Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Infected wounds are a major threat among diabetic patients. Technological advancements are currently increasing the number of new adjunctive therapies that may be potent agents for speeding recovery, lowering the amputation rate and... more
Infected wounds are a major threat among diabetic patients. Technological advancements are currently increasing the number of new adjunctive therapies that may be potent agents for speeding recovery, lowering the amputation rate and limiting infection recurrences. A novel formula with promising antibacterial activity, namely sericin/propolis/Amoxicillin nanoparticles, was assessed as a potent treatment of infected wounds in normal and diabetic rats. Skin wound healing efficiency was assessed through wound healing scorings, bacterial load assessment and histological examinations. It was revealed that upon using sericin/propolis/Amoxicillin nanoparticles, complete wound healing was successfully achieved after 10 and 15 days postinjury for nondiabetic and diabetic rats, respectively. However, the bacterial load in the induced infected wounds was extremely low (0–10 CFU/mL) after 15 days post-treatment. The histological studies revealed that the dermis was more organized with new matrix...
Phenolic compounds are highly toxic, along with being one of the most persistent substances in petroleum refinery effluents. The most potent solution is through phenol bioremediation to produce demi-water and bioenergy, which are two... more
Phenolic compounds are highly toxic, along with being one of the most persistent substances in petroleum refinery effluents. The most potent solution is through phenol bioremediation to produce demi-water and bioenergy, which are two effective outcomes for a single process. Fifteen genetically identified native bacterial strains were isolated from the effluents of the petrochemical industry plant (AMOC, Egypt) and were investigated for potential phenol biodegradation activity and energy bioproduction individually and as a consortium in a batch culture. Successful and safe phenol biodegradation was achieved (99.63%) using a native bacterial consortium after statistical optimization (multifactorial central composite design) with bioelectricity generation that reached 3.13 × 10−6 mW/cm3. In conclusion, the native consortium was highly potent in the bioremediation process of petroleum refinery wastewater, protecting the environment from potential phenol pollution with the ability to gen...
SARS-CoV-2 and its variants, especially the Omicron variant, remain a great threat to human health. The need to discover potent compounds that may control the SARS-CoV-2 virus pandemic and the emerged mutants is rising. A set of... more
SARS-CoV-2 and its variants, especially the Omicron variant, remain a great threat to human health. The need to discover potent compounds that may control the SARS-CoV-2 virus pandemic and the emerged mutants is rising. A set of 1,2,3-triazole and/or 1,2,4-triazole was synthesized either from benzimidazole or isatin precursors. Molecular docking studies and in vitro enzyme activity revealed that most of the investigated compounds demonstrated promising binding scores against the SARS-CoV-2 and Omicron spike proteins, in comparison to the reference drugs. In particular, compound 9 has the highest scoring affinity against the SARS-CoV-2 and Omicron spike proteins in vitro with its IC50 reaching 75.98 nM against the Omicron spike protein and 74.51 nM against the SARS-CoV-2 spike protein. The possible interaction between the synthesized triazoles and the viral spike proteins was by the prevention of the viral entry into the host cells, which led to a reduction in viral reproduction and ...
Meningitis caused by Klebsiella pneumoniae and Pseudomonas aeruginosa has lately become a prevalent cause of the central nervous system (CNS) infection. Bacterial invasion into the subarachnoid space prompts the releasing mechanism of... more
Meningitis caused by Klebsiella pneumoniae and Pseudomonas aeruginosa has lately become a prevalent cause of the central nervous system (CNS) infection. Bacterial invasion into the subarachnoid space prompts the releasing mechanism of chemokines and pro-inflammatory cytokines. The present study aimed to compare K. pneumoniae and P. aeruginosa meningitis concerning the memory, pro-inflammatory mediators and brain histopathological changes at different time intervals in adult Albino rats. The animals were sacrificed at three time intervals comprising 5, 10 and 15 days after meningitis induction. Cerebrospinal fluid (CSF) culture, relative brain weights, complete blood analysis, biochemical markers, levels of cytokine, chemokine and brain-derived neurotrophic factor (BDNF), neurotransmitter acetylcholine esterase (AChE) activity, and the brain histopathology of the infected rats in comparison to those in the control group were assessed. There was a significant increase in the levels of...
