Abstract
Background
Variations exist in the response of patients with Crohn’s disease (CD) to ustekinumab (UST) treatment, but the underlying cause remains unknown. Our objective was to investigate the involvement of immune cells and identify potential biomarkers that could predict the response to interleukin (IL) 12/23 inhibitors in patients with CD.
Methods
The GSE207022 dataset, which consisted of 54 non-responders and 9 responders to UST in a CD cohort, was analyzed. Differentially expressed genes (DEGs) were identified and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Least absolute shrinkage and selection operator (LASSO) regression was used to screen the most powerful hub genes. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the predictive performances of these genes. Single-sample Gene Set Enrichment Analysis (ssGSEA) was used to estimate the proportions of immune cell types. These significantly altered genes were subjected to cluster analysis into immune cell-related infiltration. To validate the reliability of the candidates, patients prescribed UST as a first-line biologic in a prospective cohort were included as an independent validation dataset.
Results
A total of 99 DEGs were identified in the integrated dataset. GO and KEGG analyses revealed significant enrichment of immune response pathways in patients with CD. Thirteen genes (SOCS3, CD55, KDM5D, IGFBP5, LCN2, SLC15A1, XPNPEP2, HLA-DQA2, HMGCS2, DDX3Y, ITGB2, CDKN2B and HLA-DQA1), which were primarily associated with the response versus nonresponse patients, were identified and included in the LASSO analysis. These genes accurately predicted treatment response, with an area under the curve (AUC) of 0.938. T helper cell type 1 (Th1) cell polarization was comparatively strong in nonresponse individuals. Positive connections were observed between Th1 cells and the LCN2 and KDM5D genes. Furthermore, we employed an independent validation dataset and early experimental verification to validate the LCN2 and KDM5D genes as effective predictive markers.
Conclusions
Th1 cell polarization is an important cause of nonresponse to UST therapy in patients with CD. LCN2 and KDM5D can be used as predictive markers to effectively identify nonresponse patients.
Trial registration: Trial registration number: NCT05542459; Date of registration: 2022-09-14; URL: https://www.clinicaltrials.gov.
Similar content being viewed by others
Background
Crohn's disease (CD) is a chronic inflammatory disease of the gastrointestinal tract that requires long-term therapy to control symptoms and prevent progression [1, 2]. The exact cause of CD is unknown, with complex cross-talk of immune system, genetics, environmental factors, and the microbiome [3]. Recent developments have improved our understanding of the pathogenesis of CD, notably by unraveling the underlying genetic risk factors [4], the aberrant immune response [5], and dysregulation of the gut microbiome and metabolome [6, 7]. Intestinal T helper cell type 1 (Th1) cells are key immune cells in the maintenance of intestinal immune homeostasis [8]. Disruption of mucosal immunity plays a critical role in the pathogenesis of CD, yet its mechanism remains not fully elucidated.
Over the past two decades, treatment targets for CD have evolved from clinical to endoscopic remission [9]. Responses to the new therapies, including biologics and small molecular drugs, are highly heterogeneous, which brings the concept of personalized therapy” into the spotlight [10]. Efforts have been made to guide personalized therapies from a genetic perspective. Patients with CD with a NOD2 gene mutation exhibit a distinct clinical phenotype and require higher doses of anti-tumor necrosis factor (TNF)-α agents to attain adequate anti-TNF-α trough levels [11]. Studies have reported an independent association between HLADQA1*05 and an increased risk of developing antibodies against infliximab in patients with IBD [12, 13]. West et al. [14] identified a newly implicated cytokine, oncostatin M (OSM), its receptor (OSMR), and a co-expressed transcriptional module as predictors of nonresponse to anti-TNF therapy. Tissue transcriptomics have also been used to predict responses to anti-integrin therapy [15]. These data highlight the importance of understanding the mucosal immunopathology in IBD and its relationship with drug response prediction.
Ustekinumab (UST) has recently gained global use and is considered an ideal therapy because of its high safety profile for treating inflammatory conditions such as psoriasis, psoriatic arthritis, and CD [16, 17]. UST is a monoclonal antibody that targets the p40 subunit of interleukin (IL)-12 and -23. IL-12 is important for Th1 differentiation, while IL-23 is involved in the T helper cell type 17 (Th17) pathway [18]. Theoretically, UST can modulate both Th1 and Th17 cell responses, thereby reducing inflammation and inhibiting the development of inflammatory T cells [19]. Both clinical trials and real-world studies have confirmed the effectiveness and safety of UST, although therapeutic responses to UST have only been observed in a specific subset of patients [18, 20,21,22,23,24]. However, variations in patient responses to UST treatment may be influenced by several factors, including the involvement and characteristics of different immune cells [24]. Predicting responses to UST is not well studied. Only one study has explored predictors of primary nonresponders in patients with CD receiving UST therapy [25]. However, this study did not directly identify differential genes between UST responders and nonresponders. In addition, the immune mechanisms underlying the variations involved in nonresponse to UST in patients with CD also remained elusive.
