Abstract
We propose a ring signature scheme that creates short signatures for large rings. The scheme allows signers to reuse previously created signatures to enlarge the ring size without expanding the size of signature itself. The relation between signatures is a tree structure in which each signature is a node built upon its predecessors. The set of potential signers of a node grows exponentially with the tree height while the size of the signature may remain even constant. We give the specific example of the scheme built on the top of Schnorr ring signatures. We prove its unconditional anonymity and unforgeability in ROM.
This research has been partially supported by Polish National Science Centre contract number DEC-2013/09/D/ST6/03927.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Au, M.H., Chow, S.S.M., Susilo, W., Tsang, P.P.: Short linkable ring signatures revisited. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS, vol. 4043, pp. 101–115. Springer, Heidelberg (2006)
Au, M.H., Liu, J.K., Yuen, T.H., Wong, D.S.: Id-based ring signature scheme secure in the standard model. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S.-i. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 1–16. Springer, Heidelberg (2006)
Awasthi, A.K., Lal, S.: Id-based ring signature and proxy ring signature schemes from bilinear pairings. ArXiv Computer Science e-prints (April 2005)
Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and constructions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)
Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007)
Chen, Y.-S., Lei, C.-L., Chiu, Y.-P., Huang, C.-Y.: Confessible threshold ring signatures. In: ICSNC, p. 25. IEEE Computer Society (2006)
Chow, S.S.M., Yiu, S.-M., Hui, L.C.K.: Efficient identity based ring signature. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 499–512. Springer, Heidelberg (2005)
Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)
Herranz, J., Sáez, G.: Forking lemmas for ring signature schemes. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 266–279. Springer, Heidelberg (2003)
Herranz, J., Sáez, G.: A provably secure id-based ring signature scheme. Cryptology ePrint Archive, Report 2003/261 (2003), http://eprint.iacr.org/
Krzywiecki, L., Kutylowski, M., Lauks, A.: Hierarchical ring signatures. Slides presented at ’Western European Workshop on Research in Cryptology 2009 (2009)
Lin, C.-Y., Wu, T.-C.: An identity-based ring signature scheme from bilinear pairings. Cryptology ePrint Archive, Report 2003/117 (2003), http://eprint.iacr.org/
Naor, M.: Deniable ring authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 481–498. Springer, Heidelberg (2002)
Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptology 13(3), 361–396 (2000)
Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)
Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptology 4(3), 161–174 (1991)
Tsang, P.P., Wei, V.K.: Short linkable ring signatures for e-voting, e-cash and attestation. In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.) ISPEC 2005. LNCS, vol. 3439, pp. 48–60. Springer, Heidelberg (2005)
van Dijk, M., Juels, A., Oprea, A., Rivest, R.L.: Flipit: The game of?stealthy takeover? Journal of Cryptology 26(4), 655–713 (2013)
Wolchok, S., Wustrow, E., Isabel, D., Halderman, J.A.: Attacking the washington, dc internet voting system. In: FC 2012. LNCS, pp. 114–128. Springer, Heidelberg (2012)
Zhang, F., Kim, K.: Id-based blind signature and ring signature from pairings. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer, Heidelberg (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Krzywiecki, Ł., Sulkowska, M., Zagórski, F. (2015). Hierarchical Ring Signatures Revisited – Unconditionally and Perfectly Anonymous Schnorr Version. In: Chakraborty, R., Schwabe, P., Solworth, J. (eds) Security, Privacy, and Applied Cryptography Engineering. SPACE 2015. Lecture Notes in Computer Science(), vol 9354. Springer, Cham. https://doi.org/10.1007/978-3-319-24126-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-24126-5_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24125-8
Online ISBN: 978-3-319-24126-5
eBook Packages: Computer ScienceComputer Science (R0)