Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Rodrick cheruyot

    Rodrick cheruyot

    This study compares LSTM neural network and wavelet neural network (WNN) for spatio-temporal prediction of rainfall and runoff time-series trends in scarcely gauged hydrologic basins. Using long-term in situ observed data for 30 years... more
    This study compares LSTM neural network and wavelet neural network (WNN) for spatio-temporal prediction of rainfall and runoff time-series trends in scarcely gauged hydrologic basins. Using long-term in situ observed data for 30 years (1980–2009) from ten rain gauge stations and three discharge measurement stations, the rainfall and runoff trends in the Nzoia River basin are predicted through satellite-based meteorological data comprising of: precipitation, mean temperature, relative humidity, wind speed and solar radiation. The prediction modelling was carried out in three sub-basins corresponding to the three discharge stations. LSTM and WNN were implemented with the same deep learning topological structure consisting of 4 hidden layers, each with 30 neurons. In the prediction of the basin runoff with the five meteorological parameters using LSTM and WNN, both models performed well with respective R2 values of 0.8967 and 0.8820. The MAE and RMSE measures for LSTM and WNN predictio...