This study aimed to identify appropriate biomarkers for guiding clinical practice. We comprehensively explored the gene differences between responders and primary nonresponders to UST induction therapy for CD using the Gene Expression Omnibus (GEO) database. This prospective cohort was conducted to validate the findings from our discovery cohort. We then verified hub gene expression in UST clinical responders compared to that in nonresponders.
Methods
Study design and patient population
Our study design incorporated independent discovery and validation datasets. We used the GSE207022 dataset obtained from the GEO public database (http://www.ncbi.nlm.nih.gov/geo/), with the annotation platform GPL13158 as the discovery dataset. For validation, we included patients with CD who received UST therapy and were enrolled in the prospective registry of the MORE study (NCT05542459) between July 1, 2022, and July 1, 2023, at the Sixth Affiliated Hospital, Sun Yat-sen University. The inclusion criteria were as follows: individuals diagnosed with CD who received UST treatment and patients who were administered an initial intravenous dose of UST based on their weight for induction therapy, followed by at least one 90 mg subcutaneous maintenance injection of UST as the initial treatment. Patients were excluded if they had other factors that could complicate the results, such as concurrent infection, short bowel syndrome, or any condition requiring surgery; were taking other biological medications; or had incomplete data. Intestinal inflammation activity was evaluated based on the Simplified Endoscopic Score of Crohn’s Disease (SES-CD). Endoscopic biopsy samples were collected from terminal ileum at baseline for mRNA sequencing. All patients underwent colonoscopy at week 24 from baseline to follow-up.
Transcriptome sequencing
Twenty-two endoscopic biopsy samples were collected for RNA-Seq. (1) Library construction: Total RNA was obtained from Guangdong Meg Gene Biotechnology Co., LTD. (Guangzhou, China) using a commercial kit and according to the manufacturer's instructions. RNA degradation and contamination were detected by 1% agarose gel electrophoresis. Both Qubit4.0 (Thermo Fisher Scientific, Waltham,MA, USA) and Nanodrop One (Thermo Fisher Scientific) were used to quantify the RNA. The RNA integrity was determined using an Agilent 4200 system (Agilent Technologies, Santa Clara, CA, USA). (2) Library construction: The library was built using the ALFA-SEQ RNA Library Prep Kit as recommended by the manufacturer according to the manufacturer’s instructions. (3) Sequencing: Library sequencing on the Illumina or MGI platforms produced a paired-end reading of 150 bp.
Data acquisition and pre-processing
The GSE207022 dataset contained samples from 125 patients with moderately to severely active CD and 23 healthy controls. Patients treated with intravenous UST who underwent endoscopic assessment at week 8 were included in the analysis. UST‐ induced responders were defined as those with mucosal healing with SES-CD scores < 3 [26]. We included sixty-three patients with complete profiles and clinical information, including the response (n = 9) and nonresponse (n = 54) arms. The “handout” method was used for splitting samples in the nonresponse arm. Fifty-four samples were randomly divided into six groups (n = 9 per group) using the caret package (version 6.0–85).
Analysis of differentially expressed genes (DEGs)
Principal component analysis (PCA) was used to compare and visualize the within-group sample consistency. DEGs were analyzed using the GEO2R for the responder and nonresponder groups in the GSE207022 dataset (http://www.ncbi.nlm.nih.gov/geo/geo2r). The cut‐off values for significant DEGs were |log2(FC)|> 1 and p-value < 0.05. DEGs were visualized with volcano plots using the ggplot R package. An upset diagram was used to represent the intersection between the DEGs and groups.
GO and KEGG function analysis
ClusterProfiler was used to annotate the functional aspects of diverse genes to explore their functional significance. GO and KEGG were used to evaluate related functional classifications. Pathways enriched in GO and KEGG analyses with adjusted p < 0.05 were considered significant.
Construction of least absolute shrinkage and selection operator (LASSO) regression model
LASSO regression was used to identify key genes associated with UST response. The gene expression data were integrated into a regression coefficient-weighted scoring formula, to develop a predictive model for patients. We evaluated the predictive accuracy of the model using receiver operating characteristic (ROC) curves.
Univariate logistic analysis
Significant DEGs were analyzed using univariate logistic regression to investigate their association with the UST response. This analysis was conducted using R studio by fitting a generalized linear model with the main argument "family = binomial." Subsequently, hazard ratio (HR), 95% confidence interval (95% CI), and p-values were computed. The univariate logistic regression analysis results were presented as a forest plot using the "forestplot" R package (version 1.9).
