Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a135177 -id:a135177
     Sort: relevance | references | number | modified | created      Format: long | short | data
Euler totient function phi(n): count numbers <= n and prime to n.
(Formerly M0299 N0111)
+10
4136
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, 32, 24, 52, 18, 40, 24, 36, 28, 58, 16, 60, 30, 36, 32, 48, 20, 66, 32, 44
OFFSET
1,3
COMMENTS
Number of elements in a reduced residue system modulo n.
Degree of the n-th cyclotomic polynomial (cf. A013595). - Benoit Cloitre, Oct 12 2002
Number of distinct generators of a cyclic group of order n. Number of primitive n-th roots of unity. (A primitive n-th root x is such that x^k is not equal to 1 for k = 1, 2, ..., n - 1, but x^n = 1.) - Lekraj Beedassy, Mar 31 2005
Also number of complex Dirichlet characters modulo n; Sum_{k=1..n} a(k) is asymptotic to (3/Pi^2)*n^2. - Steven Finch, Feb 16 2006
a(n) is the highest degree of irreducible polynomial dividing 1 + x + x^2 + ... + x^(n-1) = (x^n - 1)/(x - 1). - Alexander Adamchuk, Sep 02 2006, corrected Sep 27 2006
a(p) = p - 1 for prime p. a(n) is even for n > 2. For n > 2, a(n)/2 = A023022(n) = number of partitions of n into 2 ordered relatively prime parts. - Alexander Adamchuk, Jan 25 2007
Number of automorphisms of the cyclic group of order n. - Benoit Jubin, Aug 09 2008
a(n+2) equals the number of palindromic Sturmian words of length n which are "bispecial", prefix or suffix of two Sturmian words of length n + 1. - Fred Lunnon, Sep 05 2010
Suppose that a and n are coprime positive integers, then by Euler's totient theorem, any factor of n divides a^phi(n) - 1. - Lei Zhou, Feb 28 2012
If m has k prime factors, (p_1, p_2, ..., p_k), then phi(m*n) = (Product_{i=1..k} phi (p_i*n))/phi(n)^(k-1). For example, phi(42*n) = phi(2*n)*phi(3*n)*phi(7*n)/phi(n)^2. - Gary Detlefs, Apr 21 2012
Sum_{n>=1} a(n)/n! = 1.954085357876006213144... This sum is referenced in Plouffe's inverter. - Alexander R. Povolotsky, Feb 02 2013 (see A336334. - Hugo Pfoertner, Jul 22 2020)
The order of the multiplicative group of units modulo n. - Michael Somos, Aug 27 2013
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - Michael Somos, Dec 30 2016
From Eric Desbiaux, Jan 01 2017: (Start)
a(n) equals the Ramanujan sum c_n(n) (last term on n-th row of triangle A054533).
a(n) equals the Jordan function J_1(n) (cf. A007434, A059376, A059377, which are the Jordan functions J_2, J_3, J_4, respectively). (End)
For n > 1, a(n) appears to be equal to the number of semi-meander solutions for n with top arches containing exactly 2 mountain ranges and exactly 2 arches of length 1. - Roger Ford, Oct 11 2017
a(n) is the minimum dimension of a lattice able to generate, via cut-and-project, the quasilattice whose diffraction pattern features n-fold rotational symmetry. The case n=15 is the first n > 1 in which the following simpler definition fails: "a(n) is the minimum dimension of a lattice with n-fold rotational symmetry". - Felix Flicker, Nov 08 2017
Number of cyclic Latin squares of order n with the first row in ascending order. - Eduard I. Vatutin, Nov 01 2020
a(n) is the number of rational numbers p/q >= 0 (in lowest terms) such that p + q = n. - Rémy Sigrist, Jan 17 2021
From Richard L. Ollerton, May 08 2021: (Start)
Formulas for the numerous OEIS entries involving Dirichlet convolution of a(n) and some sequence h(n) can be derived using the following (n >= 1):
Sum_{d|n} phi(d)*h(n/d) = Sum_{k=1..n} h(gcd(n,k)) [see P. H. van der Kamp link] = Sum_{d|n} h(d)*phi(n/d) = Sum_{k=1..n} h(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). Similarly,
Sum_{d|n} phi(d)*h(d) = Sum_{k=1..n} h(n/gcd(n,k)) = Sum_{k=1..n} h(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)).
More generally,
Sum_{d|n} h(d) = Sum_{k=1..n} h(gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} h(n/gcd(n,k))/phi(n/gcd(n,k)).
In particular, for sequences involving the Möbius transform:
Sum_{d|n} mu(d)*h(n/d) = Sum_{k=1..n} h(gcd(n,k))*mu(n/gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} h(n/gcd(n,k))*mu(gcd(n,k))/phi(n/gcd(n,k)), where mu = A008683.