The pharmaceutical research sector’s inability to produce new drugs has made it difficult to keep up with the rate at which microbial resistance is developing. Recently, nanotechnology and its combinations with natural products have been... more
The pharmaceutical research sector’s inability to produce new drugs has made it difficult to keep up with the rate at which microbial resistance is developing. Recently, nanotechnology and its combinations with natural products have been the saviors against multidrug resistant bacteria. In the present investigation, different Egyptian and Saudi date cultivars were extracted and then phytochemically analyzed and tested for possible antimicrobial activities against multidrug resistant (MDR) microbes. The results revealed that extract of the flesh of fresh “Hayany” fruit (Egyptian date) showed the highest antimicrobial activity, with high levels of phenolic, flavonoid, and tannin concentrations (538.578 µg/mL, 28.481 µg/mL, and 20.888 µg/mL, respectively) and high scavenging activity, with an IC50 reaching 10.16 µg/mL. The highest synergistic activity was found between fresh “Hayany” fruit extract and amikacin. Novel nano-fresh fruit of “Hayany” date extract was synthesized using a bal...
Background and aim In vitro activity evaluation of Egyptian Olea europaea leaves extracts, and in vivo healing activity assessment of the newly prepared ointment of Olea europaea leaves extracts mingled with Shea butter. Experimental... more
Background and aim In vitro activity evaluation of Egyptian Olea europaea leaves extracts, and in vivo healing activity assessment of the newly prepared ointment of Olea europaea leaves extracts mingled with Shea butter. Experimental procedure Different extraction methods and solvents were used to extract Egyptian Olea europaea bioactive agent(s). Antibacterial, scavenging activity and in-vivo evaluation of wound repair potentiality of Olea europaea extract were examined in normal and diabetic experimental rat models with induced circular excisions. Results and conclusion Olive leaves extract of Tanta was selected as the most active agent against Methicillin-resistant S. aureus (MRSA), with MIC value 15.6 μg/ml. Moreover, checkerboard dilution technique approved that the interaction between Tanta LEM crude extract and Ciprofloxacin was synergistic. Scavenging activity of the extract against DPPH free radicals was 87.55% at concentration of 50 μg/ml. In vivo normal and diabetic experimental rats treated with Shea butter: Tanta LEM extract (1:3 w/v) showed the maximum wound contraction and healing activity.
Myositis tropicans or pyomyositis is a muscle inflammation resulting from a bacterial infection of skeletal muscle (commonly caused by Staphylococcus aureus) that usually leads to hematogenous muscle seeding. The present study was... more
Myositis tropicans or pyomyositis is a muscle inflammation resulting from a bacterial infection of skeletal muscle (commonly caused by Staphylococcus aureus) that usually leads to hematogenous muscle seeding. The present study was designed to estimate the role of ZnO-NPs and a physiotherapeutic program in the management of induced biceps femoris atrophy in rats through histological, biochemical, and radiological examinations at different time intervals. At the beginning, several bacterial strains were evaluated through a proteolytic enzyme activity assay and the highest activity was recorded with the Staphylococcus aureus strain. ZnO-NPs were synthesized with the arc discharge method with an average size of 19.4 nm. The antibacterial activity of ZnO-NPs was investigated and it was revealed that the prepared ZnO-NPs showed a minimum inhibitory concentration of 8 µg/mL against the tested bacterium. The cytotoxicity of the prepared ZnO-NPs was tested in C2C12 myoblast cells, and it was...
