Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Search: a067911 -id:a067911
     Sort: relevance | references | number | modified | created      Format: long | short | data
Euler totient function phi(n): count numbers <= n and prime to n.
(Formerly M0299 N0111)
+10
4125
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, 32, 24, 52, 18, 40, 24, 36, 28, 58, 16, 60, 30, 36, 32, 48, 20, 66, 32, 44
OFFSET
1,3
COMMENTS
Number of elements in a reduced residue system modulo n.
Degree of the n-th cyclotomic polynomial (cf. A013595). - Benoit Cloitre, Oct 12 2002
Number of distinct generators of a cyclic group of order n. Number of primitive n-th roots of unity. (A primitive n-th root x is such that x^k is not equal to 1 for k = 1, 2, ..., n - 1, but x^n = 1.) - Lekraj Beedassy, Mar 31 2005
Also number of complex Dirichlet characters modulo n; Sum_{k=1..n} a(k) is asymptotic to (3/Pi^2)*n^2. - Steven Finch, Feb 16 2006
a(n) is the highest degree of irreducible polynomial dividing 1 + x + x^2 + ... + x^(n-1) = (x^n - 1)/(x - 1). - Alexander Adamchuk, Sep 02 2006, corrected Sep 27 2006
a(p) = p - 1 for prime p. a(n) is even for n > 2. For n > 2, a(n)/2 = A023022(n) = number of partitions of n into 2 ordered relatively prime parts. - Alexander Adamchuk, Jan 25 2007
Number of automorphisms of the cyclic group of order n. - Benoit Jubin, Aug 09 2008
a(n+2) equals the number of palindromic Sturmian words of length n which are "bispecial", prefix or suffix of two Sturmian words of length n + 1. - Fred Lunnon, Sep 05 2010
Suppose that a and n are coprime positive integers, then by Euler's totient theorem, any factor of n divides a^phi(n) - 1. - Lei Zhou, Feb 28 2012
If m has k prime factors, (p_1, p_2, ..., p_k), then phi(m*n) = (Product_{i=1..k} phi (p_i*n))/phi(n)^(k-1). For example, phi(42*n) = phi(2*n)*phi(3*n)*phi(7*n)/phi(n)^2. - Gary Detlefs, Apr 21 2012
Sum_{n>=1} a(n)/n! = 1.954085357876006213144... This sum is referenced in Plouffe's inverter. - Alexander R. Povolotsky, Feb 02 2013 (see A336334. - Hugo Pfoertner, Jul 22 2020)
The order of the multiplicative group of units modulo n. - Michael Somos, Aug 27 2013
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - Michael Somos, Dec 30 2016
From Eric Desbiaux, Jan 01 2017: (Start)
a(n) equals the Ramanujan sum c_n(n) (last term on n-th row of triangle A054533).
a(n) equals the Jordan function J_1(n) (cf. A007434, A059376, A059377, which are the Jordan functions J_2, J_3, J_4, respectively). (End)
For n > 1, a(n) appears to be equal to the number of semi-meander solutions for n with top arches containing exactly 2 mountain ranges and exactly 2 arches of length 1. - Roger Ford, Oct 11 2017
a(n) is the minimum dimension of a lattice able to generate, via cut-and-project, the quasilattice whose diffraction pattern features n-fold rotational symmetry. The case n=15 is the first n > 1 in which the following simpler definition fails: "a(n) is the minimum dimension of a lattice with n-fold rotational symmetry". - Felix Flicker, Nov 08 2017
Number of cyclic Latin squares of order n with the first row in ascending order. - Eduard I. Vatutin, Nov 01 2020
a(n) is the number of rational numbers p/q >= 0 (in lowest terms) such that p + q = n. - Rémy Sigrist, Jan 17 2021
From Richard L. Ollerton, May 08 2021: (Start)
Formulas for the numerous OEIS entries involving Dirichlet convolution of a(n) and some sequence h(n) can be derived using the following (n >= 1):
Sum_{d|n} phi(d)*h(n/d) = Sum_{k=1..n} h(gcd(n,k)) [see P. H. van der Kamp link] = Sum_{d|n} h(d)*phi(n/d) = Sum_{k=1..n} h(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). Similarly,
Sum_{d|n} phi(d)*h(d) = Sum_{k=1..n} h(n/gcd(n,k)) = Sum_{k=1..n} h(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)).
