Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Padma  Murthi
  • Level5, The Ritchie Centre, Monash Translational Research Precinct, Hudosn Institute of Medical Research, 246, Clayton Road, Clayton, VIC 3168.
Preeclampsia is a complex and life threatening pregnancy disorder is mojor cause of maternal and neonatal morbidity and mortality. A growing body of evidence has demonstrated that low vitamin D is associated with the pathophysiology of... more
Preeclampsia is a complex and life threatening pregnancy disorder is mojor cause of maternal and neonatal
morbidity and mortality. A growing body of evidence has demonstrated that low vitamin D is associated with the
pathophysiology of preeclampsia. As such, identification of the mechanisms behind this relationship and placental
vascular endothelial dysfunction presents itself as a significant modifiable disease risk factor, which if identified and
managed appropriately, may make a significant impact in reducing the burden of disease.
Research Interests:
Fetal growth restriction (FGR) affects up to 5 % of pregnancies worldwide, and trophoblast function plays a significant role on the outcome. An epidemiological study has linked vitamin D deficiency to adverse perinatal outcomes, which... more
Fetal growth restriction (FGR) affects up to 5 % of pregnancies worldwide, and trophoblast function plays a significant role on the outcome. An epidemiological study has linked vitamin D deficiency to adverse perinatal outcomes, which include decreased birth weight. The placenta as an important source of vitamin D regulates its metabolism through the vitamin D receptor (VDR), but the mechanism by which VDR regulates trophoblast function is poorly understood. Our study aimed at determining placental VDR expression in FGR and gestation-matched control (GMC) pregnancies and identifying the actions of VDR in trophoblast differentiation and apoptosis. Placentae were collected from a well-defined cohort of idiopathic FGR and GMC pregnancies. VDR mRNA and protein expressions were determined by PCR, immunohistochemistry and immunoblotting, while functional consequences of VDR inactivation in vitro were determined on BeWo cells by determining changes in differentiation, attachment and apopto...
Fetal growth restriction (FGR) is a key cause of adverse pregnancy outcome where maternal and fetal factors are identified as contributing to this condition. Idiopathic FGR is associated with altered vascular endothelial cell functions.... more
Fetal growth restriction (FGR) is a key cause of adverse pregnancy outcome where maternal and fetal factors are identified as contributing to this condition. Idiopathic FGR is associated with altered vascular endothelial cell functions. Decorin (DCN) has important roles in the regulation of endothelial cell functions in vascular environments. DCN expression is reduced in FGR. The objectives were to determine the functional consequences of reduced DCN in a human microvascular endothelial cell line model (HMVEC), and to determine downstream targets of DCN and their expression in primary placental microvascular endothelial cells (PLECs) from control and FGR-affected placentae. Short-interference RNA was used to reduce DCN expression in HMVECs and the effect on proliferation, angiogenesis and thrombin generation was determined. A Growth Factor PCR Array was used to identify downstream targets of DCN. The expression of target genes in control and FGR PLECs was performed. DCN reduction de...
Comparative gene expression studies in the placenta may provide insights into molecular mechanisms of important genomic alterations in pregnancy disorders. Endogenous reference genes often referred to as housekeeping genes, are routinely... more
Comparative gene expression studies in the placenta may provide insights into molecular mechanisms of important genomic alterations in pregnancy disorders. Endogenous reference genes often referred to as housekeeping genes, are routinely used to normalise gene expression levels. For this reason, it is important that these genes be empirically evaluated for stability between placental samples including samples from complicated pregnancies. To address this issue, six candidate housekeeping genes including several commonly used ones (ACTB, GAPDH, 18S rRNA, TBP, SDHA and YWHAZ) were investigated for their expression stability in placentae obtained from pregnancies complicated by idiopathic FGR (n=25) and gestation-matched control pregnancies (n=25). Real-time PCR was performed using pre-validated gene expression assay kits. The geNorm program was used for gene stability measure (M) for the entire housekeeping genes in all control and FGR-affected placental samples. Results showed that G...
Angiogenesis is fundamental to normal placental development and aberrant angiogenesis contributes substantially to placental pathologies. The complex process of angiogenesis is regulated by transcription factors leading to the formation... more
Angiogenesis is fundamental to normal placental development and aberrant angiogenesis contributes substantially to placental pathologies. The complex process of angiogenesis is regulated by transcription factors leading to the formation of endothelial cells that line the microvasculature. Homeobox genes are important transcription factors that regulate vascular development in embryonic and adult tissues. We have recently shown that placental homeobox genes HLX, DLX3, DLX4, MSX2 and GAX are expressed in placental endothelial cells. Hence, the novel homeobox genes TLX1, TLX2, TGIF, HEX, PHOX1, MEIS2, HOXB7, and LIM6 were detected that have not been reported in endothelial cells previously. Importantly, these homeobox genes have not been previously reported in placental endothelial cells and, with the exception of HEX, PHOX1 and HOXB7, have not been described in any other endothelial cell type. Reverse transcriptase PCR was performed on cDNA from freshly isolated placental microvascula...
ABSTRACT T his article was originally published in a journal by OMICS Publishing Group, and the attached copy is provided by OMICS Publishing Group for the author's benefit and for the benefit of the author's institution,... more
ABSTRACT T his article was originally published in a journal by OMICS Publishing Group, and the attached copy is provided by OMICS Publishing Group for the author's benefit and for the benefit of the author's institution, for commercial/research/educational use including without limitation use in instruction at your institution, sending it to specific colleagues that you know, and providing a copy to your institution's administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution's website or repository, are requested to cite properly.
Homeobox genes are essential for both the development of the blood and lymphatic vascular systems, as well as for their maintenance in the adult. Homeobox genes comprise an important family of transcription factors, which are... more
Homeobox genes are essential for both the development of the blood and lymphatic vascular systems, as well as for their maintenance in the adult. Homeobox genes comprise an important family of transcription factors, which are characterized by a well conserved DNA binding motif; the homeodomain. The specificity of the homeodomain allows the transcription factor to bind to the promoter regions of batteries of target genes and thereby regulates their expression. Target genes identified for homeodomain proteins have been shown to control fundamental cell processes such as proliferation, differentiation, and apoptosis. We and others have reported that homeobox genes are expressed in the placental vasculature, but our knowledge of their downstream target genes is limited. This review highlights the importance of studying the cellular and molecular mechanisms by which homeobox genes and their downstream targets may regulate important vascular cellular processes such as proliferation, migration, and endothelial tube formation, which are essential for placental vasculogenesis and angiogenesis. A better understanding of the molecular targets of homeobox genes may lead to new therapies for aberrant angiogenesis associated with clinically important pregnancy pathologies, including fetal growth restriction and preeclampsia.
Placental angiogenesis is critical to the success of human pregnancy. Angiogenesis is defined as the formation of new blood vessels from existing vasculature. Angiogenesis is necessary for the establishment of adequate placental... more
Placental angiogenesis is critical to the success of human pregnancy. Angiogenesis is defined as the formation of new blood vessels from existing vasculature. Angiogenesis is necessary for the establishment of adequate placental perfusion, which is important for providing the optimum in utero environment to support fetal development. Defective placental angiogenesis is associated with several pregnancy complications, the most clinically important of which is preeclampsia; the multisystem disorder is characterized by maternal hypertension, proteinuria, and endothelial dysfunction. Here, we review our current understanding of several key angiogenic factors that are associated with placental angiogenesis. We also discuss their importance with respect to preeclampsia, where aberrant expression and release of these factors into the maternal circulation is thought to contribute to the pathogenesis and pathophysiology of preeclampsia.
Preeclampsia, which affects about 3 to 5% of pregnant women, is the most frequent medical complication in pregnancy and the most important cause of maternal and perinatal morbidity and mortality. During the past three decades, numerous... more
Preeclampsia, which affects about 3 to 5% of pregnant women, is the most frequent medical complication in pregnancy and the most important cause of maternal and perinatal morbidity and mortality. During the past three decades, numerous clinical, biophysical, and biochemical screening tests have been proposed for the early detection of preeclampsia. Literature shows large discrepancies in the sensitivity and predictive value of several of these tests. No single screening test used for preeclampsia prediction has gained widespread acceptance into clinical practice. Instead, its value seems to be in increasing the predictive value of panels of tests, which include other clinical measurements. The aim of this review was to examine the combination of maternal risk factors, mean arterial blood pressure, and uterine artery Doppler, together with biomarkers in the preeclampsia prediction.
... a, Pregnancy Research Centre, Department of Perinatal Medicine, The Royal Women's Hospital, University of Melbourne, Carlton, Victoria 3053, Australia. ... d, Department of Paediatrics, University of Melbourne,... more
... a, Pregnancy Research Centre, Department of Perinatal Medicine, The Royal Women's Hospital, University of Melbourne, Carlton, Victoria 3053, Australia. ... d, Department of Paediatrics, University of Melbourne, The Royal Children's Hospital, Parkville, Victoria 3052, Australia. ...