Immune cell infiltration analysis by ssGSEA
Using the ssGSEA algorithm, a reliable tool for determining cell composition, we calculated the proportions of immune cell types present in the intestinal tissues based on gene expression profiles. The ssGSEA method was implemented using the ssGSEA function to calculate the scores of immune infiltration for 24 immune cell types in the R package “GSVA” [27, 28]. Pearson’s correlation analysis was used to evaluate the correlation between immune cells and DEGs.
Real-time polymerase chain reaction (PCR)
Reverse transcriptional PCR was performed using the TaKaRa Ex Taq (Takara) and a TaKaRa PCR Thermal Cycler Dice® Touch (Takara), according to the manufacturer's directions. Real-time quantitative PCR was performed using a TAKARA SYBR green Quantitative PCR kit. The relative expression of each gene was determined using the 2-ΔΔCt technique and normalized to the expression of the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase. The gene-specific primers (Huayin, Guangzhou, China) are listed in Table S1.
Statistical analysis
Statistical analyses were performed using R (version 4.3). Statistical significance was set at p < 0.05 in all tests.
Results
Clinical characteristics of the patients
The GSE207022 dataset was used as a discovery dataset. Twenty-two patients with active CD were included in the validation cohort. All twenty-two patients underwent colonoscopy at week 24, and 9 (40.9%) achieved endoscopic remission. The clinical characteristics of the patients are shown in Table S2. The baseline demographic characteristics were similar between the response and nonresponse groups. The study flowchart is presented in Fig. 1.
Gene expression differences in UST response vs non-response patients
In order to ensure that each group has a similar distribution of samples, the consistency of the within-group samples in non-response arm was analyzed by PCA-Class analysis. The results showed no clear separation between groups (Figure S1). The most significant DEGs were screened out in each group (Fig. 2A). A gene was considered significantly differential expressed when it existed in greater than or equal to 3 groups. Finally, we found 99 genes with significant expression levels between response arm and non-response arm by limma differential analysis (Fig. 2B).
Functional enrichment of DEGs
Differential gene-related signaling pathways were explored using GO and KEGG enrichment analyses, which revealed significant enrichment in pathways such as cytokine activity, chemokine receptor binding, and cytokine receptor binding in the GO analysis (Fig. 3A). In addition, KEGG analysis showed significant enrichment in the TNF signaling pathway, NOD-like receptor signaling pathway, and Cytokine-cytokine interaction (Fig. 3B).
LASSO model to identify potential predictive markers
Ninety-nine candidate genes were selected for feature screening using LASSO regression (Fig. 4A, B). We obtained 13 non-zero coefficient characteristics. The results demonstrated strong diagnostic performance of the prediction model based on 13 genes, with an AUC curve of 0.938 (Fig. 4C). Single genes were analyzed for their association with UST response by individually evaluating their ROC characteristics. Figure 4D shows that the genes SOCS3, CD55, KDM5D, LCN2, SLC15A1, XPNPEP2, HLA-DQA2, and HMGCS2 had AUC values > 0.7, while the remaining signature genes had AUC values of 0.5 to 0.7. Nine genes with AUC values > 0.7 were classified as hub genes.
Univariate logistic regression analysis
We conducted univariate regression analysis on the nine hub genes and visualized the results using a random forest plot. Table 1 shows that SLC15A1 (HR 2.815, p = 0.008), XPNPEP2 (HR 3.455, p = 0.014) and HMGCS2 (HR 3.383, p = 0.027) were better UST response predictors. However, SOCS3 (HR 0.004, p = 0.004), CD55 (HR 0.386, p = 0.010), KDM5D (HR 0.512, p = 0.024), LCN2 (HR 0.375, p = 0.007) and HLA-DQA2 (HR 0.443, p = 0.017) were better predictors of UST nonresponse. Figure 4E shows the expression levels of the nine genes in the response and nonresponse groups.
Immune infiltration analysis
The composition of immune cells from intestinal tissues in the response and nonresponse groups was analyzed, and the fractions of 24 immune cells are shown in the boxplot (Figure S2). Group 1 to 5 had significant differences in Th1 cell fractions. More specifically, in nonresponse patients, the proportion of Th1 cells at week 8 was significantly increased compared to that in response patients (Fig. 5A). Futhermore, groups 1–4 had significant differences in the neutrophil and NKCD56dim cells fractions. The neutrophil fraction was relatively high in nonresponse individuals (Fig. 5B). Similarly, group 2 to 5 had significant differences in the T helper cells fractions. Cytotoxic cells, macrophages and Th17 cells were significantly different only in group 1. Intestinal tissue cells did not differ in other immune cell fractions in the response and nonresponse arms. Taken together, Th1 cells may be the main immune cell type that is different between response and nonresponse patients.
