Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hierarchical Ring Signatures Revisited – Unconditionally and Perfectly Anonymous Schnorr Version

  • Conference paper
  • First Online:
Security, Privacy, and Applied Cryptography Engineering (SPACE 2015)

Abstract

We propose a ring signature scheme that creates short signatures for large rings. The scheme allows signers to reuse previously created signatures to enlarge the ring size without expanding the size of signature itself. The relation between signatures is a tree structure in which each signature is a node built upon its predecessors. The set of potential signers of a node grows exponentially with the tree height while the size of the signature may remain even constant. We give the specific example of the scheme built on the top of Schnorr ring signatures. We prove its unconditional anonymity and unforgeability in ROM.

This research has been partially supported by Polish National Science Centre contract number DEC-2013/09/D/ST6/03927.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Au, M.H., Chow, S.S.M., Susilo, W., Tsang, P.P.: Short linkable ring signatures revisited. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS, vol. 4043, pp. 101–115. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Au, M.H., Liu, J.K., Yuen, T.H., Wong, D.S.: Id-based ring signature scheme secure in the standard model. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S.-i. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 1–16. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Awasthi, A.K., Lal, S.: Id-based ring signature and proxy ring signature schemes from bilinear pairings. ArXiv Computer Science e-prints (April 2005)

    Google Scholar 

  4. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and constructions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Chen, Y.-S., Lei, C.-L., Chiu, Y.-P., Huang, C.-Y.: Confessible threshold ring signatures. In: ICSNC, p. 25. IEEE Computer Society (2006)

    Google Scholar 

  7. Chow, S.S.M., Yiu, S.-M., Hui, L.C.K.: Efficient identity based ring signature. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 499–512. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Herranz, J., Sáez, G.: Forking lemmas for ring signature schemes. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 266–279. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Herranz, J., Sáez, G.: A provably secure id-based ring signature scheme. Cryptology ePrint Archive, Report 2003/261 (2003), http://eprint.iacr.org/

  11. Krzywiecki, L., Kutylowski, M., Lauks, A.: Hierarchical ring signatures. Slides presented at ’Western European Workshop on Research in Cryptology 2009 (2009)

    Google Scholar 

  12. Lin, C.-Y., Wu, T.-C.: An identity-based ring signature scheme from bilinear pairings. Cryptology ePrint Archive, Report 2003/117 (2003), http://eprint.iacr.org/

  13. Naor, M.: Deniable ring authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 481–498. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptology 13(3), 361–396 (2000)

    Article  MATH  Google Scholar 

  15. Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptology 4(3), 161–174 (1991)

    Article  MATH  Google Scholar 

  17. Tsang, P.P., Wei, V.K.: Short linkable ring signatures for e-voting, e-cash and attestation. In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.) ISPEC 2005. LNCS, vol. 3439, pp. 48–60. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. van Dijk, M., Juels, A., Oprea, A., Rivest, R.L.: Flipit: The game of?stealthy takeover? Journal of Cryptology 26(4), 655–713 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wolchok, S., Wustrow, E., Isabel, D., Halderman, J.A.: Attacking the washington, dc internet voting system. In: FC 2012. LNCS, pp. 114–128. Springer, Heidelberg (2012)

    Google Scholar 

  20. Zhang, F., Kim, K.: Id-based blind signature and ring signature from pairings. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Krzywiecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Krzywiecki, Ł., Sulkowska, M., Zagórski, F. (2015). Hierarchical Ring Signatures Revisited – Unconditionally and Perfectly Anonymous Schnorr Version. In: Chakraborty, R., Schwabe, P., Solworth, J. (eds) Security, Privacy, and Applied Cryptography Engineering. SPACE 2015. Lecture Notes in Computer Science(), vol 9354. Springer, Cham. https://doi.org/10.1007/978-3-319-24126-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24126-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24125-8

  • Online ISBN: 978-3-319-24126-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics