on three key elements to ensure high predictability: (1) maximized silencing efficiencies by a focused shRNA validation process, (2) homogeneity of the RNAi cell pools by application of sophisticated viral vector technologies, and (3) e...
    Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC The two key issues in chemo- and radiation therapy is the development of tumor resistance as well as toxic effects on normal tissue. In this sense new strategies... more
    Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC The two key issues in chemo- and radiation therapy is the development of tumor resistance as well as toxic effects on normal tissue. In this sense new strategies are required to increase efficacy of radiation to improve the therapeutic impact and reduce toxicological side effects. The performance of 3D cell culture systems over classical 2D culture systems has been shown to provide a closer representation of tissue-level biology. This has led to the rapid adoption of 3D systems for both drug discovery and toxicology. InSphero has developed a highly reproducible hanging drop technology able to generate monotypic cell spheroids (microtissues) in a 96-well format. The innovative 3D-microtissue plate technology has been adapted for analysis of the cellular response of radioresistant T47D breast cancer cells to combined radio-chemotherapy (RCTx). We have validated the model by comparing the treatment of microtissues with 10 different chemotherapeutic compounds, each tested alone and in combination with an acute 2Gy radiation exposure. The T47D cells were stably transduced with GFP-lentiviral vector enabling faster high throughput quantification of 3D microtissue growth assessment using an Operetta working Software and detection system ‘Harmony 3.0’ (PerkinElmer, USA). We studied the ability of RCTx to modify 3D-microtissue growth 3, 6 and 10 days after treatment. Results for five compounds (Actinomycin D, Staurosporine, Docetaxel, Doxorubicin and Vinblastine) showed that the IC50 values were improved by the addition of the single 2Gy radiation dose, indicating that they are capable of inducing a radiosensitation effect on radioresistant breast cancer cells. Panels of commercial secondary functional assays were adapted to the 3D-microtissue high throughput assay. Cellular viability and cytotoxicity were measured directly in microtissues using the CellTiter-Glo Reagent (Promega, USA). Apoptosis was measured using an ELISA based M30-Apoptosense assay (TECOmedical AG, Switzerland). These results all confirm that the assay operated with the 3D-microtissue model system is able to detect compounds that modulate tumors cell survival after irradiation. Citation Format: Natasa Anastasov, Ines Hofig, Jan Lichtenberg, Simon Stroebel, Michael Salomon, Christian Thirion, Jens Kelm, Michael J. Atkinson. Identification of compounds modifying radiation-therapy using a 3D-microtissue technology. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 5528. doi:10.1158/1538-7445.AM2013-5528
    A chloroplast outer envelope membrane protein was cloned and sequenced and from the sequence it was possible to deduce a polypeptide of 6.7 kDa. It has only one membrane-spanning region; the C terminus extends into the cytosol, whereas... more
    A chloroplast outer envelope membrane protein was cloned and sequenced and from the sequence it was possible to deduce a polypeptide of 6.7 kDa. It has only one membrane-spanning region; the C terminus extends into the cytosol, whereas the N terminus is exposed to the space between the two envelope membranes. The protein was synthesized in an in vitro transcription-translation system to study its routing into isolated chloroplasts. The import studies revealed that the 6.7-kDa protein followed a different and heretofore undescribed translocation pathway in the respect that (i) it does not have a cleavable transit sequence, (ii) it does not require ATP hydrolysis for import, and (iii) protease-sensitive components that are responsible for recognition of precursor proteins destined for the inside of the chloroplasts are not involved in routing the 6.7-kDa polypeptide to the outer chloroplast envelope.