We investigated the correlation between immune cells and UST response-related genes. Our results showed that KDM5D was significantly related to the infiltration of various immune cells, including Th1 cells and neutrophils. Notably, LCN2 is also significantly associated with Th1 cells and neutrophils, which are important immune-infiltrating cells associated with UST response (Fig. 5C, D).
Prospective cohort validation
Next, we validated our finding in an independent patient cohort. We included an independent dataset of the intestinal tissues of twenty-two patients with CD (male: n = 16; female: n = 6) including 9 response samples and 13 nonresponse samples, as a validation dataset. First, we conducted differential gene expression analysis. Intersectional analysis revealed 35 DEGs (Fig. 6A). As shown in Fig. 6B, the expression levels of both genes in the nonresponse arm were significantly higher than in the response arm. The AUCs for KDM5D and LCN2 were 0.761 and 0.718, respectively.
The KDM5D gene resides on the Y chromosome and is expressed only in males. Therefore, we further analyzed the male samples separately using the same analysis. Intersectional analysis revealed 28 DEGs (Fig. 6C). As shown in Fig. 6D, the expression levels of both genes in the nonresponse arm were significantly higher than in the response arm. The AUCs for KDM5D and LCN2 were 0.883 and 0.667, respectively. We also analyzed female samples separately using the same procedure. Intersection analysis revealed five DEGs: LCN2, PI3, PDZK1IP1, CXCL5 and SIK1 (Figure S3). Thus, these genes may serve as potential biomarkers in female CD patients.
After performing immune infiltration analysis in the overall cohort and male samples, the results showed that UST response was related to Th1 cells but not neutrophils (Fig. 6E, F), which further confirms the correlation between Th1 polarization and UST nonresponse. Taken together, these data indicate that upregulation of KDM5D and LCN2 could increase infiltration of Th1 cells, which may release inflammatory factors and initiates downstream inflammatory response, leading to a poor initial response. Therefore, we speculate that the upregulation of KDM5D and LCN2 may increase infiltration of Th1 cells and neutrophils, which may release inflammatory factors and initiates downstream inflammatory response (Fig. 7). We also analyzed mRNA expression of KDM5D and LCN2 in intestine. As Figure S4 showed, mRNA expression of KDM5D and LCN2 were significantly higher in the nonresponse arm than in the response arm.
Discussion
In this study, we found several genes and Th1 polarization were related to response to UST. Among these genes, KDM5D and LCN2 were upregulated in patients with CD who were nonresponsive to UST therapy, which may promote Th1 cell polarization. Additionally, we observed that the effectiveness of UST treatment in male patients was worse than that in female patients (p = 0.038) (Table S3), and the KDM5D, which resides on the Y chromosome, was expressed only in males. Therefore, KDM5D may act as a driver for the significant expansion of Th1 cells to drive gender differences in UST therapy. To our knowledge, it is the first study to predict UST response from the perspective of mucosal mRNA expression.
To date, several studies have explored the relationship between clinical, biological, and pharmacological factors and the initial response to UST. Lower Harvey-Bradshaw Index (HBI) baseline values, female sex and UST trough levels were predictors [29,30,31,32]. Dulai et al. [33] created the UST clinical decision support tool (UST-CDST), which was derived from a post hoc analysis of UNITI trials. Using real-world data, the UST-CDST has demonstrated effectiveness in predicting clinical remission and relapse of UST in patients with moderate to severe CD [34]. However, current predictive models rely primarily on general phenotypic, biochemical, and demographic factors, which may lack specificity and reproducibility. Intestinal tissue transcriptomics has shown promise for predicting treatment responses in patients with IBD. In an initial study by Arijs et al. [35], an mRNA microarray was used to identify five highly differentially expressed genes (TNFRSF11B, STC1, PTGS2, IL13RA2, and IL11). These genes were able to accurately predict endoscopic remission in response to infliximab treatment, with a sensitivity of 95% and specificity of 85%. No studies have reported a correlation between intestinal gene expression and endoscopic remission in patients with CD receiving UST therapy. Therefore, in this study, we explored the predictors of nonresponse to UST therapy in patients with CD and externally verified these findings with the goal of improving the cost-effectiveness of medical therapy by avoiding ineffective treatments.