The efflux pump ATP binding cassette superfamily member G2 (ABCG2)/breast cancer resistance protein (BCRP) is highly expressed in human placenta. We have investigated the role of BCRP in the protection of the human placental trophoblasts... more
The efflux pump ATP binding cassette superfamily member G2 (ABCG2)/breast cancer resistance protein (BCRP) is highly expressed in human placenta. We have investigated the role of BCRP in the protection of the human placental trophoblasts from apoptosis and its expression in idiopathic fetal growth restriction, a condition associated with abnormal placental apoptosis. Inhibition of BCRP activity with the selective inhibitor Ko143 augmented cytokine (tumor necrosis factor-alpha/interferon-gamma)-induced apoptosis and phosphatidylserine externalization in primary trophoblast and trophoblast-like BeWo cells. Silencing of BCRP expression in BeWo cells significantly increased their sensitivity to apoptotic injury in response to cytokines and exogenous C6 and C8 ceramides. BCRP silencing also increased intracellular ceramide levels after cytokine exposure but did not affect cellular protoporphyrin IX concentrations or sensitivity to activators of the intrinsic apoptotic pathway. BCRP expression in placentas from pregnancies complicated by idiopathic fetal growth restriction was decreased compared with controls, suggesting reduced transport of its substrates from the placenta. We conclude that BCRP may play a hitherto unrecognized survival role in the placenta, protecting the trophoblast against cytokine-induced apoptosis and possibly other extrinsic activators via modulation of ceramide signaling. Decreased placental BCRP expression may result in reduced viability and hence functional deficit, contributing to the fetal growth restriction phenotype.
Fetal growth restriction (FGR) is a clinically significant pregnancy disorder in which the fetus fails to achieve its full growth potential in utero. Most cases of FGR are idiopathic and are associated with placental thrombosis. Previous... more
Fetal growth restriction (FGR) is a clinically significant pregnancy disorder in which the fetus fails to achieve its full growth potential in utero. Most cases of FGR are idiopathic and are associated with placental thrombosis. Previous studies suggest that proteoglycans, such as decorin, that contain the glycosaminoglycan dermatan sulfate are the principal anticoagulants in the normal placenta. The present study investigated decorin expression in placentas from pregnancies complicated by idiopathic FGR (n = 26) and gestation-matched controls (n = 27). Real-time polymerase chain reaction demonstrated significantly reduced decorin mRNA expression in FGR compared with control (1.52 +/- 0.14 v. 2.21 +/- 0.22, respectively; P < 0.01). Immunoblotting revealed decreased decorin protein (40 kDa) expression in FGR compared with controls (420.8 +/- 39.0 v. 690.1 +/- 42.2, respectively; n = 12 in each group; P = 0.0007). Immunohistochemistry demonstrated the presence of immunoreactive decorin protein in the placental villous stroma surrounding the fetal capillaries and a significant decrease in decorin protein presence in FGR compared with control (1.75 +/- 0.66 v. 2.98 +/- 1.12, respectively; n = 6 in each group; P < 0.01, t-test). This is the first study to demonstrate reduced decorin in idiopathic FGR, indicating a potentially significant role for decorin in the aetiology of placental thrombosis in idiopathic FGR.
ABSTRACT
The regulation of fetal growth is multifactorial and complex. Normal fetal growth is determined by the genetically predetermined growth potential and further modulated by maternal, fetal, placental, and environmental factors. The placenta... more
The regulation of fetal growth is multifactorial and complex. Normal fetal growth is determined by the genetically predetermined growth potential and further modulated by maternal, fetal, placental, and environmental factors. The placenta provides critical transport functions between the maternal and fetal circulations during intrauterine development. Formation of this interface is controlled by several growth factors, cytokines and transcription factors including homeobox genes. This review summarizes our current knowledge regarding homeobox genes in the human placenta and their differential expression and functions in human idiopathic fetal growth restriction (FGR). The review also describes the research strategies that were used for the identification of homeobox genes, their expression in FGR, functional role and target genes of homeobox genes in the trophoblasts and the hormonal regulators of homeobox gene expression in vitro. A better understanding of molecular pathways driven by placental homeobox genes and further elucidation of signaling pathways underlying the hormone-mediated homeobox gene developmental programs may offer novel strategies of targeted therapy for improving feto-placental growth in idiopathic FGR pregnancies.
The aim of this study was to characterize the expression of the novel glucose transporter GLUT12 in the fetal membranes of the human placenta. RT-PCR and Western blotting of extracts of amnion and choriodecidua from four normal term... more
The aim of this study was to characterize the expression of the novel glucose transporter GLUT12 in the fetal membranes of the human placenta. RT-PCR and Western blotting of extracts of amnion and choriodecidua from four normal term placentas identified GLUT12 mRNA and protein expression. In all four samples the signals for GLUT12 were markedly stronger in the choriodecidua than in the amnion, whereas the signals for GLUT1, a glucose transporter know to be expressed in fetal membranes, were similar for the two tissues. In further studies, paraffin sections of fetal membranes were analyzed by immunohistochemistry with GLUT12 and GLUT1-specific polyclonal antibodies. GLUT12 immunoreactivity was localized predominantly to the trophoblast cells in the chorion and to a lesser extent to decidual cells and to epithelial and fibroblast cells of the amnion. GLUT1 was localized to chorionic trophoblast cells and amniotic epithelial and fibroblast cells. GLUT12 expression was predominantly cytoplasmic, whereas GLUT1 was associated with the membrane of the cells. These results show that GLUT12 is expressed in cells of human fetal membranes and suggest that GLUT12 may play a role in the facilitation of glucose transport into these cells.

And 20 more