Use of gcd(n,k)*lcm(n,k) = n*k and phi(gcd(n,k))*phi(lcm(n,k)) = phi(n)*phi(k) provide further variations. (End)
From Richard L. Ollerton, Nov 07 2021: (Start)
Formulas for products corresponding to the sums above may found using the substitution h(n) = log(f(n)) where f(n) > 0 (for example, cf. formulas for the sum A018804 and product A067911 of gcd(n,k)):
Product_{d|n} f(n/d)^phi(d) = Product_{k=1..n} f(gcd(n,k)) = Product_{d|n} f(d)^phi(n/d) = Product_{k=1..n} f(n/gcd(n,k))^(phi(gcd(n,k))/phi(n/gcd(n,k))),
Product_{d|n} f(d)^phi(d) = Product_{k=1..n} f(n/gcd(n,k)) = Product_{k=1..n} f(gcd(n,k))^(phi(gcd(n,k))/phi(n/gcd(n,k))),
Product_{d|n} f(d) = Product_{k=1..n} f(gcd(n,k))^(1/phi(n/gcd(n,k))) = Product_{k=1..n} f(n/gcd(n,k))^(1/phi(n/gcd(n,k))),
Product_{d|n} f(n/d)^mu(d) = Product_{k=1..n} f(gcd(n,k))^(mu(n/gcd(n,k))/phi(n/gcd(n,k))) = Product_{k=1..n} f(n/gcd(n,k))^(mu(gcd(n,k))/phi(n/gcd(n,k))), where mu = A008683. (End)
a(n+1) is the number of binary words with exactly n distinct subsequences (when n > 0). - Radoslaw Zak, Nov 29 2021
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 24.
M. Baake and U. Grimm, Aperiodic Order Vol. 1: A Mathematical Invitation, Encyclopedia of Mathematics and its Applications 149, Cambridge University Press, 2013: see Tables 3.1 and 3.2.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 193.
C. W. Curtis, Pioneers of Representation Theory ..., Amer. Math. Soc., 1999; see p. 3.
J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Ellipses, Paris, 2004, Problème 529, pp. 71-257.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, Chapter V.
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 115-119.
Carl Friedrich Gauss, "Disquisitiones Arithmeticae", Yale University Press, 1965; see p. 21.
Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 2n-d ed.; Addison-Wesley, 1994, p. 137.
R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B36.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 60, 62, 63, 288, 323, 328, 330.
Peter Hilton and Jean Pedersen, A Mathematical Tapestry, Demonstrating the Beautiful Unity of Mathematics, Cambridge University Press, pages 261-264, the Coach theorem.
Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.2.21 pp. 281-294.
G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 2 vols., 1976, Vol. II, problem 71, p. 126.
P. Ribenboim, The New Book of Prime Number Records.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Daniel Forgues, Table of n, phi(n) for n = 1..100000 (first 10000 terms from N. J. A. Sloane)
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972.
Joerg Arndt, Matters Computational (The Fxtbook), section 39.7, pp. 776-778.
F. Bayart, Indicateur d'Euler (in French).
Alexander Bogomolny, Euler Function and Theorem.
Chris K. Caldwell, The Prime Glossary, Euler's phi function
Robert D. Carmichael, A table of the values of m corresponding to given values of phi(m), Amer. J. Math., 30 (1908), 394-400. [Annotated scanned copy]
Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204.
Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. [Annotated copy with A-numbers]
Kevin Ford, The number of solutions of phi(x)=m, arXiv:math/9907204 [math.NT], 1999.
H. Fripertinger, The Euler phi function.
Daniele A. Gewurz and Francesca Merola, Sequences realized as Parker vectors of oligomorphic permutation groups, J. Integer Seqs., Vol. 6, 2003.
E. Pérez Herrero, Totient Carnival partitions, Psychedelic Geometry Blogspot.
Peter H. van der Kamp, On the Fourier transform of the greatest common divisor, arXiv:1201.3139 [math.NT]
M. Lal and P. Gillard, Table of Euler's phi function, n < 10^5, Math. Comp., 23 (1969), 682-683.
Derrick N. Lehmer, Review of Dickson's History of the Theory of Numbers, Bull. Amer. Math. Soc., 26 (1919), 125-132.
R. J. Mathar, Graphical representation among sequences closely related to this one (cf. N. J. A. Sloane, "Families of Essentially Identical Sequences").
Mathematics Stack Exchange, Is the Euler phi function bounded below? (2013).
François Nicolas, A simple, polynomial-time algorithm for the matrix torsion problem, arXiv:0806.2068 [cs.DM], 2009.
Carl Pomerance and Hee-Sung Yang, Variant of a theorem of Erdős on the sum-of-proper-divisors function, Math. Comp., to appear (2014).