CD is a canonical disease mediated by Th1 cells [36]. Th1 cell differentiation is significantly influenced by IL-12, which further stimulates the production of inflammatory cytokines, including interferon (IFN)-γ, in activated Th1 cells [37, 38]. UST, an anti-IL-12p40 monoclonal antibody proven successful in treating patients with CD, is particularly appealing because it can potentially suppress both Th1 cell types simultaneously [20, 39]. Interestingly, in this study, we observed that nonresponse to UST therapy in patients with CD was associated with a higher Th1 cell fraction. These findings in the discovery and validation cohorts were consistent with Th1 polarization. A prior study found that administering two Fontolizumab doses, an anti-IFN-γ antibody that disrupts Th1 polarization andmacrophage, monocyte, and natural killer cell activation, to patients with active CD led to higher clinical response rates and remission induction compared to placebo [40]. Therefore, excessive Th1 cells activation in some patients with CD may be responsible for nonresponse to UST therapy.
In our study, 13 key genes involved in nonresponse to UST therapy were differentially expressed, including SOCS3, CD55, KDM5D, IGFBP5, LCN2, SLC15A1, XPNPEP2, HLA-DQA2, HMGCS2, DDX3Y, ITGB2, CDKN2B and HLA-DQA1. Futhermore, KDM5D and LCN2, core differential genes, showed a positive correlation between gene expression and the Th1 cell infiltration in nonresponse patients. LCN2, also known as siderocalin or neutrophil gelatinase–associated lipocalin (NGAL), is a powerful bacteriostatic protein packed in neutrophil granules that is discharged at inflammatory sites. LCN2 serves as a dependable indicator of illness severity in ulcerative colitis and CD, differentiating between active disease and remission with heightened sensitivity compared to CRP [41, 42]. Two studies have demonstrated that measureing of serum LCN2 levels is useful to determine an appropriate response to anti-TNF α treatment [43, 44]. La Manna et al. [45] detailed the direct effect of LCN2 on CD4 + T cells. An environment rich in pro-inflammatory cytokines, such as IL-12 and IFN-γ, which are crucial for Th1 differentiation, can be promoted by the role of LCN2 in innate immunity. LCN2 may directly affect T cells by influencing their metabolism and function and promoting a Th1 response [45, 46]. A previous study indicated that LCN2 has the potential to enhance Th1 cell differentiation via the IL-12/STAT4 pathway, either in an autocrine or paracrine manner [46]. This supports our discovery that the LCN2 upregulation leads to Th1 cell differentiation. Since the KDM5D gene is located on the Y chromosome in humans, we wanted to determine whether this gene affects the association between sex and the response of patients with CD to UST. Feagan et al. [18] and Laura et al. [29] reported worse responses to UST in male patients with CD [30]. A clinical study at our center also demonstrated that the UST treatment effectiveness in male patients with active CD who had a disease duration greater than 2 years was worse than that in female patients (p = 0.038) [31]. Therefore, KDM5D may drive sex differences in patients with CD receiving UST therapy as a driver of significant Th1 cell expansion.
Sex differences in response to UST therapy for CD are influenced by a complex interplay of genetic immunological factors, as well as hormonal differences [47, 48]. A significant reduction in estrogen receptor β expression has been observed in colonic mucosa from patients with active CD compared with those in remission [48]. KDM5D is encoded on the Y chromosome, which may cause the sex difference in response to UST. However, whether KDM5D has a cross-talk with other factors as hormone remains unclear. This approach underscores the importance of personalized medicine in optimizing treatment strategies for both male and female patients with CD. As mentioned above, a worse response to UST has been reported in male patients with CD than in female patients [29,30,31]. According to our results, KDM5D (Lysine Demethylase 5D), a member of the JARID1 family of histone demethylases that specifically removes tri- and di-methyl groups from histone H3 lysine 4 (H3K4me3/2), has emerged as the sole Y-chromosome gene with differential expression between response and nonresponse to UST therapy in human males. KDM5D influences Th1 cell polarization by altering the epigenetic landscape [49,50,51]. Together, these data support the view that KDM5D upregulation drives worse outcomes in males with CD receiving UST therapy. However, further studies are required to assess the contribution of KDM5D to the induction Th1 polarization. This underscores the viability of LCN2 and KDM5D as key targets for nonresponse to UST therapy. Interestingly, we also found that there was sex difference in response to UST, which need to be clarified in the future study. These insights underscore the importance of personalized medicine approaches that consider individual genetic, epigenetic, and gender-specific factors to optimize treatment strategies for patients with CD. Finally, we analyzed the changes in LCN2 and KDM5D mRNA expression by quantitative real-time PCR to prove that they were harmful to patients with CD who respond to UST therapy. We intend to conduct further research to elucidate the underlying molecular mechanism in upcoming studies.