More generally,
Sum_{d|n} h(d) = Sum_{k=1..n} h(gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} h(n/gcd(n,k))/phi(n/gcd(n,k)).
In particular, for sequences involving the Möbius transform:
Sum_{d|n} mu(d)*h(n/d) = Sum_{k=1..n} h(gcd(n,k))*mu(n/gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} h(n/gcd(n,k))*mu(gcd(n,k))/phi(n/gcd(n,k)), where mu = A008683.
Use of gcd(n,k)*lcm(n,k) = n*k and phi(gcd(n,k))*phi(lcm(n,k)) = phi(n)*phi(k) provide further variations. (End)
From Richard L. Ollerton, Nov 07 2021: (Start)
Formulas for products corresponding to the sums above may found using the substitution h(n) = log(f(n)) where f(n) > 0 (for example, cf. formulas for the sum A018804 and product A067911 of gcd(n,k)):
Product_{d|n} f(n/d)^phi(d) = Product_{k=1..n} f(gcd(n,k)) = Product_{d|n} f(d)^phi(n/d) = Product_{k=1..n} f(n/gcd(n,k))^(phi(gcd(n,k))/phi(n/gcd(n,k))),
Product_{d|n} f(d)^phi(d) = Product_{k=1..n} f(n/gcd(n,k)) = Product_{k=1..n} f(gcd(n,k))^(phi(gcd(n,k))/phi(n/gcd(n,k))),
Product_{d|n} f(d) = Product_{k=1..n} f(gcd(n,k))^(1/phi(n/gcd(n,k))) = Product_{k=1..n} f(n/gcd(n,k))^(1/phi(n/gcd(n,k))),
Product_{d|n} f(n/d)^mu(d) = Product_{k=1..n} f(gcd(n,k))^(mu(n/gcd(n,k))/phi(n/gcd(n,k))) = Product_{k=1..n} f(n/gcd(n,k))^(mu(gcd(n,k))/phi(n/gcd(n,k))), where mu = A008683. (End)
a(n+1) is the number of binary words with exactly n distinct subsequences (when n > 0). - Radoslaw Zak, Nov 29 2021
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 24.
M. Baake and U. Grimm, Aperiodic Order Vol. 1: A Mathematical Invitation, Encyclopedia of Mathematics and its Applications 149, Cambridge University Press, 2013: see Tables 3.1 and 3.2.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 193.
C. W. Curtis, Pioneers of Representation Theory ..., Amer. Math. Soc., 1999; see p. 3.
J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Ellipses, Paris, 2004, Problème 529, pp. 71-257.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, Chapter V.
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 115-119.
Carl Friedrich Gauss, "Disquisitiones Arithmeticae", Yale University Press, 1965; see p. 21.
Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 2n-d ed.; Addison-Wesley, 1994, p. 137.
R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B36.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 60, 62, 63, 288, 323, 328, 330.
Peter Hilton and Jean Pedersen, A Mathematical Tapestry, Demonstrating the Beautiful Unity of Mathematics, Cambridge University Press, pages 261-264, the Coach theorem.
Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.2.21 pp. 281-294.
G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 2 vols., 1976, Vol. II, problem 71, p. 126.
P. Ribenboim, The New Book of Prime Number Records.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Daniel Forgues, Table of n, phi(n) for n = 1..100000 (first 10000 terms from N. J. A. Sloane)
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972.
Joerg Arndt, Matters Computational (The Fxtbook), section 39.7, pp. 776-778.
F. Bayart, Indicateur d'Euler (in French).
Alexander Bogomolny, Euler Function and Theorem.
Chris K. Caldwell, The Prime Glossary, Euler's phi function
Robert D. Carmichael, A table of the values of m corresponding to given values of phi(m), Amer. J. Math., 30 (1908), 394-400. [Annotated scanned copy]
Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204.
Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. [Annotated copy with A-numbers]
Kevin Ford, The number of solutions of phi(x)=m, arXiv:math/9907204 [math.NT], 1999.
H. Fripertinger, The Euler phi function.
Daniele A. Gewurz and Francesca Merola, Sequences realized as Parker vectors of oligomorphic permutation groups, J. Integer Seqs., Vol. 6, 2003.