J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), no. 1, 64-94.
K. Schneider, Euler phi-function, PlanetMath.org.
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 14.
Ulrich Sondermann, Euler's Totient Function.
Pinthira Tangsupphathawat, Takao Komatsu and Vichian Laohakosol, Minimal Polynomials of Algebraic Cosine Values, II, J. Int. Seq., Vol. 21 (2018), Article 18.9.5.
László Tóth, Multiplicative arithmetic functions of several variables: a survey, arXiv preprint arXiv:1310.7053 [math.NT], 2013.
G. Villemin, Totient d'Euler.
K. W. Wegner, Values of phi(x) = n for n from 2 through 1978, mimeographed manuscript, no date. [Annotated scanned copy]
Eric Weisstein's World of Mathematics, Modulo Multiplication Group.
Eric Weisstein's World of Mathematics, Moebius Transform.
Eric Weisstein's World of Mathematics, Totient Function.
Wikipedia, Ramanujan's sum
Wolfram Research, First 50 values of phi(n).
Gang Xiao, Numerical Calculator, To display phi(n) operate on "eulerphi(n)".
FORMULA
phi(n) = n*Product_{distinct primes p dividing n} (1 - 1/p).
Sum_{d divides n} phi(d) = n.
phi(n) = Sum_{d divides n} mu(d)*n/d, i.e., the Moebius transform of the natural numbers; mu() = Moebius function A008683().
Dirichlet generating function Sum_{n>=1} phi(n)/n^s = zeta(s-1)/zeta(s). Also Sum_{n >= 1} phi(n)*x^n/(1 - x^n) = x/(1 - x)^2.
Multiplicative with a(p^e) = (p - 1)*p^(e-1). - David W. Wilson, Aug 01 2001
Sum_{n>=1} (phi(n)*log(1 - x^n)/n) = -x/(1 - x) for -1 < x < 1 (cf. A002088) - Henry Bottomley, Nov 16 2001
a(n) = binomial(n+1, 2) - Sum_{i=1..n-1} a(i)*floor(n/i) (see A000217 for inverse). - Jon Perry, Mar 02 2004
It is a classical result (certainly known to Landau, 1909) that lim inf n/phi(n) = 1 (taking n to be primes), lim sup n/(phi(n)*log(log(n))) = e^gamma, with gamma = Euler's constant (taking n to be products of consecutive primes starting from 2 and applying Mertens' theorem). See e.g. Ribenboim, pp. 319-320. - Pieter Moree, Sep 10 2004
a(n) = Sum_{i=1..n} |k(n, i)| where k(n, i) is the Kronecker symbol. Also a(n) = n - #{1 <= i <= n : k(n, i) = 0}. - Benoit Cloitre, Aug 06 2004 [Corrected by Jianing Song, Sep 25 2018]
Conjecture: Sum_{i>=2} (-1)^i/(i*phi(i)) exists and is approximately 0.558 (A335319). - Orges Leka (oleka(AT)students.uni-mainz.de), Dec 23 2004
From Enrique Pérez Herrero, Sep 07 2010: (Start)
a(n) = Sum_{i=1..n} floor(sigma_k(i*n)/sigma_k(i)*sigma_k(n)), where sigma_2 is A001157.
a(n) = Sum_{i=1..n} floor(tau_k(i*n)/tau_k(i)*tau_k(n)), where tau_3 is A007425.
