Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
İçeriğe atla

Geminus

Vikipedi, özgür ansiklopedi
Geminus
DoğumΓεμῖνος ὁ Ῥόδιος
MÖ 10 dolayları
Rodos?, Yunanistan
ÖlümMS 60 dolayları
?
VatandaşlıkAntik Yunanistan
Tanınma nedeniIsagoge (Introduction to Astronomy)
MemleketRodos
Kariyeri
DalıAstronomi, Matematik
Akademik danışmanlarıPosidonius

Rodoslu Geminus (YunancaΓεμῖνος ὁ Ῥόδιος, MÖ 10 - MS 60 dolayları), MÖ 1. yüzyılda yıldızı parlayan bir Yunan astronom ve matematikçi. Onun bir astronomi çalışması olan ve öğrenciler için astronomi kitabı olarak tasarlanan Olaylara Giriş (İngilizceIntroduction to the Phenomena) hala hayattadır. Ayrıca matematik üzerine bir çalışması da yazdı ama bu eserin sadece sonraki yazarlar tarafından alıntılanan kısımları hayatta kaldı ve günümüze ulaştı.

Geminus'un hayatı hakkında hiçbir şey bilinmiyor. Rodos'ta doğduğu bile kesin değildir, ancak astronomik çalışmalarında Rodos'taki dağlara atıfta bulunulduğunda orada çalıştığı anlaşılıyor. Doğum ve ölüm tarihleri de kesin olarak bilinmiyor. Eserlerinde, kendi zamanından 120 yıl önceki Mısır takviminin Annus Vagus'una (Gezici Yıl, Wandering Year) atıfta bulunan bir pasaj, yazarken yaklaşık MÖ 70 tarihini ima etmek için kullanılmıştır,[1] ki bu Posidonius'un öğrencisi olabileceği fikriyle tutarlı olacaktır ama MS 50 kadar geç bir tarih de önerilmiştir.[2]

Aydaki Geminus krateri onun adını almıştır.[3]

Çalışmaları

[değiştir | kaynağı değiştir]
Geminus: Geminu Eisagogē eis ta phainomena, Graece et Latine, Altorphii, 1590

Geminus'un hayatta kalan tek eseri Fenomenlere Giriş (YunancaΕἰσαγωγὴ εἰς τὰ Φαινόμενα, İngilizceIntroduction to the Phenomena) adlı eseridir, genellikle sadece Isagoge olarak adlandırılır. Hipparchus gibi daha önceki gök bilimcilerin çalışmalarına dayanan bu giriş niteliğindeki astronomi kitabı, konuya yeni başlayan öğrencilere astronomi öğretmeyi amaçlıyordu. Geminus, bu eserde; Zodyak ve Güneş'in hareketini, takımyıldızları, göksel küreyi, günleri ve geceleri, zodyak burçlarının yükselmelerini ve ayarları, Ay-Güneş dönemleri ve bunların takvimlere uygulanmasını, Ay'ın safhalarını, tutulmaları, yıldız evrelerini, karasal bölgeleri ve coğrafi yerleri ve yıldızlara dayanarak hava durumu tahminlerinde bulunmanın aptallığını anlatır.[4]

Ayrıca Posidonius'un Meteoroloji Üzerine (İngilizceOn Meteorology) adlı çalışması üzerine bir yorum yazdı. Bu yorumun parçaları, Aristoteles'in Fizik (İngilizcePhysics) adlı eseri üzerine yaptığı yorumda Simplicius tarafından korunmuştur.

Geminus ayrıca matematik üzerine kapsamlı bir Matematik Doktrini (veya Teorisi) de dahil olmak üzere kapsamlı bir şekilde yazdı.[5] Bu çalışma hayatta kalmamış olsa da, Proclus, Eutocius ve diğerleri tarafından yapılmış birçok alıntı korunmaktadır. Matematiği iki kısma ayırdı: Zihinsel (Yunancaνοητά, İngilizceMental) ve Gözlemlenebilir (Yunancaαἰσθητά, İngilizceObservable) veya başka bir deyişle, Saf (İngilizcePure) ve Uygulamalı (İngilizceApplied). Birinci kategoriye geometri ve aritmetiği (sayı teorisi dahil), ikinci kategoriye ise mekanik, astronomi, optik, jeodezi, kanonik (müzikal uyum) ve lojistiği yerleştirdi. Eserlerinden yapılmış uzun alıntılar Al-Nayrizi tarafından Öklid'in Elemanları (İngilizceEuclid's Elements) üzerine yaptığı yorumda korunmuştur.

Öklid'in paralellik postülatını diğer aksiyomlardan yararlanarak ispatlamaya çalıştı. Geminus'un paralellik postülatı için verdiği 'kanıt' ustaca ama yanlıştı. Tartışmasının başında, düz bir çizgiden sabit bir mesafedeki noktaların yerinin kendisinin bir düz çizgi olduğunu ve bunun başka bir varsayım olmadan kanıtlanamayacağını varsaydığından, bir hata yaptı. Bununla birlikte, Geminus'un paralellik postülatını kanıtlamaya çalışması ilginçtir ve bu türden ilk girişim olma ihtimali düşük olsa da, en azından bu, ayrıntıların hayatta kaldığı en eski girişimdir.

Helix (Helezon), yani bir dik dairesel silindirin üreteçlerini sabit bir açıyla kesen eğri, Geminus'un çalışmasında görülmektedir. Ancak Proclus, eğrinin Geminus'tan 150 yıl önce Apollonius'a kadar gittiğini öne sürer. Ancak Geminus ilginç bir sınıflandırma teoremini kanıtlamıştır; helezon, daire ve düz çizgi, eğrinin herhangi bir kısmının aynı uzunluktaki diğer herhangi bir parçasıyla çakışma özelliğine sahip tek eğrilerdir.

  1. ^ Dicks, D. R. "Geminus | Encyclopedia.com" (PDF). Dictionary of Scientific Biography (New York 1970-1990). 7 Şubat 2020 tarihinde kaynağından (PDF) arşivlendi. 
  2. ^ Neugebauer, O., A History of Ancient Mathematical Astronomy. New York. (1975).
  3. ^ Geminus krateri
  4. ^ Evans, J., The History and Practice of Ancient Astronomy, s.91. Oxford University Press. (1998).
  5. ^ Heath, T., A Manual of Greek Mathematics, Dover Publications. (2003).

İlave okumalar

[değiştir | kaynağı değiştir]