E. Pérez Herrero, Totient Carnival partitions, Psychedelic Geometry Blogspot.
Peter H. van der Kamp, On the Fourier transform of the greatest common divisor, arXiv:1201.3139 [math.NT]
M. Lal and P. Gillard, Table of Euler's phi function, n < 10^5, Math. Comp., 23 (1969), 682-683.
Derrick N. Lehmer, Review of Dickson's History of the Theory of Numbers, Bull. Amer. Math. Soc., 26 (1919), 125-132.
R. J. Mathar, Graphical representation among sequences closely related to this one (cf. N. J. A. Sloane, "Families of Essentially Identical Sequences").
Mathematics Stack Exchange, Is the Euler phi function bounded below? (2013).
François Nicolas, A simple, polynomial-time algorithm for the matrix torsion problem, arXiv:0806.2068 [cs.DM], 2009.
Carl Pomerance and Hee-Sung Yang, Variant of a theorem of Erdős on the sum-of-proper-divisors function, Math. Comp., to appear (2014).
J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), no. 1, 64-94.
K. Schneider, Euler phi-function, PlanetMath.org.
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 14.
Ulrich Sondermann, Euler's Totient Function.
Pinthira Tangsupphathawat, Takao Komatsu and Vichian Laohakosol, Minimal Polynomials of Algebraic Cosine Values, II, J. Int. Seq., Vol. 21 (2018), Article 18.9.5.
László Tóth, Multiplicative arithmetic functions of several variables: a survey, arXiv preprint arXiv:1310.7053 [math.NT], 2013.
G. Villemin, Totient d'Euler.
K. W. Wegner, Values of phi(x) = n for n from 2 through 1978, mimeographed manuscript, no date. [Annotated scanned copy]
Eric Weisstein's World of Mathematics, Modulo Multiplication Group.
Eric Weisstein's World of Mathematics, Moebius Transform.
Eric Weisstein's World of Mathematics, Totient Function.
Wikipedia, Ramanujan's sum
Wolfram Research, First 50 values of phi(n).
Gang Xiao, Numerical Calculator, To display phi(n) operate on "eulerphi(n)".
FORMULA
phi(n) = n*Product_{distinct primes p dividing n} (1 - 1/p).
Sum_{d divides n} phi(d) = n.
phi(n) = Sum_{d divides n} mu(d)*n/d, i.e., the Moebius transform of the natural numbers; mu() = Moebius function A008683().
Dirichlet generating function Sum_{n>=1} phi(n)/n^s = zeta(s-1)/zeta(s). Also Sum_{n >= 1} phi(n)*x^n/(1 - x^n) = x/(1 - x)^2.
Multiplicative with a(p^e) = (p - 1)*p^(e-1). - David W. Wilson, Aug 01 2001
Sum_{n>=1} (phi(n)*log(1 - x^n)/n) = -x/(1 - x) for -1 < x < 1 (cf. A002088) - Henry Bottomley, Nov 16 2001
a(n) = binomial(n+1, 2) - Sum_{i=1..n-1} a(i)*floor(n/i) (see A000217 for inverse). - Jon Perry, Mar 02 2004
It is a classical result (certainly known to Landau, 1909) that lim inf n/phi(n) = 1 (taking n to be primes), lim sup n/(phi(n)*log(log(n))) = e^gamma, with gamma = Euler's constant (taking n to be products of consecutive primes starting from 2 and applying Mertens' theorem). See e.g. Ribenboim, pp. 319-320. - Pieter Moree, Sep 10 2004
a(n) = Sum_{i=1..n} |k(n, i)| where k(n, i) is the Kronecker symbol. Also a(n) = n - #{1 <= i <= n : k(n, i) = 0}. - Benoit Cloitre, Aug 06 2004 [Corrected by Jianing Song, Sep 25 2018]
Conjecture: Sum_{i>=2} (-1)^i/(i*phi(i)) exists and is approximately 0.558 (A335319). - Orges Leka (oleka(AT)students.uni-mainz.de), Dec 23 2004
From Enrique Pérez Herrero, Sep 07 2010: (Start)
a(n) = Sum_{i=1..n} floor(sigma_k(i*n)/sigma_k(i)*sigma_k(n)), where sigma_2 is A001157.