a(n) = Sum_{i=1..n} floor(rad(i*n)/rad(i)*rad(n)), where rad is A007947. (End)
a(n) = A173557(n)*A003557(n). - R. J. Mathar, Mar 30 2011
a(n) = A096396(n) + A096397(n). - Reinhard Zumkeller, Mar 24 2012
phi(p*n) = phi(n)*(floor(((n + p - 1) mod p)/(p - 1)) + p - 1), for primes p. - Gary Detlefs, Apr 21 2012
For odd n, a(n) = 2*A135303((n-1)/2)*A003558((n-1)/2) or phi(n) = 2*c*k; the Coach theorem of Pedersen et al. Cf. A135303. - Gary W. Adamson, Aug 15 2012
G.f.: Sum_{n>=1} mu(n)*x^n/(1 - x^n)^2, where mu(n) = A008683(n). - Mamuka Jibladze, Apr 05 2015
a(n) = n - cototient(n) = n - A051953(n). - Omar E. Pol, May 14 2016
a(n) = lim_{s->1} n*zeta(s)*(Sum_{d divides n} A008683(d)/(e^(1/d))^(s-1)), for n > 1. - Mats Granvik, Jan 26 2017
Conjecture: a(n) = Sum_{a=1..n} Sum_{b=1..n} Sum_{c=1..n} 1 for n > 1. The sum is over a,b,c such that n*c - a*b = 1. - Benedict W. J. Irwin, Apr 03 2017
a(n) = Sum_{j=1..n} gcd(j, n) cos(2*Pi*j/n) = Sum_{j=1..n} gcd(j, n) exp(2*Pi*i*j/n) where i is the imaginary unit. Notice that the Ramanujan's sum c_n(k) := Sum_{j=1..n, gcd(j, n) = 1} exp(2*Pi*i*j*k/n) gives a(n) = Sum_{k|n} k*c_(n/k)(1) = Sum_{k|n} k*mu(n/k). - Michael Somos, May 13 2018
G.f.: x*d/dx(x*d/dx(log(Product_{k>=1} (1 - x^k)^(-mu(k)/k^2)))), where mu(n) = A008683(n). - Mamuka Jibladze, Sep 20 2018
a(n) = Sum_{d|n} A007431(d). - Steven Foster Clark, May 29 2019
G.f. A(x) satisfies: A(x) = x/(1 - x)^2 - Sum_{k>=2} A(x^k). - Ilya Gutkovskiy, Sep 06 2019
a(n) >= sqrt(n/2) (Nicolas). - Hugo Pfoertner, Jun 01 2020
a(n) > n/(exp(gamma)*log(log(n)) + 5/(2*log(log(n)))), except for n=223092870 (Rosser, Schoenfeld). - Hugo Pfoertner, Jun 02 2020
From Bernard Schott, Nov 28 2020: (Start)
Sum_{m=1..n} 1/a(m) = A028415(n)/A048049(n) -> oo when n->oo.
Sum_{n >= 1} 1/a(n)^2 = A109695.
Sum_{n >= 1} 1/a(n)^3 = A335818.
Sum_{n >= 1} 1/a(n)^k is convergent iff k > 1.
a(2n) = a(n) iff n is odd, and, a(2n) > a(n) iff n is even. (End) [Actually, a(2n) = 2*a(n) for even n. - Jianing Song, Sep 18 2022]
a(n) = 2*A023896(n)/n, n > 1. - Richard R. Forberg, Feb 03 2021
From Richard L. Ollerton, May 09 2021: (Start)
For n > 1, Sum_{k=1..n} phi^{(-1)}(n/gcd(n,k))*a(gcd(n,k))/a(n/gcd(n,k)) = 0, where phi^{(-1)} = A023900.
For n > 1, Sum_{k=1..n} a(gcd(n,k))*mu(rad(gcd(n,k)))*rad(gcd(n,k))/gcd(n,k) = 0.
For n > 1, Sum_{k=1..n} a(gcd(n,k))*mu(rad(n/gcd(n,k)))*rad(n/gcd(n,k))*gcd(n,k) = 0.
Sum_{k=1..n} a(gcd(n,k))/a(n/gcd(n,k)) = n. (End)
a(n) = Sum_{d|n, e|n} gcd(d, e)*mobius(n/d)*mobius(n/e) (the sum is a multiplicative function of n by Tóth, and takes the value p^e - p^(e-1) for n = p^e, a prime power). - Peter Bala, Jan 22 2024
Sum_{n >= 1} phi(n)*x^n/(1 + x^n) = x + 3*x^3 + 5*x^5 + 7*x^7 + ... = Sum_{n >= 1} phi(2*n-1)*x^(2*n-1)/(1 - x^(4*n-2)). For the first equality see Pólya and Szegő, problem 71, p. 126. - Peter Bala, Feb 29 2024
Conjecture: a(n) = lim_{k->oo} (n^(k + 1))/A000203(n^k). - Velin Yanev, Dec 04 2024 [A000010(p) = p-1, A000203(p^k) = (p^(k+1)-1)/(p-1), so the conjecture is true if n is prime. - Vaclav Kotesovec, Dec 19 2024]
EXAMPLE
G.f. = x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 2*x^6 + 6*x^7 + 4*x^8 + 6*x^9 + 4*x^10 + ...