    The PHOT1 ( NPH1 ) gene from Avena sativa specifies the blue light receptor for phototropism, phototropin, which comprises two FMN-binding LOV domains and a serine/threonine protein kinase domain. Light exposure is conducive to... more
    The PHOT1 ( NPH1 ) gene from Avena sativa specifies the blue light receptor for phototropism, phototropin, which comprises two FMN-binding LOV domains and a serine/threonine protein kinase domain. Light exposure is conducive to autophosphorylation of the protein kinase domain. We have reconstituted a recombinant LOV2 domain of A. sativa phototropin with various 13 C/ 15 N-labeled isotopomers of the cofactor, FMN. The reconstituted protein samples were analyzed by NMR spectroscopy under dark and light conditions. Blue light irradiation is shown to result in the addition of a thiol group (cysteine 450) to the 4a position of the FMN chromophore. The adduct reverts spontaneously in the dark by elimination. The light-driven flavin adduct formation results in conformational modification, which was diagnosed by 1 H and 31 P NMR spectroscopy. This conformational change is proposed to initiate the transmission of the light signal via conformational modulation of the protein kinase domain con...
    Phototropism, the bending response of plant organs to or away from a directional light source, is one of the best studied blue light responses in plants. Although phototropism has been studied for more than a century, recent advances have... more
    Phototropism, the bending response of plant organs to or away from a directional light source, is one of the best studied blue light responses in plants. Although phototropism has been studied for more than a century, recent advances have improved our understanding of the underlying signaling mechanisms involved. The NPH1 gene of Arabidopsis thaliana encodes a blue light-dependent autophosphorylating protein kinase with the properties of a photoreceptor for phototropism. NPH1 apoprotein noncovalently binds FMN to form the holoprotein nph1. The N-terminal region of the protein contains two LOV (light, oxygen, or voltage) domains that share homology with sensor proteins from a diverse group of organisms. These include the bacterial proteins NIFL and AER, both of which bind FAD, and the phy3 photoreceptor from Adiantium capillus-veneris . The LOV domain has therefore been proposed to reflect a flavin-binding site, regulating nph1 kinase activity in response to blue light-induced redox ...
    Phototropin (phot) is a UV/blue- light receptor mediating phototropic reactions of plants as a response to unilateral irradiation. Using an antiserum directed against the N-terminal part of Arabidopsis phot1, we show here cross-reaction... more
    Phototropin (phot) is a UV/blue- light receptor mediating phototropic reactions of plants as a response to unilateral irradiation. Using an antiserum directed against the N-terminal part of Arabidopsis phot1, we show here cross-reaction with phototropin from Avena sativa, Eruca sativa, Glycine max, Lepidium sativum, Lycopersicon esculentum, Pisum sativum, Sinapis alba, and Zea mays. In all investigated plants, blue light irradiation led to a gel mobility shift of phototropin corresponding to an apparent increase in size of 2-3 kDa. This increase is transient: the apparent size of the phototropin band reverted back to the original size in the dark within 60-90 min. The capacity for in vitro phosphorylation increased to 350% ( A. sativa) and 200% ( L. sativum) at 90 min after a blue light pulse without an increase in the amount of phototropin protein. Starting from coleoptile tips of monocots that contained the highest concentration of phototropin, we found an exponential decrease in basipetal sections of equal size while a linear decrease was determined for dicots in basipetal sections starting from the section below the hypocotyl hook. We confirmed the membrane association of all phototropin in dark-grown seedlings; after a 2-min blue light pulse, however, 20% of phototropin was found in the cytosolic fraction and only 80% in the membrane fraction. Both fractions showed the gel mobility shift indicating light-dependent autophosphorylation. Detergent-free solubilization of phototropin with chaotropic reagents was investigated with etiolated A. sativa seedlings. Up to 95% of phototropin was solubilized with a mixture of sodium bromide and sodium diphosphate, and subsequently subjected to affinity purification using Cibachron Blue 3GA-agarose as a dinucleotide analogue. Immediately after solubilization, soluble phototropin still showed blue-light-dependent autophosphorylation but lost its activity within less than 1 h.
    ABSTRACT
    OEP7, a 6.7-kDa outer envelope protein of spinach chloroplasts inserts into the outer envelope of the organelle independent of a classical cleavable targeting signal. The insertion of OEP7 was studied to describe the determinants for... more
    OEP7, a 6.7-kDa outer envelope protein of spinach chloroplasts inserts into the outer envelope of the organelle independent of a classical cleavable targeting signal. The insertion of OEP7 was studied to describe the determinants for association with, integration into, and orientation of the protein in the outer envelope of chloroplasts. The insertion of OEP7 into the membrane is independent of outer membrane channel proteins and can be reconstituted with the use of protein-free liposomes. In situ, the binding of OEP7 to the membrane surface is not driven by electrostatic interaction because reduction of phosphatidylglycerol or phosphatidylinositol did not reduce the association with the liposomes. The positively charged amino acids flanking the transmembrane domain at the C terminus are essential to retain the native Nin-Coutorientation during insertion into chloroplasts. OEP7 inserts with reversed orientation into liposomes containing the average lipid composition of the outer env...