a(n) = Sum_{i=1..n} floor(tau_k(i*n)/tau_k(i)*tau_k(n)), where tau_3 is A007425.
a(n) = Sum_{i=1..n} floor(rad(i*n)/rad(i)*rad(n)), where rad is A007947. (End)
a(n) = A173557(n)*A003557(n). - R. J. Mathar, Mar 30 2011
a(n) = A096396(n) + A096397(n). - Reinhard Zumkeller, Mar 24 2012
phi(p*n) = phi(n)*(floor(((n + p - 1) mod p)/(p - 1)) + p - 1), for primes p. - Gary Detlefs, Apr 21 2012
For odd n, a(n) = 2*A135303((n-1)/2)*A003558((n-1)/2) or phi(n) = 2*c*k; the Coach theorem of Pedersen et al. Cf. A135303. - Gary W. Adamson, Aug 15 2012
G.f.: Sum_{n>=1} mu(n)*x^n/(1 - x^n)^2, where mu(n) = A008683(n). - Mamuka Jibladze, Apr 05 2015
a(n) = n - cototient(n) = n - A051953(n). - Omar E. Pol, May 14 2016
a(n) = lim_{s->1} n*zeta(s)*(Sum_{d divides n} A008683(d)/(e^(1/d))^(s-1)), for n > 1. - Mats Granvik, Jan 26 2017
Conjecture: a(n) = Sum_{a=1..n} Sum_{b=1..n} Sum_{c=1..n} 1 for n > 1. The sum is over a,b,c such that n*c - a*b = 1. - Benedict W. J. Irwin, Apr 03 2017
a(n) = Sum_{j=1..n} gcd(j, n) cos(2*Pi*j/n) = Sum_{j=1..n} gcd(j, n) exp(2*Pi*i*j/n) where i is the imaginary unit. Notice that the Ramanujan's sum c_n(k) := Sum_{j=1..n, gcd(j, n) = 1} exp(2*Pi*i*j*k/n) gives a(n) = Sum_{k|n} k*c_(n/k)(1) = Sum_{k|n} k*mu(n/k). - Michael Somos, May 13 2018
G.f.: x*d/dx(x*d/dx(log(Product_{k>=1} (1 - x^k)^(-mu(k)/k^2)))), where mu(n) = A008683(n). - Mamuka Jibladze, Sep 20 2018
a(n) = Sum_{d|n} A007431(d). - Steven Foster Clark, May 29 2019
G.f. A(x) satisfies: A(x) = x/(1 - x)^2 - Sum_{k>=2} A(x^k). - Ilya Gutkovskiy, Sep 06 2019
a(n) >= sqrt(n/2) (Nicolas). - Hugo Pfoertner, Jun 01 2020
a(n) > n/(exp(gamma)*log(log(n)) + 5/(2*log(log(n)))), except for n=223092870 (Rosser, Schoenfeld). - Hugo Pfoertner, Jun 02 2020
From Bernard Schott, Nov 28 2020: (Start)
Sum_{m=1..n} 1/a(m) = A028415(n)/A048049(n) -> oo when n->oo.
Sum_{n >= 1} 1/a(n)^2 = A109695.
Sum_{n >= 1} 1/a(n)^3 = A335818.
Sum_{n >= 1} 1/a(n)^k is convergent iff k > 1.
a(2n) = a(n) iff n is odd, and, a(2n) > a(n) iff n is even. (End) [Actually, a(2n) = 2*a(n) for even n. - Jianing Song, Sep 18 2022]
a(n) = 2*A023896(n)/n, n > 1. - Richard R. Forberg, Feb 03 2021
From Richard L. Ollerton, May 09 2021: (Start)
For n > 1, Sum_{k=1..n} phi^{(-1)}(n/gcd(n,k))*a(gcd(n,k))/a(n/gcd(n,k)) = 0, where phi^{(-1)} = A023900.
For n > 1, Sum_{k=1..n} a(gcd(n,k))*mu(rad(gcd(n,k)))*rad(gcd(n,k))/gcd(n,k) = 0.
For n > 1, Sum_{k=1..n} a(gcd(n,k))*mu(rad(n/gcd(n,k)))*rad(n/gcd(n,k))*gcd(n,k) = 0.