a(8) = 4 with {1, 3, 5, 7} units modulo 8. a(10) = 4 with {1, 3, 7, 9} units modulo 10. - Michael Somos, Aug 27 2013
From Eduard I. Vatutin, Nov 01 2020: (Start)
The a(5)=4 cyclic Latin squares with the first row in ascending order are:
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3
2 3 4 0 1 4 0 1 2 3 1 2 3 4 0 3 4 0 1 2
3 4 0 1 2 1 2 3 4 0 4 0 1 2 3 2 3 4 0 1
4 0 1 2 3 3 4 0 1 2 2 3 4 0 1 1 2 3 4 0
(End)
MAPLE
with(numtheory): A000010 := phi; [ seq(phi(n), n=1..100) ]; # version 1
with(numtheory): phi := proc(n) local i, t1, t2; t1 := ifactors(n)[2]; t2 := n*mul((1-1/t1[i][1]), i=1..nops(t1)); end; # version 2
# Alternative without library function:
A000010List := proc(N) local i, j, phi;
phi := Array([seq(i, i = 1 .. N+1)]);
for i from 2 to N + 1 do
if phi[i] = i then
for j from i by i to N + 1 do
phi[j] := phi[j] - iquo(phi[j], i) od
fi od;
return phi end:
A000010List(68); # Peter Luschny, Sep 03 2023
MATHEMATICA
Array[EulerPhi, 70]
PROG
(Axiom) [eulerPhi(n) for n in 1..100]
(Magma) [ EulerPhi(n) : n in [1..100] ]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
(PARI) {a(n) = if( n==0, 0, eulerphi(n))}; /* Michael Somos, Feb 05 2011 */
(Sage) def A000010(n): return euler_phi(n) # Jaap Spies, Jan 07 2007
(Sage) [euler_phi(n) for n in range(1, 70)] # Zerinvary Lajos, Jun 06 2009
(Maxima) makelist(totient(n), n, 0, 1000); /* Emanuele Munarini, Mar 26 2011 */
(Haskell) a n = length (filter (==1) (map (gcd n) [1..n])) -- Allan C. Wechsler, Dec 29 2014
(Python)
from sympy.ntheory import totient
print([totient(i) for i in range(1, 70)]) # Indranil Ghosh, Mar 17 2017
(Python) # Note also the implementation in A365339.
(Julia) # Computes the first N terms of the sequence.
function A000010List(N)
phi = [i for i in 1:N + 1]
for i in 2:N + 1
if phi[i] == i
for j in i:i:N + 1
phi[j] -= div(phi[j], i)
end end end
return phi end
println(A000010List(68)) # Peter Luschny, Sep 03 2023
CROSSREFS
Cf. A002088 (partial sums), A008683, A003434 (steps to reach 1), A007755, A049108, A002202 (values), A011755 (Sum k*phi(k)).
Cf. also A005277 (nontotient numbers). For inverse see A002181, A006511, A058277.
Jordan function J_k(n) is a generalization - see A059379 and A059380 (triangle of values of J_k(n)), this sequence (J_1), A007434 (J_2), A059376 (J_3), A059377 (J_4), A059378 (J_5).
Row sums of triangles A134540, A127448, A143239, A143353 and A143276.
Equals right and left borders of triangle A159937. - Gary W. Adamson, Apr 26 2009
Values for prime powers p^e: A006093 (e=1), A036689 (e=2), A135177 (e=3), A138403 (e=4), A138407 (e=5), A138412 (e=6).
Values for perfect powers n^e: A002618 (e=2), A053191 (e=3), A189393 (e=4), A238533 (e=5), A306411 (e=6), A239442 (e=7), A306412 (e=8), A239443 (e=9).
Cf. A076479.
Cf. A023900 (Dirichlet inverse of phi), A306633 (Dgf at s=3).
KEYWORD
easy,core,nonn,mult,nice,hear
STATUS
approved
Square array A(n, k) = phi(A246278(n, k)), read by falling antidiagonals; Euler totient function applied to the prime shift array.
+10
8
1, 2, 2, 2, 6, 4, 4, 8, 20, 6, 4, 18, 24, 42, 10, 4, 12, 100, 60, 110, 12, 6, 24, 40, 294, 120, 156, 16, 8, 20, 120, 72, 1210, 192, 272, 18, 6, 54, 48, 420, 160, 2028, 288, 342, 22, 8, 40, 500, 96, 1320, 216, 4624, 396, 506, 28, 10, 36, 168, 2058, 180, 2496, 352, 6498, 616, 812, 30, 8, 24, 200, 660, 13310, 264, 4896, 504, 11638, 840, 930, 36
OFFSET
1,2
COMMENTS
Each column is strictly increasing.