    ... Tanja A. Schüttrigkeit a , Christian K. Kompa a , Michael Salomon b , 1 , Wolfhart Rüdiger b and Maria E. Michel-Beyerle Corresponding Author ... fs) was temporarily broadened to 150 ps before seeding a regenerative amplifier system... more
    ... Tanja A. Schüttrigkeit a , Christian K. Kompa a , Michael Salomon b , 1 , Wolfhart Rüdiger b and Maria E. Michel-Beyerle Corresponding Author ... fs) was temporarily broadened to 150 ps before seeding a regenerative amplifier system (BMI Alpha 1000S) pumped at 10 W by a Nd ...
    Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL To gain full benefit of more organotypic tumor culture systems, appropriate assays which enable high-throughput analysis over time without destroying the... more
    Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL To gain full benefit of more organotypic tumor culture systems, appropriate assays which enable high-throughput analysis over time without destroying the tissues have to be adopted. Especially read outs for co-culture systems which allow the discrimination of a drug effect on the cancer cell and stroma environment will be of advantage to foster drug testing using more complex 3D models. Here we report the development of microtissue models harboring either fluorescent and/or Luciferase for non-invasive drug sensitivity testing of homotypic and heterotypic tumor spheroids. Microtissues were assayed in microtissue assay plate which allows for biochemical assays and quantitative fluorescence of single multicellular tumor spheroids. Both the fluorescent and secreted luciferase reporter can be measured over time without destroying the tissue allowing for additional end point analysis of interest. HCT116, a colon cancer cell line, was transduced with the reporter genes under the control of a constitutive promoter. To assess the dependency of the fluorescence intensity in accordance to microtissue growth, HCT116-GFP microtissues were assayed over time in a multiplate fluorescence reader. The size profile correlated closely to the increase in fluorescence intensity. For further assay validation the IC50 value were determined by intra-tissue lactate dehydrogenase (LDH) and fluorescence decrease after 72h compound incubation. Reference compounds such as Taxol, Staurosprin and Chlorambucil were tested. The IC50 values from both assays resulted in comparable IC50 values. For non-invasive drug sensitivity testing in heterogenic tumor microtissues HCT116 harboring a secreted Luciferase were combined with a red fluorescent mouse fibroblasts (NIH3T3). Assaying Luciferase on the one hand and red fluorescence intensity on the other allowed discriminating effects on cancer cells and the non-proliferative. Discrimination between specific effects of drug treatment on tumor cells and fibrobast matrix cells is also possible using a two color heterotypic cell model composed of GFP-expressing HTC116 and RFP expressing NIH3T3 cells. Cytotoxic agents targeting either the total cell population or only proliferative cells were tested on the model discriminating the biological response on the two cell populations. To enable the implementation of organotypic cell culture systems at an early time point in the drug development process non-invasive assays. Here, we demonstrate for the first time such a dual cell tumor microtissues system with integrated reporter functions which allows to distinguish effects on different cell populations. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr LB-113. doi:1538-7445.AM2012-LB-113
    Lentiviral vectors (LV) are widely used to successfully transduce cells for research and clinical applications. Lentiviral vectors pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G) can be produced to high titers and... more
    Lentiviral vectors (LV) are widely used to successfully transduce cells for research and clinical applications. Lentiviral vectors pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G) can be produced to high titers and mediate high transduction efficiencies in vitro. For clinical applications the need for optimized transduction protocols and the limited activity of retronectin as LV enhancer, results in the application of a high multiplicity of infection (MOI) to achieve effective transduction efficiencies for a number of therapeutically relevant cells, e.g. CD34(+) hematopoietic stem cells, T- and B-cells. Our study describes an optimized LV infection protocol including a non-toxic poloxamer-based adjuvant combined with antibody-retargeted lentiviral particles, improving transduction efficiency at low MOI. Cell specificity of lentiviral vectors was increased by displaying different ratios of scFv-fused VSV-G glycoproteins on the viral envelope. The system was validated with difficult to transduce human CD30(+) lymphoma cells, and EGFR(+) tumor cells. Highly efficient transduction of lymphoma cells was achieved, >50% of cells were transduced when MOI 1 was used. The scFv displaying lentiviral particles gained relative specificity for transduction of target cells. Preferential gene delivery to CD30(+) or EGFR(+) cells was increased 4-fold in mixed cell cultures by presenting scFv antibody fragments binding to respective surface markers. A combination of spinoculation, poloxamer-based chemical adjuvant, and LV displaying scFv fragments increases transduction efficiencies of hard-to-transduce suspension lymphoma cells, and promises new chances for the future development of improved clinical protocols.