Sum_{k=1..n} a(gcd(n,k))/a(n/gcd(n,k)) = n. (End)
a(n) = Sum_{d|n, e|n} gcd(d, e)*mobius(n/d)*mobius(n/e) (the sum is a multiplicative function of n by Tóth, and takes the value p^e - p^(e-1) for n = p^e, a prime power). - Peter Bala, Jan 22 2024
Sum_{n >= 1} phi(n)*x^n/(1 + x^n) = x + 3*x^3 + 5*x^5 + 7*x^7 + ... = Sum_{n >= 1} phi(2*n-1)*x^(2*n-1)/(1 - x^(4*n-2)). For the first equality see Pólya and Szegő, problem 71, p. 126. - Peter Bala, Feb 29 2024
Conjecture: a(n) = lim_{k->oo} (n^(k + 1))/A000203(n^k). - Velin Yanev, Dec 04 2024 [A000010(p) = p-1, A000203(p^k) = (p^(k+1)-1)/(p-1), so the conjecture is true if n is prime. - Vaclav Kotesovec, Dec 19 2024]
EXAMPLE
G.f. = x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 2*x^6 + 6*x^7 + 4*x^8 + 6*x^9 + 4*x^10 + ...
a(8) = 4 with {1, 3, 5, 7} units modulo 8. a(10) = 4 with {1, 3, 7, 9} units modulo 10. - Michael Somos, Aug 27 2013
From Eduard I. Vatutin, Nov 01 2020: (Start)
The a(5)=4 cyclic Latin squares with the first row in ascending order are:
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3
2 3 4 0 1 4 0 1 2 3 1 2 3 4 0 3 4 0 1 2
3 4 0 1 2 1 2 3 4 0 4 0 1 2 3 2 3 4 0 1
4 0 1 2 3 3 4 0 1 2 2 3 4 0 1 1 2 3 4 0
(End)
MAPLE
with(numtheory): A000010 := phi; [ seq(phi(n), n=1..100) ]; # version 1
with(numtheory): phi := proc(n) local i, t1, t2; t1 := ifactors(n)[2]; t2 := n*mul((1-1/t1[i][1]), i=1..nops(t1)); end; # version 2
# Alternative without library function:
A000010List := proc(N) local i, j, phi;
phi := Array([seq(i, i = 1 .. N+1)]);
for i from 2 to N + 1 do
if phi[i] = i then
for j from i by i to N + 1 do
phi[j] := phi[j] - iquo(phi[j], i) od
fi od;
return phi end:
A000010List(68); # Peter Luschny, Sep 03 2023
MATHEMATICA
Array[EulerPhi, 70]
PROG
(Axiom) [eulerPhi(n) for n in 1..100]
(Magma) [ EulerPhi(n) : n in [1..100] ]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
(PARI) {a(n) = if( n==0, 0, eulerphi(n))}; /* Michael Somos, Feb 05 2011 */
(Sage) def A000010(n): return euler_phi(n) # Jaap Spies, Jan 07 2007
(Sage) [euler_phi(n) for n in range(1, 70)] # Zerinvary Lajos, Jun 06 2009
(Maxima) makelist(totient(n), n, 0, 1000); /* Emanuele Munarini, Mar 26 2011 */
(Haskell) a n = length (filter (==1) (map (gcd n) [1..n])) -- Allan C. Wechsler, Dec 29 2014
(Python)
from sympy.ntheory import totient
print([totient(i) for i in range(1, 70)]) # Indranil Ghosh, Mar 17 2017
(Python) # Note also the implementation in A365339.
(Julia) # Computes the first N terms of the sequence.
function A000010List(N)
phi = [i for i in 1:N + 1]
for i in 2:N + 1
if phi[i] == i
for j in i:i:N + 1
phi[j] -= div(phi[j], i)
end end end
return phi end
println(A000010List(68)) # Peter Luschny, Sep 03 2023
CROSSREFS
Cf. A002088 (partial sums), A008683, A003434 (steps to reach 1), A007755, A049108, A002202 (values), A011755 (Sum k*phi(k)).
Cf. also A005277 (nontotient numbers). For inverse see A002181, A006511, A058277.
Jordan function J_k(n) is a generalization - see A059379 and A059380 (triangle of values of J_k(n)), this sequence (J_1), A007434 (J_2), A059376 (J_3), A059377 (J_4), A059378 (J_5).