EXAMPLE
The top left corner of the array:
k= | 1 2 3 4 5 6 7 8 9 10
2k= | 2 4 6 8 10 12 14 16 18 20
----+-------------------------------------------------------------------
1 | 1, 2, 2, 4, 4, 4, 6, 8, 6, 8,
2 | 2, 6, 8, 18, 12, 24, 20, 54, 40, 36,
3 | 4, 20, 24, 100, 40, 120, 48, 500, 168, 200,
4 | 6, 42, 60, 294, 72, 420, 96, 2058, 660, 504,
5 | 10, 110, 120, 1210, 160, 1320, 180, 13310, 1560, 1760,
6 | 12, 156, 192, 2028, 216, 2496, 264, 26364, 3264, 2808,
7 | 16, 272, 288, 4624, 352, 4896, 448, 78608, 5472, 5984,
8 | 18, 342, 396, 6498, 504, 7524, 540, 123462, 9108, 9576,
9 | 22, 506, 616, 11638, 660, 14168, 792, 267674, 17864, 15180,
10 | 28, 812, 840, 23548, 1008, 24360, 1120, 682892, 26040, 29232,
11 | 30, 930, 1080, 28830, 1200, 33480, 1260, 893730, 39960, 37200,
12 | 36, 1332, 1440, 49284, 1512, 53280, 1656, 1823508, 59040, 55944,
PROG
(PARI)
up_to = 11325; \\ = binomial(150+1, 2)
A246278sq(row, col) = if(1==row, 2*col, my(f = factor(2*col)); for(i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])+(row-1))); factorback(f));
A379010sq(row, col) = eulerphi(A246278sq(row, col));
A379010list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, i++; if(i > up_to, return(v)); v[i] = A379010sq(col, (a-(col-1))))); (v); };
v379010 = A379010list(up_to);
A379010(n) = v379010[n];
CROSSREFS
Cf. A062570 (row 1), A006093 (column 1), A036689 (column 2), A083553 (column 3), A135177 (column 4).
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Dec 14 2024
STATUS
approved
a(n) = (p^3 - p^2)/2, where p = prime(n).
+10
4
2, 9, 50, 147, 605, 1014, 2312, 3249, 5819, 11774, 14415, 24642, 33620, 38829, 50807, 73034, 100949, 111630, 148137, 176435, 191844, 243399, 282449, 348524, 451632, 510050, 541059, 606797, 641574, 715064, 1016127, 1115465, 1276292, 1333149
OFFSET
1,1
COMMENTS
Differences (p^k - p^m)/q with k > m:
expression OEIS sequence
-------------- -------------
p^2 - p A036689
(p^2 - p)/2 A008837
p^3 - p A127917
(p^3 - p)/2 A127918
(p^3 - p)/3 A127919
(p^3 - p)/6 A127920
p^3 - p^2 A135177
(p^3 - p^2)/2 this sequence
p^4 - p A138401
(p^4 - p)/2 A138417
p^4 - p^2 A138402
(p^4 - p^2)/2 A138418
(p^4 - p^2)/3 A138419
(p^4 - p^2)/4 A138420
(p^4 - p^2)/6 A138421
(p^4 - p^2)/12 A138422
p^4 - p^3 A138403
(p^4 - p^3)/2 A138423
p^5 - p A138404
(p^5 - p)/2 A138424
(p^5 - p)/3 A138425
(p^5 - p)/5 A138426
(p^5 - p)/6 A138427
(p^5 - p)/10 A138428
(p^5 - p)/15 A138429
(p^5 - p)/30 A138430
p^5 - p^2 A138405
(p^5 - p^2)/2 A138431
p^5 - p^3 A138406
(p^5 - p^3)/2 A138432
(p^5 - p^3)/3 A138433
(p^5 - p^3)/4 A138434
(p^5 - p^3)/6 A138435
(p^5 - p^3)/8 A138436
(p^5 - p^3)/12 A138437
(p^5 - p^3)/24 A138438
p^5 - p^4 A138407
(p^5 - p^4)/2 A138439
p^6 - p A138408
(p^6 - p)/2 A138440
p^6 - p^2 A138409
(p^6 - p^2)/2 A138441
(p^6 - p^2)/3 A138442
(p^6 - p^2)/4 A138443
(p^6 - p^2)/5 A138444
(p^6 - p^2)/6 A138445
(p^6 - p^2)/10 A138446
(p^6 - p^2)/12 A138447
(p^6 - p^2)/15 A138448
(p^6 - p^2)/20 A122220
(p^6 - p^2)/30 A138450
(p^6 - p^2)/60 A138451
p^6 - p^3 A138410
(p^6 - p^3)/2 A138452
p^6 - p^4 A138411
(p^6 - p^4)/2 A138453
(p^6 - p^4)/3 A138454
(p^6 - p^4)/4 A138455
(p^6 - p^4)/6 A138456
(p^6 - p^4)/8 A138457
(p^6 - p^4)/12 A138458
(p^6 - p^4)/24 A138459
p^6 - p^5 A138412
(p^6 - p^5)/2 A138460
.
We can prove that for n>1, a(n) is the remainder of the Euclidean division of Sum_{k=0..p-1} k^p by p^3 where p = prime(n). - Pierre Vandaële, Nov 30 2024
LINKS
MATHEMATICA
a = {}; Do[p = Prime[n]; AppendTo[a, (p^3 - p^2)/2], {n, 1, 50}]; a
(#^3-#^2)/2&/@Prime[Range[50]] (* Harvey P. Dale, Nov 01 2020 *)
PROG
(PARI) forprime(p=2, 1e3, print1((p^3-p^2)/2", ")) \\ Charles R Greathouse IV, Jun 16 2011
(Magma)[(p^3-p^2)/2: p in PrimesUpTo(1000)]; // Vincenzo Librandi, Jun 17 2011
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Mar 19 2008
EXTENSIONS
Definition corrected by T. D. Noe, Aug 25 2008
STATUS
approved
a(n) = ((n-th prime)^6-(n-th prime)^4)/12.