Bacterial pigments (e.g., melanin and carotenoids) are considered to be among the most important secondary metabolites due to their various pharmacological activities against cancer and microbial resistance. Different pigmented bacterial... more
Bacterial pigments (e.g., melanin and carotenoids) are considered to be among the most important secondary metabolites due to their various pharmacological activities against cancer and microbial resistance. Different pigmented bacterial strains were isolated from soil samples from El Mahmoudiyah governance and screened for their antimicrobial activity. The most promising pigment producer was identified as Micrococcus lylae MW407006; furthermore, the produced pigment was identified as echinenone (β-carotene pigment). The pigment production was optimized through a central composite statistical design to maximize the biomass production, pigment concentration, and the antimicrobial activity. It was revealed that the most significant fermentation parameters were the glucose (as a carbon source) and asparagine (as a nitrogen source) concentrations. Nano-echinenone was synthesized using the ball milling technique, characterized, and finally assessed for potential antimicrobial, antioxidan...
Toxoplasmosis may become a fatal disease in immunodeficient, diabetic patients, pregnant women, and infants. Hence, the diligent search for new effective treatment is among the major concerns worldwide. The well-dispersed multi-walled... more
Toxoplasmosis may become a fatal disease in immunodeficient, diabetic patients, pregnant women, and infants. Hence, the diligent search for new effective treatment is among the major concerns worldwide. The well-dispersed multi-walled carbon nanotubes lined with ZnO (ZnO-MWCNT), graphene oxide (GO-NPs), and zinc oxide (ZnO-NPs) were successfully synthesized through rapid and facile hydrothermal arc discharge technique (HTADT). The antiparasitic effects of ZnO-NPs, GO-NPs, and ZnO-MWCNT were investigated in mice infected with Toxoplasma gondii. The percent of tachyzoites reduction were detected. The observed results demonstrated that ZnO-MWCNT revealed a significant reduction in the parasite count reached 61% in brain tissues, followed by liver (52%), then spleen (45%). The assessments of antiparasitic, inflammatory, and anti-inflammatory cytokines confirmed the superior activity of ZnO-MWCNT as antiparasitic agent, which paves the way for the employment of ZnO-MWCNT as a treatment f...
Bacterial pneumonia is considered one of the most virulent diseases with high morbidity and mortality rates, especially in hospitalized patients. Moreover, bacterial resistance increased over the last decades which limited the therapy... more
Bacterial pneumonia is considered one of the most virulent diseases with high morbidity and mortality rates, especially in hospitalized patients. Moreover, bacterial resistance increased over the last decades which limited the therapy options to carbapenem antibiotics. Hence, the metallo-β-lactamase-producing bacteria were deliberated as the most deadly and ferocious infectious agents. Sulphadiazine-ZnO hybrids biological activity was explored in vitro and in vivo against metallo-β-lactamases (MBLs) producing Klebsiella pneumoniae. Docking studies against NDM-1 and IMP-1 MBLs revealed the superior activity of the 3a compound in inhibiting both MBLs enzymes in a valid reliable docking approach. The MBLs inhibition enzyme assay revealed the remarkable sulphadiazine-ZnO hybrids inhibitory effect against NDM-1 and IMP-1 MBLs. The tested compounds inhibited the enzymes both competitively and noncompetitively. Compound 3b-ZnO showed the highest antibacterial activity against the tested me...
Tuberculosis (TB) caused by Mycobacterium tuberculosis is still a serious public health concern around the world. More treatment strategies or more specific molecular targets have been sought by researchers. One of the most important... more
Tuberculosis (TB) caused by Mycobacterium tuberculosis is still a serious public health concern around the world. More treatment strategies or more specific molecular targets have been sought by researchers. One of the most important targets is M. tuberculosis’ enoyl-acyl carrier protein reductase InhA which is considered a promising, well-studied target for anti-tuberculosis medication development. Our team has made it a goal to find new lead structures that could be useful in the creation of new antitubercular drugs. In this study, a new class of 1,2,3- and 1,2,4-triazole hybrid compounds was prepared. Click synthesis was used to afford 1,2,3-triazoles scaffold linked to 1,2,4-triazole by fixable mercaptomethylene linker. The new prepared compounds have been characterized by different spectroscopic tools. The designed compounds were tested in vitro against the InhA enzyme. At 10 nM, the inhibitors 5b, 5c, 7c, 7d, 7e, and 7f successfully and totally (100%) inhibited the InhA enzyme...