Row sums of triangles A134540, A127448, A143239, A143353 and A143276.
Equals right and left borders of triangle A159937. - Gary W. Adamson, Apr 26 2009
Values for prime powers p^e: A006093 (e=1), A036689 (e=2), A135177 (e=3), A138403 (e=4), A138407 (e=5), A138412 (e=6).
Values for perfect powers n^e: A002618 (e=2), A053191 (e=3), A189393 (e=4), A238533 (e=5), A306411 (e=6), A239442 (e=7), A306412 (e=8), A239443 (e=9).
Cf. A076479.
Cf. A023900 (Dirichlet inverse of phi), A306633 (Dgf at s=3).
KEYWORD
easy,core,nonn,mult,nice,hear
STATUS
approved
a(n) = Product_{k=1..n} lcm(k,n)/gcd(k,n).
+10
10
1, 2, 18, 96, 15000, 6480, 84707280, 41287680, 21427701120, 56700000000, 94121726392108800, 2483144294400, 11159820050604594969600, 24625709514114508800, 620634514500000000000, 359450793240158011392000
OFFSET
1,2
LINKS
FORMULA
a(n) = A071248(n)/A067911(n). - R. J. Mathar, Apr 03 2007
EXAMPLE
a(6) = lcm(1,6)/gcd(1,6) * lcm(2,6)/gcd(2,6) * lcm(3,6)/gcd(3,6) * lcm(4,6)/gcd(4,6) * lcm(5,6)/gcd(5,6) * lcm(6,6)/gcd(6,6) = 6/1 * 6/2 * 6/3 * 12/2 * 30/1 * 6/6 = 6480.
MAPLE
A067911 := proc(n) mul( gcd(k, n), k=1..n) ; end: A071248 := proc(n) mul( lcm(k, n), k=1..n) ; end: A127553 := proc(n) A071248(n)/A067911(n) ; end: for n from 1 to 30 do printf("%d, ", A127553(n)) ; od ; # R. J. Mathar, Apr 03 2007
a:=n->product(ilcm(k, n)/igcd(k, n), k=1..n): seq(a(n), n=1..18); # Emeric Deutsch, Apr 13 2007
MATHEMATICA
Table[Product[LCM[k, n]/GCD[k, n], {k, n}], {n, 20}] (* Harvey P. Dale, Jun 10 2017 *)
CROSSREFS
Cf. A056789.
KEYWORD
nonn
AUTHOR
Leroy Quet, Apr 02 2007
EXTENSIONS
More terms from R. J. Mathar, Apr 03 2007
STATUS
approved
a(n) = Product_{k=1..n-1} gcd(k,n).
+10
9
1, 1, 1, 2, 1, 12, 1, 16, 9, 80, 1, 3456, 1, 448, 2025, 2048, 1, 186624, 1, 1024000, 35721, 11264, 1, 573308928, 625, 53248, 59049, 179830784, 1, 1007769600000, 1, 67108864, 7144929, 1114112, 37515625, 160489808068608, 1, 4980736, 89813529
OFFSET
1,4
COMMENTS
a(n) > 1 if and only if n is composite. - Charles R Greathouse IV, Jan 04 2013
FORMULA
a(n) = Product_{ d divides n, d < n } d^phi(n/d). - Peter Luschny, Apr 07 2013
a(n) = A067911(n) / n. - Peter Luschny, Apr 07 2013
Product_{j=1..n} Product_{k=1..j-1} gcd(j,k), n >= 1. - Daniel Forgues, Apr 11 2013
a(n) = sqrt( (1/n) * (A092287(n) / A092287(n-1)) ). - Daniel Forgues, Apr 13 2013
MAPLE
A051190 := proc(n) local i; mul(igcd(n, i ), i = 1..(n-1)) end;
MATHEMATICA
a[n_] := If[PrimeQ[n], 1, Times @@ (GCD[n, #]& /@ Range[n-1])]; Table[a[n], {n, 1, 39}] (* Jean-François Alcover, Jul 18 2012 *)
Table[Times @@ GCD[n, Range[n-1]], {n, 50}] (* T. D. Noe, Apr 12 2013 *)
Table[Product[GCD[k, n], {k, n-1}], {n, 50}] (* Harvey P. Dale, Jan 29 2025 *)
PROG
(Haskell)
a051190 n = product $ map (gcd n) [1..n-1]