+10
2
4, 54, 1250, 9604, 146410, 399854, 2004504, 3909630, 12313004, 49509670, 73881680, 213654354, 395606540, 526495354, 897861304, 1846372554, 3514034690, 4292210710, 7536519254, 10672906020, 12608819004, 20254042120, 27241076254
OFFSET
1,1
COMMENTS
Differences (p^k-p^m)/q such that k > m:
p^2-p is given in A036689
(p^2-p)/2 is given in A008837
p^3-p is given in A127917
(p^3-p)/2 is given in A127918
(p^3-p)/3 is given in A127919
(p^3-p)/6 is given in A127920
p^3-p^2 is given in A135177
(p^3-p^2)/2 is given in A138416
p^4-p is given in A138401
(p^4-p)/2 is given in A138417
p^4-p^2 is given in A138402
(p^4-p^2)/2 is given in A138418
(p^4-p^2)/3 is given in A138419
(p^4-p^2)/4 is given in A138420
(p^4-p^2)/6 is given in A138421
(p^4-p^2)/12 is given in A138422
p^4-p^3 is given in A138403
(p^4-p^3)/2 is given in A138423
p^5-p is given in A138404
(p^5-p)/2 is given in A138424
(p^5-p)/3 is given in A138425
(p^5-p)/5 is given in A138426
(p^5-p)/6 is given in A138427
(p^5-p)/10 is given in A138428
(p^5-p)/15 is given in A138429
(p^5-p)/30 is given in A138430
p^5-p^2 is given in A138405
(p^5-p^2)/2 is given in A138431
p^5-p^3 is given in A138406
(p^5-p^3)/2 is given in A138432
(p^5-p^3)/3 is given in A138433
(p^5-p^3)/4 is given in A138434
(p^5-p^3)/6 is given in A138435
(p^5-p^3)/8 is given in A138436
(p^5-p^3)/12 is given in A138437
(p^5-p^3)/24 is given in A138438
p^5-p^4 is given in A138407
(p^5-p^4)/2 is given in A138439
p^6-p is given in A138408
(p^6-p)/2 is given in A138440
p^6-p^2 is given in A138409
(p^6-p^2)/2 is given in A138441
(p^6-p^2)/3 is given in A138442
(p^6-p^2)/4 is given in A138443
(p^6-p^2)/5 is given in A138444
(p^6-p^2)/6 is given in A138445
(p^6-p^2)/10 is given in A138446
(p^6-p^2)/12 is given in A138447
(p^6-p^2)/15 is given in A138448
(p^6-p^2)/20 is given in A122220
(p^6-p^2)/30 is given in A138450
(p^6-p^2)/60 is given in A138451
p^6-p^3 is given in A138410
(p^6-p^3)/2 is given in A138452
p^6-p^4 is given in A138411
(p^6-p^4)/2 is given in A138453
(p^6-p^4)/3 is given in A138454
(p^6-p^4)/4 is given in A138455
(p^6-p^4)/6 is given in A138456
(p^6-p^4)/8 is given in A138457
(p^6-p^4)/12 is given in A138458
(p^6-p^4)/24 is given in A138459
p^6-p^5 is given in A138412
(p^6-p^5)/2 is given in A138460
MATHEMATICA
a = {}; Do[p = Prime[n]; AppendTo[a, (p^6 - p^4)/12], {n, 1, 24}]; a
PROG
(PARI) forprime(p=2, 1e3, print1((p^6-p^4)/12", ")) \\ Charles R Greathouse IV, Jul 15 2011
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Mar 22 2008
STATUS
approved
A006093(k)-fold repetition of A001248(k), k=1,2,3,..