Ultra-small gold nanoparticles (Au-NPs) “≤ 10 nm diameters” have potent biomedical applications. Hence, the present study aimed to greenly synthesize ultra-small gold nanoparticles using Egyptian propolis extract. Different biological... more
Ultra-small gold nanoparticles (Au-NPs) “≤ 10 nm diameters” have potent biomedical applications. Hence, the present study aimed to greenly synthesize ultra-small gold nanoparticles using Egyptian propolis extract. Different biological activities, in vivo bio-distribution and acute toxicity study were assessed. Results revealed that, Egyptian propolis extract can successfully synthesize the highly pure and stable ultra-small Au-NPs with average diameter 7.8 nm. In vitro antimicrobial and antimycobacterial activities revealed the powerful effect of the prepared Au-NPs. Moreover, the cytotoxic effect on human cancer cell lines revealed the potent inhibition of the cancer cells’ proliferation with high reactive oxygen species-mediated apoptosis induction. In vivo bio-distribution and acute toxicity studies were performed (10 and 100 mg/kg doses) in male albino rats. The ultra-small Au-NPs showed low or no toxicity upon using the Au-NPs low dose. The mean area accumulation (%) of the Au-...
Toxoplasma gondii (T. gondii) is a highly prevalent parasite that has no gold standard treatment due to the poor action or the numerous side effects. Focused sulfonamide-1,2,3-triazole hybrids 3a–c were wisely designed and synthesized via... more
Toxoplasma gondii (T. gondii) is a highly prevalent parasite that has no gold standard treatment due to the poor action or the numerous side effects. Focused sulfonamide-1,2,3-triazole hybrids 3a–c were wisely designed and synthesized via copper catalyzed 1,3-dipolar cycloaddition approach between prop-2-yn-1-alcohol 1 and sulfa drug azides 2a–c. The newly synthesized click products were fully characterized using different spectroscopic experiments and were loaded onto chitosan nanoparticles to form novel nanoformulations for further anti-Toxoplasma investigation. The current study proved the anti-Toxoplasma effectiveness of all examined compounds in experimentally infected mice. Relative to sulfadiazine, the synthesized sulfonamide-1,2,3-triazole (3c) nanoformulae demonstrated the most promising result for toxoplasmosis treatment as it resulted in 100% survival, 100% parasite reduction along with the remarkable histopathological improvement in all the studied organs.
Healthcare textiles are gaining great attention in the textile industry. Electrospun nanofibers are considered the golden soldiers due to their strength, flexibility, and eco-friendly properties. The present study aimed to evaluate the... more
Healthcare textiles are gaining great attention in the textile industry. Electrospun nanofibers are considered the golden soldiers due to their strength, flexibility, and eco-friendly properties. The present study aimed to evaluate the potency of polyvinyl alcohol (PVA) nanofibers loaded with newly biosynthesized silver nanoparticles (Ag-NPs) as a wound healing dressing. Chocolate-band snail (Eobania vermiculata) mucus (which is part of the Mollusca defense system) was used as a novel reducing and stabilizing agent. Data indicated the effectiveness of Eobania vermiculata’s mucus in silver nanoparticle synthesis after a 24 h incubation time. The biosynthesized AgNPs-SM showed a 13.15 nm particle size, −22.5 mV ζ potential, and 0.37 PDI, which proved the stability of the synthesized nanoparticles. Eobania vermiculata mucus and AgNPs-SM showed potent antibacterial activity, especially against Pseudomonas aeruginosa. The electrospinning technique was applied in the fabrication of PVA/Ag...
Aim: The present study aimed to formulate novel cremophore-decorated chitosan nanoparticles of colistin, integrated with Siwa propolis extract, to solve bacterial resistance to colistin. Materials & methods: The novel nanoformula was... more
Aim: The present study aimed to formulate novel cremophore-decorated chitosan nanoparticles of colistin, integrated with Siwa propolis extract, to solve bacterial resistance to colistin. Materials & methods: The novel nanoformula was prepared using an incorporation method. Physicochemical assessment and in vivo studies of the selected nanoformulations were performed. Results: The nanoformulation exhibited a nanosize of 48.3 nm, high ζ potential (43.6 mV), high entrapment efficiency (75%) and complete bacterial growth eradication within 2 h (minimum inhibitory concentration = 6.25 μg/ml). Histological examination showed that incorporation of colistin into the nanoformulation could successfully prevent its nephrotoxicity. Conclusion: Tailoring of proper nanocarrier could successfully revert bacteria from being colistin-resistant to colistin-sensitive. The developed nanoformulation can be considered as a potential antibacterial agent in pneumonia treatment.