-- Reinhard Zumkeller, Nov 22 2011
(PARI) a(n)=my(f=factor(n)); prod(i=1, #f[, 1], prod(j=1, f[i, 2], f[i, 1]^(n\f[i, 1]^j)))/n \\ Charles R Greathouse IV, Jan 04 2013
(PARI) a(n) = prod(k=1, n-1, gcd(k, n)); /* Joerg Arndt, Apr 14 2013 */
(Sage)
A051190 = lambda n: mul(gcd(n, i) for i in (1..n-1))
[A051190(n) for n in (1..39)] # Peter Luschny, Apr 07 2013
(Sage)
# A second, faster version, based on the prime factorization of a(n):
def A051190(n):
R = 1
if not is_prime(n) :
for p in primes(n//2+1):
s = 0; r = n; t = n-1
while r > 0 :
r = r//p; t = t//p
s += (r-t)*(r+t-1)
R *= p^(s/2)
return R
[A051190(i) for i in (1..1000)] # Peter Luschny, Apr 08 2013
CROSSREFS
KEYWORD
nonn,nice,changed
AUTHOR
Antti Karttunen, Oct 21 1999
STATUS
approved
a(n) = Product_{i=1..n} i / gcd(i,n).
+10
5
1, 1, 2, 3, 24, 10, 720, 315, 4480, 4536, 3628800, 11550, 479001600, 13899600, 43051008, 638512875, 20922789888000, 1905904000, 6402373705728000, 118794043368, 68108451840000, 4535772564960000, 1124000727777607680000
OFFSET
1,3
COMMENTS
If p is prime, then a(p) = (p-1)!. - Stefan Steinerberger, Jun 08 2006
FORMULA
a(n) = Product_{d|n} pxi(d), where pxi(m) = is the product of totatives of m (A001783). - Jaroslav Krizek, Dec 28 2016
a(n) = A000142(n)/A067911(n). - Ridouane Oudra, Nov 20 2021
MAPLE
a:=n->mul(numer (k/n), k=1..n): seq(a(n), n=1..23); # Zerinvary Lajos, Apr 26 2008
MATHEMATICA
a[n_] := Product[i/GCD[i, n], {i, 1, n}]; Table[a[n], {n, 1, 30}] (* Stefan Steinerberger, Jun 08 2006 *)
Table[Product[Times @@ Select[Range@ d, CoprimeQ[#, d] &], {d, Divisors@ n}], {n, 23}] (* Michael De Vlieger, Dec 28 2016 *)
PROG
(PARI) a(n) = prod(i=1, n, i/gcd(i, n))
(Magma) [&*[&*[h: h in [1..d] | GCD(h, d) eq 1]: d in Divisors(n)]: n in [1..100]]; // Jaroslav Krizek, Dec 28 2016
CROSSREFS
Cf. A067911.
KEYWORD
nonn
AUTHOR
Martin Fuller, Jun 06 2006
EXTENSIONS
More terms from Stefan Steinerberger, Jun 08 2006
STATUS
approved
Product of the orders of the elements in a cyclic group with n elements.
+10
4
1, 2, 9, 32, 625, 648, 117649, 131072, 4782969, 12500000, 25937424601, 214990848, 23298085122481, 1771684761728, 14416259765625, 562949953421312, 48661191875666868481, 11712917736940032, 104127350297911241532841, 5120000000000000000, 7788651757984142343081
OFFSET
1,2
LINKS
FORMULA
a(n) = Product_{ d divides n } d^phi(d). - Vladeta Jovovic, Sep 10 2004
MAPLE
a:=n->mul(denom (k/n), k=1..n): seq(a(n), n=1..18); # Zerinvary Lajos, Apr 26 2008
MATHEMATICA
Table[Product[n/GCD[n, i], {i, 0, n-1}], {n, 30}] (* Harvey P. Dale, Oct 24 2011 *)
CROSSREFS
Cf. A057660.
KEYWORD
nonn,nice
AUTHOR
Sharon Sela (sharonsela(AT)hotmail.com), Feb 10 2002
EXTENSIONS
Edited by Dean Hickerson, Mar 04 2002
STATUS
approved
a(n) = Product_{k=1..n} lcm(n,k).