+10
0
4, 9, 9, 25, 25, 25, 25, 49, 49, 49, 49, 49, 49, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169, 169
OFFSET
1,1
COMMENTS
Consider the initial terms of numerator sequences (dropping initial zeros) of
3; A005563=N(1) ,
5,3; A061037=N(2) ,
7,16,1; A061039=N(3) ,
9,5,33,3; A061041=N(4) ,
11,24,39,56,3; A061043=N(5) ,
13,7,5,4,85,1; A061045=N(6) ,
15,32,51,72,95,120,3; A061047=N(7) ,
17,9,57,5,105,33,161,3; A061049=N(8) ,
19,40,7,88,115,16,175,208,1; N(9),
21,11,69,6,1,39,189,14,261,3; N(10),
23,48,75,104,135,168,203,240,279,320,3; N(11)
One must add the following associated (minimum) squares (taken from squared entries in A172038) to these values to reach the next possible square not larger than the entry itself:
1; N(1)
4,1; N(2)
9,9,0; N(3)
16,4,16,1; N(4)
25,25,25,25,1; N(5)
36,9,4,0,36,0; N(6)
49,49,49,49,49,49,1; N(7)
64,16,64,4,64,16,64,1, ; N(8)
Only if the index of N(.) is a prime we obtain a string of equal consecutive terms in these complementary rows: 4, 9, 25, 49, 121, 169..
The current sequence lists the consecutive complementary squares, A001248, in the rows with prime index, including their multiplicity (which is A006093).
This generates a link between the primes and the Rydberg-Ritz spectrum of the hydrogen atom.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Dec 09 2010
STATUS
approved
Length of the n-th Golomb ruler constructed by the Paul Erdős and Pál Turán formula.
+10
0
20, 110, 308, 1254, 2106, 4760, 6650, 11822, 23954, 29202, 49950, 68060, 78518, 102460, 147446, 203432, 225090, 298418, 354858, 386316, 489484, 568052, 700964, 907920, 1025150, 1086856, 1218944, 1289034, 1436456, 2039620, 2238790, 2561900, 2675472, 3296774, 3430418
OFFSET
2,1
COMMENTS
In October of 1941 Paul Erdős and Pál Turán found that a Golomb ruler could be constructed for every odd prime p.
Such a ruler has the property that the mark or notches are defined by: notch(k) = 2pk + (k^2 mod p) for k in {0..p-1}, with p=A000040(n).
Empirical observation: a(n) satisfies p^3-p^2 <= a(n)/p^3 <= 0.9999.
Except for n=2, a(n) is divisible by p.
Also partial sums of A217793.
LINKS
P. Erdös and P. Turán, On a Problem of Sidon in Additive Number Theory, and on some Related Problems, Journal of the London Mathematical Society, Volume s1-16, Issue 4, October 1941, Pages 212-215.
Wikipedia, Golomb ruler
FORMULA
a(n) = Sum_{k=0..p-1} (2*k*p + k^2 mod p), where p is the n-th prime.
a(n) = (p-1)*p^2 + 1 + Sum_{k=2..p-1} (k^2 mod p), where p is the n-th prime.
a(n) = (p-1)*p^2 + A000330(m) + Sum_{k=m+1..p-1} (k^2 mod p), where m = floor(sqrt(p-1)) and p is the n-th prime.
a(n) = (p-1)*(p**2) + (p*(p-1)*(p+1))/12 - 2*p*(Sum_{k=1..(p-1)/2} floor(k^2/p), where p is the n-th prime.
a(n) = A100104(A000040(n)) + A048153(A000040(n)) - 1.
a(n) = A100104(A000040(n)) + A076409(n).
a(n) = A317637(A000040(n)), iif A000040(n) = 1 (mod 4).
a(n) < A000040(n)^3.
a(n) > A000040(n)^3 - A000040(n)^2.
a(n) = 0 mod A000040(n) for n >= 3.
a(n) = Sum_{k=0..A000040(n)-1} A217793(n - 1, k).
a(n) = A135177(n) + A127921(n) - 2*p*(Sum_{k=1..(p-1)/2} floor(k^2/p), where p = A000040(n).
EXAMPLE
n | p | Golomb ruler notches | a(n)
---+----+--------------------------------------------------+-------
2 | 3 | 0, 7, 13 | 20
3 | 5 | 0, 11, 24, 34, 41 | 110
4 | 7 | 0, 15, 32, 44, 58, 74, 85 | 308
5 | 11 | 0, 23, 48, 75, 93, 113, 135, 159, 185, 202, 221 | 1254
PROG
(Python)
from sympy import prime
from math import isqrt
def a(n):
p = prime(n)
if (p-1) & 3 == 1: return p*(p+1)*(p+3)
m = isqrt(p-1)
return (p-1) * p**2 + (m*(m+1)*(2*m+1))//6 + sum(pow(k, 2, p) for k in range(m+1, p))
print([a(n) for n in range(2, 37) ])
(PARI)
a(n)=my(p=prime(n)); if(bitand(p-1, 3)==1, return(p*(p+1)*(p+3))); my(m=sqrtint(p-1)); return((p-1)*p^2+(m*(m+1)*(2*m+1))\6+sum(k=m+1, p-1, k^2%p));
KEYWORD
nonn,new
AUTHOR
Darío Clavijo, Feb 03 2025
STATUS
approved

Search completed in 0.012 seconds