Titanium oxide nanoparticles (TiO2 NPs) have been attracting numerous research studies due to their activity; however, there is a growing concern about the corresponding toxicity. Here in the present study, titanium oxide nanoparticles... more
Titanium oxide nanoparticles (TiO2 NPs) have been attracting numerous research studies due to their activity; however, there is a growing concern about the corresponding toxicity. Here in the present study, titanium oxide nanoparticles were newly synthesized using propolis extract followed by antimicrobial activity, cytotoxicity assay using human cancer cell lines, and acute toxicity study. The physicochemical characterization of the newly synthesized TiO2 NPs had average size = 57.5 nm, PdI = 0.308, and zeta potential = −32.4 mV. Antimicrobial activity assessment proved the superior activity against Gram-positive compared to Gram-negative bacteria and yeast (lowest MIC values 8, 32, and 32, respectively). The newly synthesized TiO2 NPs showed a potent activity against the following human cancer cell lines: liver (HepG-2) (IC50 8.5 µg/mL), colon (Caco-2), and breast (MDA-MB 231) (IC50 11.0 and 18.7 µg/mL). In vivo acute toxicity study was conducted using low (10 mg/kg) and high (100...
Herein, in the present work two series of thermoplastic polyurethane (TPU) nanofibers were manufactured using the electrospinning techniques with ZnO and CuO nanoparticles for a potential use as an elastic functional layer in... more
Herein, in the present work two series of thermoplastic polyurethane (TPU) nanofibers were manufactured using the electrospinning techniques with ZnO and CuO nanoparticles for a potential use as an elastic functional layer in antimicrobial applications. Percentages of 0%, 2 wt%, and 4 wt% of the nanoparticles were used. The morphological characterization of the electrospun TPU and TPU/NPs composites nanofibers were observed by using scanning electron microscopy to show the average fiber diameter and it was in the range of 90–150 nm with a significant impact of the nanoparticle type. Mechanical characterization showed that TPU nanofiber membranes exhibit excellent mechanical properties with ultra-high elastic properties. Elongation at break reached up to 92.5%. The assessment of the developed nanofiber membranes for medical and personal protection applications was done against various colistin resistant bacterial strains and the results showed an increment activity by increasing the ...
Aim: To investigate the prospective anti COVID-19 activity of Egyptian propolis. Material & methods: Propolis samples were collected from different Egyptian geographical areas and characterized using standardized methods, scanning... more
Aim: To investigate the prospective anti COVID-19 activity of Egyptian propolis. Material & methods: Propolis samples were collected from different Egyptian geographical areas and characterized using standardized methods, scanning electron microscope and gas chromatography/mass spectrometry along with computational modeling to predict the anti-COVID-19 activity. Results & conclusion: Gas chromatography/mass spectrometry analysis of Menoufia propolis proved the presence of Octatriacontyl pentafluoropropionate (4.2%). Docking analyses declared that Octatriacontyl pentafluoropropionate is well oriented inside the enzyme pockets, in addition to excellent binding manner with the active site of the target macromolecules (RNA-dependent RNA polymerase, Spike protein S1 and main protease) in relation to some broad-spectrum antiviral agents. Menoufia propolis could be a promising candidate in the combat against the pandemic COVID-19.
