Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
In the present work, the joint response of key hydrologic variables, including total precipitation depths and the corresponding simulated peak discharges, are investigated for different antecedent soil moisture conditions using the copula... more
In the present work, the joint response of key hydrologic variables, including total precipitation depths and the corresponding simulated peak discharges, are investigated for different antecedent soil moisture conditions using the copula method. The procedure started with the calibration and validation of the soil moisture accounting (SMA) loss rate algorithm incorporated in the Hydrologic Engineering Center – hydrologic modeling system (HEC–HMS) model for the study watershed. A 1000 year long time series of hourly rainfall was then generated by the Neyman–Scott rectangular pulses (NSRP) rainfall generator, which was then transformed into the runoff rate by the HEC–HMS model. This long-term continuous hydrological simulation resulted in characterizing the response of the watershed for various input conditions such as initial soil moisture content (AMC), total rainfall depth, and rainfall duration. For each initial soil moisture class, the copula method was employed to determine the joint probability distribution of rainfall depth and peak discharge. For instance, for dry AMC condition and 1 h rainfall duration, the Joe family fitted best to the data, compared with six other one-parameter families of copulas. Results showed that the bivariate analysis of rainfall–runoff using the copula method can well characterize the watershed hydrological behavior. The derived offline curves could provide a probabilistic real-time peak discharge forecast.
Research Interests:
The focus of this paper is to investigate the flood vulnerability of a small but important basin in Iran with emphasis on application of integrated flood management (IFM) concept to reduce negative effects of flooding. The study basin is... more
The focus of this paper is to investigate the flood vulnerability of a small but important basin in Iran with emphasis on application of integrated flood management (IFM) concept to reduce negative effects of flooding. The study basin is a flood prone area where different dispersed structural measures have been carried out for flood damage reduction without any integrity in the approaches. This paper aims to declare the necessity of IFM concept which seeks to integrate land and water resources development in river basins and minimizing loss of life with implementation of both structural and non-structural methods. Finally, some strategies have been suggested to be implemented in the study area.
Rainfall threshold (RT) method is one of the evolving flood forecasting approaches. When the cumulative rainfall depth for a given initial soil moisture condition intersects the threshold rainfall curve, the peak discharge is expected to... more
Rainfall threshold (RT) method is one of the evolving flood forecasting approaches. When the cumulative rainfall depth for a given initial soil moisture condition intersects the threshold rainfall curve, the peak discharge is expected to be equal or greater than the threshold discharge for flooding at the target site. Besides the total rainfall depth, spatial and temporal distribution of rainfall impacts the flood peak discharge and the time to peak. To revisit a previous study conducted by the authors, in which spatially independent rainfall pattern was assumed, the spatial distribution of rainfall was simulated following a Monte Carlo approach. The structure of the spatial dependence among sub-watersheds' rainfalls was taken into account under three different scenarios, namely independent, bivariate copula (2copula) and multivariate Gaussian copula (MGC). For each set of generated random dimensionless rainfalls, the probabilistic RT curves were derived for dry moisture condition. Results were evaluated with both historical and simulated events. For the simulated events, threshold curves were assessed by means of categorical statistics, such as hit rate, false rate and critical success index (CSI). Results revealed that the best performance based on the CSI criterion corresponded to 50% curve in 2copula and MGC scenarios as well as 90% curve in the independent scenario. The recognition of 50% curve in 2copula and MGC scenarios is in agreement with our expectations that the mean probable curve should have the best performance. Moreover, the proposed inclusion of spatially dependent rainfall scenario improved the performance of RT curves by about 25% in comparison with the presumed spatially uniform rainfall scenario.
Pattern recognition is the science of data structure and its classification. There are many classification and clustering methods prevalent in pattern recognition area. In this research, rainfall data in a region in Northern Iran are... more
Pattern recognition is the science of data structure and its classification. There are many classification and clustering methods prevalent in pattern recognition area. In this research, rainfall data in a region in Northern Iran are classified with natural breaks classification method and with a revised fuzzy c-means (FCM) algorithm as a clustering approach. To compare these two methods, the results of the FCM method are hardened. Comparison proved overall coincidence of natural breaks classification and FCM clustering methods. The differences arise from nature of these two methods. In the FCM, the boundaries between adjacent clusters are not sharp while they are abrupt in natural breaks method. The sensitivity of both methods with respect to rain gauge density was also analyzed. For each rain gauge density, percentage of boundary region and hardening error are at a minimum in the first cluster while the second cluster has the maximum error. Moreover, the number of clusters was sensitive to the number of stations. Since the optimum number of classes is not apparent in the classification methods and the boundary between adjacent classes is abrupt, use of clustering methods such as the FCM method, overcome such deficiencies. The methods were also applied for mapping an aridity index in the study region where the results revealed good coincidence between the FCM clustering and natural breaks classification methods.
“Rainfall threshold” is considered as one of the evolving flood forecasting approaches. When the cumulative rainfall depth for a given initial soil moisture condition intersects the corresponding moisture curve, the peak discharge is... more
“Rainfall threshold” is considered as one of the evolving flood forecasting approaches. When the cumulative rainfall depth for a given initial soil moisture condition intersects the corresponding moisture curve, the peak discharge is expected to be equal or greater than the threshold discharge for flooding at the target site. Besides the total rainfall depth, spatial and temporal distribution of rainfall can influence the peak discharge and the time to peak. In the few past studies on the extraction of rainfall threshold curves for flood forecasting, the rainfall assumed to be uniform in space whereas the temporal distribution was subjected to certain assumptions. In the present study, the spatial distribution of rainfall was simulated with the Monte Carlo (MC) method and the mean Huff pattern for all rainfall durations was imposed for the temporal distribution. For each of the MC run, the random weight assigned to every sub-watershed follows the pdf of weights in historical rainfall events. The HEC–HMS model with two different infiltration methods namely SCS–CN and Green–Ampt and Muskingum river routing were adopted as the hydrologic model. After the calibration and validation of the model for Madarsoo watershed in Golestan province in Northeastern Iran, the MC simulations were performed for 1, 2, 6 and 12 h durations. The outputs from the SCS–CN method exhibit only a slight increase in threshold values with respect to duration and was not in the range of our expectations from watershed response, i.e. the rainfalls with greater durations should be greater in depth to produce a specific peak discharge. For the Green–Ampt infiltration method, the rainfall thresholds with 50% probability associated with the critical discharge under dry soil moisture condition were 44.5, 49.0, 64.2 and 94.6 mm for 1, 2, 6 and 12 h durations, respectively. Results for July 2001 flooding revealed that the cumulative rainfall intersected all 10%, 50% and 90% rainfall threshold curves but for July 2005 flooding the 10% curve was only intersected by the cumulative rainfall curve. The advantage of MC-derived rainfall threshold curves in real-time operations is that decision-makers have the flexibility to adopt a curve more consistent with flood observations in the region.