We identified two new key genes related to the response of UST therapy in patients with CD, which may be new biomarkers for nonreponse to UST. The role of LCN2 in IBD has been extensively studied. Its overexpression is directly associated with the induction of Th1 differentiation. Another gene, KDM5D, may drive sex differences in patients with CD receiving UST therapy, as a driver of significant Th1 cell expansion. However, our study had some limitations. Firstly, the sample size extracted from the database was small. Studies with larger sample size is necessary to confirm the valuable initial insights. Secondly, in vitro and in vivo experimental validation for the findings are lacking. Further studies will involve cell function experiments involving overexpression or knockdown of LCN2 and KDM5D, as well as animal experiments using a mouse model of DSS-induced colitis. Despite these limitations, the preliminary findings offer valuable insights.
Conclusions
In conclusion, bioinformatics analysis and external validation showed that Th1 cells play critical roles in the nonresponse to UST therapy of patients with CD. Moreover, we identified KDM5D and LCN2 as promising candidates for predicting response to UST therapy in patients with CD. Our findings provided evidence that Th1 cells polarization could be a potential predictor for UST nonresponse in patients with CD, which could facilitate the establishment of novel approaches to alleviate the disease burden.
Availability of data and materials
The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.
Abbreviations
- AUC:
-
Area under the curve
- CD:
-
Crohn’s disease
- CI:
-
Confidence interval
- DEGs:
-
Differentially expressed genes
- GEO:
-
Gene expression omnibus
- GO:
-
Gene ontology
- GWAS:
-
Genome-wide association study
- HR:
-
Hazard ratio
- IBD:
-
Inflammatory bowel disease
- IFN:
-
Interferon
- IL:
-
Interleukin
- KEGG:
-
Kyoto encyclopedia of genes and genomes
- LASSO:
-
Least absolute shrinkage and selection operator
- OSM:
-
Oncostatin M
- OSMR:
-
Oncostatin M receptor
- NGAL:
-
Neutrophil gelatinase–associated lipocalin
- PCA:
-
Principal component analysis
- PCR:
-
Polymerase chain reaction
- ROC:
-
Receiver operating characteristic
- SES-CD:
-
Simplified endoscopic score of CD
- ssGSEA:
-
Single-sample gene set enrichment analysis
- Th1:
-
T helper cells type 1
- TNF:
-
Tumor necrosis factor
- UST:
-
Ustekinumab
- UST-CDST:
-
UST Clinical Decision Support Tool
References
Roda G, Chien Ng S, Kotze PG, et al. Crohn’s disease. Nat Rev Dis Primers. 2020;6(1):22.
Zhao M, Gönczi L, Lakatos PL, Burisch J. The burden of inflammatory bowel disease in Europe in 2020. J Crohns Colitis. 2021;15(9):1573–87.
Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474(7351):307–17.
Huang H, Fang M, Jostins L, et al. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature. 2017;547(7662):173–8.
Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol. 2010;28:573–621.
Breton J, Tanes C, Tu V, et al. A Microbial signature for paediatric perianal Crohn’s disease. J Crohns Colitis. 2022;16(8):1281–92.
Serena C, Queipo-Ortuño M, Millan M, et al. Microbial signature in adipose tissue of Crohn’s disease patients. J Clin Med. 2020;9(8):2448.
Martini GR, Tikhonova E, Rosati E, et al. Selection of cross-reactive T cells by commensal and food-derived yeasts drives cytotoxic TH1 cell responses in Crohn’s disease. Nat Med. 2023;29(10):2602–14.
Turner D, Ricciuto A, Lewis A, et al. STRIDE-II: an update on the selecting therapeutic targets in inflammatory bowel disease (STRIDE) initiative of the International Organization for the Study of IBD (IOIBD): determining therapeutic goals for treat-to-target strategies in IBD. Gastroenterology. 2021;160(5):1570–83.
Baumgart DC, Le Berre C. Newer biologic and small-molecule therapies for inflammatory bowel disease. N Engl J Med. 2021;385(14):1302–15.
Schäffler H, Geiss D, Gittel N, et al. Mutations in the NOD2 gene are associated with a specific phenotype and lower anti-tumor necrosis factor trough levels in Crohn’s disease. J Dig Dis. 2018;19(11):678–84.
Sazonovs A, Kennedy NA, Moutsianas L, et al. HLA-DQA1*05 carriage associated with development of anti-drug antibodies to infliximab and adalimumab in patients with Crohn’s disease. Gastroenterology. 2020;158(1):189–99.
Wilson A, Peel C, Wang Q, Pananos AD, Kim RB. HLADQA1*05 genotype predicts anti-drug antibody formation and loss of response during infliximab therapy for inflammatory bowel disease [published correction appears in Aliment Pharmacol Ther. 2021 Nov; 54(9): 1220]. Aliment Pharmacol Ther. 2020; 51(3): 356–363.