+10
4
1, 4, 54, 768, 75000, 466560, 592950960, 5284823040, 1735643790720, 45360000000000, 1035338990313196800, 102980960177356800, 145077660657859734604800, 154452450072526199193600
OFFSET
1,2
COMMENTS
Log(a(n))/n/Log(n) is bounded since n^n < a(n) < n^(2n). It seems that lim n -> infinity Log(a(n))/n/Log(n) exists and = 1.7.... - Benoit Cloitre, Aug 13 2002
FORMULA
a(n) = n!*Product_{ d divides n } d^phi(d). - Vladeta Jovovic, Sep 10 2004
a(n) = n!*n^n/A067911(n)=A000142(n)*A000312(n)/A067911(n). - R. J. Mathar, Apr 03 2007
MAPLE
A071248 := proc(n) mul( lcm(k, n), k=1..n) ; end: for n from 1 to 10 do printf("%d ", A071248(n)) ; od ; # R. J. Mathar, Apr 03 2007
MATHEMATICA
Table[Product[LCM[k, n], {k, n}], {n, 20}] (* Harvey P. Dale, Jun 12 2019 *)
PROG
(PARI) a(n)=prod(k=1, n, lcm(n, k))
CROSSREFS
Product of terms in n-th row of A051173.
KEYWORD
nonn
AUTHOR
Amarnath Murthy, May 21 2002
EXTENSIONS
More terms from Benoit Cloitre, Aug 13 2002
STATUS
approved
Square array read by antidiagonals: T(n,k) = Product_{i = 1..k} gcd(n, i).
+10
1
1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 4, 1, 1, 1, 2, 3, 4, 1, 1, 2, 1, 8, 3, 8, 1, 1, 1, 6, 1, 8, 9, 8, 1, 1, 2, 1, 12, 5, 16, 9, 16, 1, 1, 1, 2, 1, 12, 5, 16, 9, 16, 1, 1, 2, 3, 8, 1, 72, 5, 64, 27, 32, 1, 1, 1, 2, 3, 8, 1, 72, 5, 64, 27, 32, 1, 1, 2, 1, 4
OFFSET
1,5
EXAMPLE
T(6, 3) = gcd(6, 1) * gcd(6, 2) * gcd(6, 3) = 6.
PROG
(PARI) T(n, k)=prod(i=2, k, gcd(n, i))
for(s=1, 15, for(k=1, s-1, print1(T(s-k, k)", "))) \\ Charles R Greathouse IV, Aug 22 2016
(Haskell) a276162T n k = product $ map (gcd n) [1..k]
-- Peter Kagey, Aug 23 2016
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, Aug 22 2016
STATUS
approved
a(n) = Product_{k=1..n} lcm(n,k) / (k * gcd(n,k)).
+10
0
1, 1, 3, 4, 125, 9, 16807, 1024, 59049, 15625, 2357947691, 5184, 1792160394037, 282475249, 474609375, 17179869184, 2862423051509815793, 3486784401, 5480386857784802185939, 250000000000, 10382917022245341, 5559917313492231481, 39471584120695485887249589623
OFFSET
1,3
FORMULA
a(n) = Product_{d|n} d^(phi(d)-phi(n/d)).
a(n) = n^n / Product_{d|n} d^(2*phi(n/d)).
a(n) = n^(-n) * Product_{d|n} d^(2*phi(d)).
a(n) = n^n / Product_{k=1..n} gcd(n,k)^2.
a(n) = n^(-n) * Product_{k=1..n} lcm(n,k)^2/k^2.
a(n) = A127553(n)/n!.
a(n) = A056916(n)/A067911(n).
a(p) = p^(p-2), where p is a prime.
MATHEMATICA
Table[Product[LCM[n, k]/(k GCD[n, k]), {k, 1, n}], {n, 1, 23}]
Table[Product[d^(EulerPhi[d] - EulerPhi[n/d]), {d, Divisors[n]}], {n, 1, 23}]
PROG
(PARI) a(n) = prod(k=1, n, lcm(n, k)/(k*gcd(n, k))); \\ Michel Marcus, Jul 02 2019
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 01 2019
STATUS
approved

Search completed in 0.024 seconds