    The plant photoreceptor phototropin is an autophosphorylating serine-threonine protein kinase activated by UV-A/blue light. Two domains, LOV1 and LOV2, members of the PAS domain superfamily, mediate light sensing by phototropin.... more
    The plant photoreceptor phototropin is an autophosphorylating serine-threonine protein kinase activated by UV-A/blue light. Two domains, LOV1 and LOV2, members of the PAS domain superfamily, mediate light sensing by phototropin. Heterologous expression studies have shown that both domains function as FMN-binding sites. Although three plant blue light photoreceptors, cry1, cry2, and phototropin, have been identified to date, the photochemical reactions underlying photoactivation of these light sensors have not been described so far. Herein, we demonstrate that the LOV domains of Avena sativa phototropin undergo a self-contained photocycle characterized by a loss of blue light absorbance in response to light and a spontaneous recovery of the blue light-absorbing form in the dark. Rate constants and quantum efficiencies for the photoreactions indicate that LOV1 exhibits a lower photosensitivity than LOV2. The spectral properties of the photoproduct produced for both LOV domains are unrelated to those found for photoreduced flavins and flavoproteins, but are consistent with those of a flavin-cysteinyl adduct. Flavin-thiol adducts are generally short-lifetime reaction intermediates formed during the flavoprotein-catalyzed reduction of protein disulfides. By site-directed mutagenesis, we have identified several amino acid residues within the putative chromophore binding site of LOV1 and LOV2 that appear to be important for FMN binding and/or the photochemical reactivity. Among those is Cys39, which plays an important role in the photochemical reaction of the LOV domains. Replacement of Cys39 with Ala abolished the photochemical reactions of both LOV domains. We therefore propose that light sensing by the phototropin LOV domains occurs via the formation of a stable adduct between the FMN chromophore and Cys39.
    Phototropin is the designation originally assigned to a recently characterized chromoprotein that serves as a photoreceptor for phototropism. Phototropin is a light-activated autophosphorylating serine/threonine kinase that binds two... more
    Phototropin is the designation originally assigned to a recently characterized chromoprotein that serves as a photoreceptor for phototropism. Phototropin is a light-activated autophosphorylating serine/threonine kinase that binds two flavin mononucleotide (FMN) molecules that function as blue light-absorbing chromophores. Each FMN molecule is bound in a rigid binding pocket within specialized PAS (PER-ARNT-SIM superfamily) domains, known as LOV (light, oxygen, or voltage) domains. This article reviews the detailed photobiological and biochemical characterization of the light-activated phosphorylation reaction of phototropin and follows the sequence of events leading to the cloning, sequencing, and characterization of the gene and the subsequent biochemical characterization of its encoded protein. It then considers recent biochemical and photochemical evidence that light activation of phototropin involves the formation of a cysteinyl adduct at the C(4a) position of the FMN chromophores. Adduct formation causes a major conformational change in the chromophores and a possible conformational change in the protein moiety as well. The review concludes with a brief discussion of the evidence for a second phototropin-like protein in Arabidopsis and rice. Possible roles for this photoreceptor are discussed.