West NR, Hegazy AN, Owens BMJ, et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease [published correction appears in Nat Med. 2017 Jun 6; 23(6): 788]. Nat Med. 2017; 23(5): 579–589.
Tew GW, Hackney JA, Gibbons D, et al. association between response to etrolizumab and expression of integrin αE and granzyme A in colon biopsies of patients with ulcerative colitis. Gastroenterology. 2016;150(2):477-87.e9.
Van den Berghe N, De Keyser E, Soenen R, et al. Clinical response correlates with 4-week postinjection ustekinumab concentrations in patients with moderate-to-severe psoriasis. Br J Dermatol. 2020;182(2):390–7.
Kavanaugh A, Ritchlin C, Rahman P, et al. Ustekinumab, an anti-IL-12/23 p40 monoclonal antibody, inhibits radiographic progression in patients with active psoriatic arthritis: results of an integrated analysis of radiographic data from the phase 3, multicentre, randomised, double-blind, placebo-controlled PSUMMIT-1 and PSUMMIT-2 trials. Ann Rheum Dis. 2014;73(6):1000–6.
Feagan BG, Sandborn WJ, Gasink C, et al. Ustekinumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2016;375(20):1946–60.
Espígol-Frigolé G, Planas-Rigol E, Lozano E, et al. Expression and function of IL12/23 related cytokine subunits (p35, p40, and p19) in giant-cell arteritis lesions: contribution of p40 to Th1- and Th17-mediated inflammatory pathways. Front Immunol. 2018;9:809.
Sandborn WJ, Gasink C, Gao LL, et al. Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. N Engl J Med. 2012;367(16):1519–28.
Travis S. IM-UNITI at three years: stellar Stelara® or Stardust? The efficacy, safety, and immunogenicity of ustekinumab treatment of Crohn’s disease. J Crohns Colitis. 2020;14(1):1–3.
Plevris N, Fulforth J, Siakavellas S, et al. Real-world effectiveness and safety of ustekinumab for the treatment of Crohn’s disease: the Scottish ustekinumab cohort. J Gastroenterol Hepatol. 2021;36(8):2067–75.
Cao Q, Chen C, Gao X, et al. Real-world short-term effectiveness of ustekinumab in Crohn’s disease: results from a multicenter, prospective study in China. Inflamm Bowel Dis. 2022;28(Suppl 2):S42–4.
Sandborn WJ, Rebuck R, Wang Y, et al. Five-Year efficacy and safety of ustekinumab treatment in Crohn’s disease: the IM-UNITI trial. Clin Gastroenterol Hepatol. 2022;20(3):578-590.e4.
He M, Li C, Tang W, Kang Y, Zuo Y, Wang Y. Machine learning gene expression predicting model for ustekinumab response in patients with Crohn’s disease. Immun Inflamm Dis. 2021;9(4):1529–40.
Daperno M, D’Haens G, Van Assche G, et al. Development and validation of a new, simplified endoscopic activity score for Crohn’s disease: the SES-CD. Gastrointest Endosc. 2004;60(4):505–12.
Bindea G, Mlecnik B, Tosolini M, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39(4):782–95.
Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013;14:7.
Lorenzo González L, Valdés Delgado T, Vázquez Morón JM, et al. Ustekinumab in Crohn’s disease: real-world outcomes and predictors of response. Rev Esp Enferm Dig. 2022;114(5):272–9.
Gisbert JP, Chaparro M. Predictors of primary response to biologic treatment [Anti-TNF, Vedolizumab, and Ustekinumab] in patients with inflammatory bowel disease: from basic science to clinical practice. J Crohns Colitis. 2020;14(5):694–709.
Yang H, Huang Z, Li M, et al. Comparative effectiveness of ustekinumab vs. vedolizumab for anti-TNF-naïve or anti-TNF-exposed Crohn’s disease: a multicenter cohort study. EClinicalMedicine. 2023;66:102337.
Hirayama H, Morita Y, Imai T, et al. Ustekinumab trough levels predicting laboratory and endoscopic remission in patients with Crohn’s disease. BMC Gastroenterol. 2022;22(1):195.
Dulai PS. Editorial: a clinical decision tool to identify patients who might benefit most from intensified dosing in the biological era-getting nearer? Authors’ reply. Aliment Pharmacol Ther. 2020;51(7):738–9.
Park J, Chun J, Yoon H, Cheon JH. Feasibility of a clinical decision support tool for ustekinumab to predict clinical remission and relapse in patients with Crohn’s disease: a multicenter observational study. Inflamm Bowel Dis. 2023;29(4):548–54.
Arijs I, Li K, Toedter G, et al. Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis. Gut. 2009;58(12):1612–9.