In a trial to search for a new antibiotic producer a terrestrial actinomycete was isolated from AL-alameen soil which proved to be a potential candidate for the production of active metabolites against E. coli 25922 and Staphylococcus... more
In a trial to search for a new antibiotic producer a terrestrial actinomycete
was isolated from AL-alameen soil which proved to be a potential
candidate for the production of active metabolites against E. coli 25922 and
Staphylococcus aureus 25923. It was identified phenotypicallyas
Streptomyces sp. The optimum activity was obtained when the organism
was grown on glycerol as a sole carbon source at 30°C and pH 7.0 for 192
h. The highest metabolic activity noticed intracellulary and it was approved
with MIC values. In a trial to test the combined activity of the extract and
some antibiotics; synergistic action was noticed with ceftriaxone. Further
investigations were applied to the extract for its active components using
TLC and GC-MS which indicated that Pentadecanoic acid, 14-methyl-,
methyl ester; Hexadecanoic acid, methyl ester and 2,4-bis(1,1-
dimethylethyl)- Phenol were the potent active components. Toxicity test
was evaluated for the active components as well as the crude extract.
Klebsiella pneumoniae has been identified as an opportunistic pathogen associated with both community-acquired and nosocomial infections mainly among patients admitted to the Intensive care units (ICUs). Some resistant genes were... more
Klebsiella pneumoniae has been identified as an opportunistic pathogen associated with both community-acquired and nosocomial infections mainly among patients admitted to the Intensive care units (ICUs). Some resistant genes were transferred vertically or horizontally within many microbial communities, directly between bacteria through plasmids or integrin. Different techniques including; phenotypic and genetic ones were used to evaluate the presence of β-lactamases among the isolated strains of K. pneumoniae. This bacterial species is the most commonly isolated pathogen (95 isolates) from all the examined samples (51.35%). Current results revealed that 30 and 14 strains of K. pneumoniae are positive to Extended spectrum β-lactamase (ESBL) production, and AmpC β-lactamase producers, respectively. On the other hand, modified carbapenem inactivation and modified Hodge test (MHT) were used to assess the carbapenem resistant strains. It is observed that all the β-lactamase producers' strains are also carbapenemase producers, whereas only nine strains (30%) are MHT positive. The Polymerase Chain Reaction (PCR) technique revealed that TEM, BETA, NDM and IPM genes are found on the bacterial plasmid (100%). However the presence of the β-lactamase genes on the bacterial DNA varied among the different strains. The presence of the resistance genes on the bacterial plasmid may signify the resistance acquired upon the previous exposure of this bacterium to the different antibiotics. The aims of the current work were to isolate K. pneumonia from Al-Shatby hospital ICUs, to determine the incidence of its β-lactamases, and to decide the frequency of acquisition of 12 different genes among ESBL K. pneumoniae isolates.
Seven algal species were collected from 7 different hotspots along Alexandrian Mediterranean shore; toluene and ethanol extract of U. fasciata and Enteromopha intestinalis showed the maximum antibacterial although Klebsiella pneumoniae... more
Seven algal species were collected from 7 different hotspots along Alexandrian
Mediterranean shore; toluene and ethanol extract of U. fasciata and Enteromopha
intestinalis showed the maximum antibacterial although Klebsiella pneumoniae (2)
showed highest sensitivity towards the algal extracts while MRSA and MRSE were the
most resistant organisms. MIC concentration was significantly low with Gram negative
bacteria less than Gram positive bacteria. Time –Kill curve analysis showed that MRSA
was less susceptible than Ps. aeruginosa with the same extract. SEM analysis of the
samples showed aggregation and shrinkage in addition to leakage of the cells. LC50 was
determined during the period of one week and no mortality was observed. Combination
between algal extract and amikacin showed significant increase in the inhibition zone.
Synergistic action was noticed between the silver nanoparticles (green synthesized by the
U. fasciata extract) + amikacin (as known antibiotic) and U. fasciata extract (as the natural
product). This synergy means less toxicity, less side effects and less cost. GC-MS-MS
analysis of the U. fasciata sample showed Acyclic and noracyclic sesterterpenoid,
pentacyclic triterpenoid, esters and carotenoid. Column chromatography was performed
followed by antibacterial assay for the collected fractions to determine the active fraction.
The isolated active compound was olean-12en-3, 15, 16, 21, 22, 28-hexol, with probability
only 91.17% so probably our isolated compound is a derivative of oleanolic acid.
Research Interests: