Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Yang-Hui He
  • Merton College, University of Oxford, OX14JD, UK
We obtain explicit formulas for the Neumann coefficients and associated quantities that appear in the three-string vertex for type IIB string theory in a plane-wave background, for any value of the mass parameter mu. The derivation... more
We obtain explicit formulas for the Neumann coefficients and associated quantities that appear in the three-string vertex for type IIB string theory in a plane-wave background, for any value of the mass parameter mu. The derivation involves constructing the inverse of a certain infinite-dimensional matrix, in terms of which the Neumann coefficients previously had been written only implicitly. We derive asymptotic expansions for large mu and find unexpectedly simple results, which are valid to all orders in 1/mu. Using BMN duality, these give predictions for certain gauge theory quantities to all orders in the modified 't Hooft coupling lambda'. A specific example is presented.
We investigate the general features of renormalization group flows near superconformal fixed points of four dimensional N=1 supersymmetric gauge theories with gravity duals. The gauge theories we study arise as the world-volume theory on... more
We investigate the general features of renormalization group flows near superconformal fixed points of four dimensional N=1 supersymmetric gauge theories with gravity duals. The gauge theories we study arise as the world-volume theory on a set of D-branes at a Calabi-Yau singularity where a del Pezzo surface shrinks to zero size. Based mainly on field theory analysis, we find evidence that such flows are often chaotic and contain exotic features such as duality walls. For a gauge theory where the del Pezzo is the Hirzebruch zero surface, the dependence of the duality wall height on the couplings at some point in the cascade has a self-similar fractal structure. For a gauge theory dual to CP^2 blown up at a point, we find periodic and quasi-periodic behavior for the gauge theory couplings that does not violate the a-conjecture. Finally, we construct supergravity duals for these del Pezzos that match our field theory beta functions.
Within the context of the E8 × E8 heterotic superstring compactified on a smooth Calabi-Yau threefold with an SU(4) gauge instanton, we show the existence of simple, realistic N = 1 supersymmetric vacua that are compatible with low energy... more
Within the context of the E8 × E8 heterotic superstring compactified on a smooth Calabi-Yau threefold with an SU(4) gauge instanton, we show the existence of simple, realistic N = 1 supersymmetric vacua that are compatible with low energy particle physics. The observable sector of these vacua has gauge group SU(3)C × SU(2)L × U(1)Y × U(1)B-L, three families of quarks and leptons, each with an additional right-handed neutrino, two Higgs-Higgs conjugate pairs, a small number of uncharged moduli and no exotic matter.
We show the existence of realistic vacua in string theory whose observable sector has exactly the matter content of the MSSM. This is achieved by compactifying the E_8 x E_8 heterotic superstring on a smooth Calabi-Yau threefold with an... more
We show the existence of realistic vacua in string theory whose observable sector has exactly the matter content of the MSSM. This is achieved by compactifying the E_8 x E_8 heterotic superstring on a smooth Calabi-Yau threefold with an SU(4) gauge instanton and a Z_3 x Z_3 Wilson line. Specifically, the observable sector is N=1 supersymmetric with gauge group SU(3)_C x SU(2)_L x U(1)_Y x U(1)_{B-L}, three families of quarks and leptons, each family with a right-handed neutrino, and one Higgs-Higgs conjugate pair. Importantly, there are no extra vector-like pairs and no exotic matter in the zero mode spectrum. There are, in addition, 6 geometric moduli and 13 gauge instanton moduli in the observable sector. The holomorphic SU(4) vector bundle of the observable sector is slope-stable.
In this paper, we present a formalism for computing the non-vanishing Higgs mu-terms in a heterotic standard model. This is accomplished by calculating the cubic product of the cohomology groups associated with the vector bundle moduli... more
In this paper, we present a formalism for computing the non-vanishing Higgs mu-terms in a heterotic standard model. This is accomplished by calculating the cubic product of the cohomology groups associated with the vector bundle moduli (phi), Higgs (H) and Higgs conjugate (Hbar) superfields. This leads to terms proportional to phi H Hbar in the low energy superpotential which, for non-zero moduli expectation values, generate moduli dependent mu-terms of the form <phi> H Hbar. It is found that these interactions are subject to two very restrictive selection rules, each arising from a Leray spectral sequence, which greatly reduce the number of moduli that can couple to Higgs-Higgs conjugate fields. We apply our formalism to a specific heterotic standard model vacuum. The non-vanishing cubic interactions phi H Hbar are explicitly computed in this context and shown to contain only four of the nineteen vector bundle moduli.
Stable, holomorphic vector bundles are constructed on an torus fibered, non-simply connected Calabi-Yau threefold using the method of bundle extensions. Since the manifold is multiply connected, we work with equivariant bundles on the... more
Stable, holomorphic vector bundles are constructed on an torus fibered, non-simply connected Calabi-Yau threefold using the method of bundle extensions. Since the manifold is multiply connected, we work with equivariant bundles on the elliptically fibered covering space. The cohomology groups of the vector bundle, which yield the low energy spectrum, are computed using the Leray spectral sequence and fit the requirements of particle phenomenology. The physical properties of these vacua were discussed previously. In this paper, we systematically compute all relevant cohomology groups and explicitly prove the existence of the necessary vector bundle extensions. All mathematical details are explained in a pedagogical way, providing the technical framework for constructing heterotic standard model vacua.
Techniques are presented for computing the cohomology of stable, holomorphic vector bundles over elliptically fibered Calabi-Yau threefolds. These cohomology groups explicitly determine the spectrum of the low energy, four-dimensional... more
Techniques are presented for computing the cohomology of stable, holomorphic vector bundles over elliptically fibered Calabi-Yau threefolds. These cohomology groups explicitly determine the spectrum of the low energy, four-dimensional theory. Generic points in vector bundle moduli space manifest an identical spectrum. However, it is shown that on subsets of moduli space of co-dimension one or higher, the spectrum can abruptly jump to many different values. Both analytic and numerical data illustrating this phenomenon are presented. This result opens the possibility of tunneling or phase transitions between different particle spectra in the same heterotic compactification. In the course of this discussion, a classification of SU(5) GUT theories within a specific context is presented.
Dimer models are 2-dimensional combinatorial systems that have been shown to encode the gauge groups, matter content and tree-level superpotential of the world-volume quiver gauge theories obtained by placing D3-branes at the tip of a... more
Dimer models are 2-dimensional combinatorial systems that have been shown to encode the gauge groups, matter content and tree-level superpotential of the world-volume quiver gauge theories obtained by placing D3-branes at the tip of a singular toric Calabi-Yau cone. In particular the dimer graph is dual to the quiver graph. However, the string theoretic explanation of this was unclear. In this paper we use mirror symmetry to shed light on this: the dimer models live on a T^2 subspace of the T^3 fiber that is involved in mirror symmetry and is wrapped by D6-branes. These D6-branes are mirror to the D3-branes at the singular point, and geometrically encode the same quiver theory on their world-volume.
We initiate a systematic investigation of the space of 2+1 dimensional quiver gauge theories, emphasising a succinct "forward algorithm". Few "order parametres" are introduced such as the number of terms in the superpotential and the... more
We initiate a systematic investigation of the space of 2+1 dimensional quiver gauge theories, emphasising a succinct "forward algorithm". Few "order parametres" are introduced such as the number of terms in the superpotential and the number of gauge groups. Starting with two terms in the superpotential, we find a generating function, with interesting geometric interpretation, which counts the number of inequivalent theories for a given number of gauge groups and fields. We demonstratively list these theories for some low numbers thereof. Furthermore, we show how these theories arise from M2-branes probing toric Calabi-Yau 4-folds by explicitly obtaining the toric data of the vacuum moduli space. By observing equivalences of the vacua between markedly different theories, we see a new emergence of "toric duality".
We compute the NSVZ beta functions for N = 1 four-dimensional quiver theories arising from D-brane probes on singularities, complete with anomalous dimensions, for a large set of phases in the corresponding duality tree. While these beta... more
We compute the NSVZ beta functions for N = 1 four-dimensional quiver theories arising from D-brane probes on singularities, complete with anomalous dimensions, for a large set of phases in the corresponding duality tree. While these beta functions are zero for D-brane probes, they are non-zero in the presence of fractional branes. As a result there is a non-trivial RG behavior. We apply this running of gauge couplings to some toric singularities such as the cones over Hirzebruch and del Pezzo surfaces. We observe the emergence in string theory, of ``Duality Walls,'' a finite energy scale at which the number of degrees of freedom becomes infinite, and beyond which Seiberg duality does not proceed. We also identify certain quiver symmetries as T-duality-like actions in the dual holographic theory.
We calculate the spectrum of the matrix M' of Neumann coefficients of the Witten vertex, expressed in the oscillator basis including the zero-mode a_0. We find that in addition to the known continuous spectrum inside [-1/3,0) of the... more
We calculate the spectrum of the matrix M' of Neumann coefficients of the Witten vertex, expressed in the oscillator basis including the zero-mode a_0. We find that in addition to the known continuous spectrum inside [-1/3,0) of the matrix M without the zero-modes, there is also an additional eigenvalue inside (0,1). For every eigenvalue, there is a pair of eigenvectors, a twist-even and a twist-odd. We give analytically these eigenvectors as well as the generating function for their components. Also, we have found an interesting critical parameter b_0 = 8 ln 2 on which the forms of the eigenvectors depend.
We develop an unhiggsing procedure for finding the D-brane probe world volume gauge theory for blowups of geometries whose gauge theory data are known. As specific applications we unhiggs the well-studied theories for the cone over the... more
We develop an unhiggsing procedure for finding the D-brane probe world volume gauge theory for blowups of geometries whose gauge theory data are known. As specific applications we unhiggs the well-studied theories for the cone over the third del Pezzo surface. We arrive at what we call pseudo del Pezzos and these will constitute a first step toward the understanding of higher, non toric del Pezzos. Moreover, our methods and results give further support for toric duality as well as obtaining superpotentials from global symmetry considerations.
in the construction for world volume theories of D-branes probing arbitrary toric singularities. This duality will be seen to be due to certain permutation symmetries of multiplicities in the gauged linear sigma model fields. To this... more
in the construction for world volume theories of D-branes probing arbitrary toric singularities. This duality will be seen to be due to certain permutation symmetries of multiplicities in the gauged linear sigma model fields. To this symmetry we shall refer as ``multiplicity symmetry.'' We present beautiful combinatorial properties of these multiplicities and rederive all known cases of torically dual theories under this new light. We also initiate an understanding of why such multiplicity symmetry naturally leads to monodromy and Seiberg duality. Furthermore we discuss certain ``flavor'' and ``node'' symmetries of the quiver and superpotential and how they are intimately related to the isometry of the background geometry, as well as how in certain cases complicated superpotentials can be derived by observations of the symmetries alone.
We show that the triviality of the entire cohomology of the new BRST operator Q around the tachyon vacuum is equivalent to the Q-exactness of the identity I of the star-algebra. We use level truncation to show that as the level is... more
We show that the triviality of the entire cohomology of the new BRST operator Q around the tachyon vacuum is equivalent to the Q-exactness of the identity I of the star-algebra. We use level truncation to show that as the level is increased, the identity becomes more accurately Q-exact. We carry our computations up to level nine, where an accuracy of 3% is attained. Our work supports, under a new light, Sen's conjecture concerning the absence of open string degrees of freedom around the tachyon vacuum. As a by-product, a new and simple expression for I in terms of Virasoro operators is found.
We develop a systematic and efficient method of counting single-trace and multi-trace BPS operators with two supercharges, for world-volume gauge theories of $N$ D-brane probes for both $N \to \infty$ and finite $N$. The techniques are... more
We develop a systematic and efficient method of counting single-trace and multi-trace BPS operators with two supercharges, for world-volume gauge theories of $N$ D-brane probes for both $N \to \infty$ and finite $N$. The techniques are applicable to generic singularities, orbifold, toric, non-toric, complete intersections, et cetera, even to geometries whose precise field theory duals are not yet known. The so-called ``Plethystic Exponential'' provides a simple bridge between (1) the defining equation of the Calabi-Yau, (2) the generating function of single-trace BPS operators and (3) the generating function of multi-trace operators. Mathematically, fascinating and intricate inter-relations between gauge theory, algebraic geometry, combinatorics and number theory exhibit themselves in the form of plethystics and syzygies.
). We hope this catalogue will be useful to works on string orbifold theories, quiver theories, WZW modular invariants, Gorenstein resolutions, nonlinear sigma-models as well as some recently proposed inter-connections among them.
We study orbifolds of ${\cal N} = 4$ U(n) super-Yang-Mills theory given by discrete subgroups of SU(2) and SU(3). We have reached many interesting observations that have graph-theoretic interpretations. For the subgroups of SU(2), we have... more
We study orbifolds of ${\cal N} = 4$ U(n) super-Yang-Mills theory given by discrete subgroups of SU(2) and SU(3). We have reached many interesting observations that have graph-theoretic interpretations. For the subgroups of SU(2), we have shown how the matter content agrees with current quiver theories and have offered a possible explanation. In the case of SU(3) we have constructed a catalogue of candidates for finite (chiral) ${\cal N}=1$ theories, giving the gauge group and matter content. Finally, we conjecture a McKay-type correspondence for Gorenstein singularities in dimension 3 with modular invariants of WZW conformal models. This implies a connection between a class of finite ${\cal N}=1$ supersymmetric gauge theories in four dimensions and the classification of affine SU(3) modular invariant partition functions in two dimensions.
. Furthermore, we investigate the general conditions that distinguish these different gauge theories with the same (toric) moduli space.