Parronchi P, Romagnani P, Annunziato F, et al. Type 1 T-helper cell predominance and interleukin-12 expression in the gut of patients with Crohn’s disease. Am J Pathol. 1997;150(3):823–32.
Peluso I, Pallone F, Monteleone G. Interleukin-12 and Th1 immune response in Crohn’s disease: pathogenetic relevance and therapeutic implication. World J Gastroenterol. 2006;12(35):5606–10.
Trinchieri G. Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes. Blood. 1994;84(12):4008–27.
Mannon PJ, Fuss IJ, Mayer L, et al. Anti-interleukin-12 antibody for active Crohn’s disease. N Engl J Med. 2004;351(20):2069–79.
Hommes DW, Mikhajlova TL, Stoinov S, et al. Fontolizumab, a humanised anti-interferon gamma antibody, demonstrates safety and clinical activity in patients with moderate to severe Crohn’s disease. Gut. 2006;55(8):1131–7.
de Bruyn M, Arijs I, De Hertogh G, et al. Serum neutrophil gelatinase B-associated lipocalin and matrix metalloproteinase-9 complex as a surrogate marker for mucosal healing in patients with Crohn’s disease. J Crohns Colitis. 2015;9(12):1079–87.
Janas RM, Ochocińska A, Snitko R, et al. Neutrophil gelatinase-associated lipocalin in blood in children with inflammatory bowel disease. J Gastroenterol Hepatol. 2014;29(11):1883–9.
Bolignano D, Della Torre A, Lacquaniti A, Costantino G, Fries W, Buemi M. Neutrophil gelatinase-associated lipocalin levels in patients with crohn disease undergoing treatment with infliximab. J Investig Med. 2010;58(3):569–71.
de Bruyn M, Arijs I, Wollants WJ, et al. Neutrophil gelatinase B-associated lipocalin and matrix metalloproteinase-9 complex as a surrogate serum marker of mucosal healing in ulcerative colitis. Inflamm Bowel Dis. 2014;20(7):1198–207.
La Manna G, Ghinatti G, Tazzari PL, et al. Neutrophil gelatinase-associated lipocalin increases HLA-G(+)/FoxP3(+) T-regulatory cell population in an in vitro model of PBMC. PLoS ONE. 2014;9(2):e89497.
Chen W, Li W, Zhang Z, et al. Lipocalin-2 exacerbates lupus nephritis by promoting Th1 cell differentiation. J Am Soc Nephrol. 2020;31(10):2263–77.
Goodman WA, Erkkila IP, Pizarro TT. Sex matters: impact on pathogenesis, presentation and treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17(12):740–54.
Xu L, Huang G, Cong Y, Yu Y, Li Y. Sex-related differences in inflammatory bowel diseases: the potential role of sex hormones. Inflamm Bowel Dis. 2022;28(11):1766–75.
Meyfour A, Pahlavan S, Ansari H, Baharvand H, Salekdeh GH. Down-regulation of a male-specific H3K4 demethylase, KDM5D, impairs cardiomyocyte differentiation. J Proteome Res. 2019;18(12):4277–82.
Li J, Lan Z, Liao W, Horner JW, Xu X, Liu J. The histone demethylase KDM5D drives sex differences in colorectal cancer. Cancer Discov. 2023;13(8):1761.
Li J, Lan Z, Liao W, et al. Histone demethylase KDM5D upregulation drives sex differences in colon cancer. Nature. 2023;619(7970):632–9.
Acknowledgements
We want to acknowledge the participants and investigators of the MORE study.
Funding
This research project was supported by the program of Guangdong Provincial Clinical Research Center for Digestive Diseases (2020B1111170004) and the Sixth Affiliated Hospital of Sun Yat-Sen University (1010CG(2023)-12, 2022JBGS05 and 2022JBGS03).
Author information
Authors and Affiliations
Contributions
All authors read and approved the final manuscript. KC, XG, and QL conceived the ideas and designed experiments; QL wrote manuscript; QL, ZCH, HSY, JT, TZ, QFY and ZPH carried out experiments; QL, ZCH, HSY, JT, TZ, QG and ML analyzed experiments results. XG and KC revised the manuscript, figures, and tables.
Corresponding authors
Ethics declarations
Ethics approval and consent to participate
This research was approved by the ethics committee of the Sixth Affiliated Hospital of Sun Yat-sen University and informed consent was obtained from all participants.
Consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
About this article
Cite this article
Li, Q., Huang, Z., Yang, H. et al. Intestinal mRNA expression profiles associated with mucosal healing in ustekinumab-treated Crohn's disease patients: bioinformatics analysis and prospective cohort validation. J Transl Med 22, 595 (2024). https://doi.org/10.1186/s12967-024-05427-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s12967-024-05427-w