Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Anne Vejux

    Oxidized low-density lipoproteins play important roles in the development of atherosclerosis and contain several lipid-derived, bioactive molecules which are believed to contribute to atherogenesis. Of these, some cholesterol oxidation... more
    Oxidized low-density lipoproteins play important roles in the development of atherosclerosis and contain several lipid-derived, bioactive molecules which are believed to contribute to atherogenesis. Of these, some cholesterol oxidation products, referred to as oxysterols, are suspected to favor the formation of atherosclerotic plaques involving cytotoxic, pro-oxidant and pro-inflammatory processes. Ten commonly occurring oxysterols (7alpha-, 7beta-hydroxycholesterol, 7-ketocholesterol, 19-hydroxycholesterol, cholesterol-5alpha,6alpha-epoxide, cholesterol-5beta,6beta-epoxide, 22R-, 22S-, 25-, and 27-hydroxycholesterol) were studied for both their cytotoxicity and their ability to induce superoxide anion production (O2*-) and IL-8 secretion in U937 human promonocytic leukemia cells. Cytotoxic effects (phosphatidylserine externalization, loss of mitochondrial potential, increased permeability to propidium iodide, and occurrence of cells with swollen, fragmented and/or condensed nuclei) were only identified with 7beta-hydroxycholesterol, 7-ketocholesterol and cholesterol-5beta,6beta-epoxide, which also induce lysosomal destabilization associated or not associated with the formation of monodansylcadaverine-positive cytoplasmic structures. No relationship between oxysterol-induced cytotoxicity and HMG-CoA reductase activity was found. In addition, the highest O2*- overproduction quantified with hydroethidine was identified with 7beta-hydroxycholesterol, 7-ketocholesterol and cholesterol-5beta,6beta-epoxide, with cholesterol-5alpha, 6alpha-epoxide and 25-hydroxycholesterol. The highest capacity to simultaneously stimulate IL-8 secretion (quantified by ELISA and by using a multiplexed, particle-based flow cytometric assay) and enhance IL-8 mRNA levels (determined by RT-PCR) was observed with 7beta-hydroxycholesterol and 25-hydroxycholesterol. None of the effects observed for the oxysterols were detected for cholesterol. Therefore, oxysterols may have cytotoxic, oxidative, and/or inflammatory effects, or none whatsoever.
    Mitochondrial dysfunctions and oxidative stress are involved in several non demyelinating or demyelinating neurodegenerative diseases. Some of them, including multiple sclerosis (MS), are associated with lipid peroxidation processes... more
    Mitochondrial dysfunctions and oxidative stress are involved in several non demyelinating or demyelinating neurodegenerative diseases. Some of them, including multiple sclerosis (MS), are associated with lipid peroxidation processes leading to increased levels of 7-ketocholesterol (7KC). So, the eventual protective effect of dimethylfumarate (DMF), which is used for the treatment of MS, was evaluated on 7KC-treated oligodendrocytes, which are myelin synthesizing cells. To this end, murine oligodendrocytes 158N were exposed to 7KC (25, 50μM) for 24h without or with DMF (1, 25, 50μM). The biological activities of DMF associated or not with 7KC were evaluated by phase contrast microscopy, crystal violet and MTT tests. The impact on transmembrane mitochondrial potential (ΔYm), O2(-) and H2O2 production, apoptosis and autophagy was measured by microscopical and flow cytometric methods by staining with DiOC6(3), dihydroethidine and dihydrorhodamine 123, Hoechst 33342, and by Western blott...
    To analyze multilamellar cytoplasmic structures by confocal laser scanning microscopy (CLSM) combined with factor analysis of biomedical image sequences (FAMIS). After treatment of U937 cells with 7-ketocholesterol (7-keto), cytoplasmic... more
    To analyze multilamellar cytoplasmic structures by confocal laser scanning microscopy (CLSM) combined with factor analysis of biomedical image sequences (FAMIS). After treatment of U937 cells with 7-ketocholesterol (7-keto), cytoplasmic alterations were assessed with monodansylcadaverine (MDC). By ultraviolet excitation of a confocal laser scanning microscope (UV-CLSM), spectral sequences were performed to characterize 7-keto and MDC distribution inside cells. FAMIS was used to transform the image sequences in factor curves and images. By UV-CLSM, 7-keto fluorescence was detected together with MDC, which revealed morphologic cytoplasmic changes in cells. The factor images obtained from confocal image sequences emphasized the view of these results. These data are in agreement with biochemical characterizations of MDC-positive structures. The combined use of confocal microscopy and FAMIS allowed us to detect MDC-positive cytoplasmic structures in 7-keto-treated cells and to colocalize...
    To show the effect of 7-ketocholesterol (7KC) on cellular lipid content by means of flow cytometry and the interaction of 7KC with Nile Red (NR) via ultraviolet fluorescence resonance energy transfer (FRET) excitation of NR on U937... more
    To show the effect of 7-ketocholesterol (7KC) on cellular lipid content by means of flow cytometry and the interaction of 7KC with Nile Red (NR) via ultraviolet fluorescence resonance energy transfer (FRET) excitation of NR on U937 monocytic cells by means of 2-photon excitation confocal laser scanning microscopy (CLSM). Untreated and 7KC-treated U937 cells were stained with NR and analyzed by flow cytometry and CLSM. 3D sequences of images were obtained by spectral analysis in a 2-photon excitation CLSM and analyzed by the factor analysis of medical image sequences (FAMIS) algorithm, which provides factor curves and images. Factor images are the result of the FAMIS image processing method, which handles emission spectra. In FRET analysis, preparations are screened at selected UV wavelengths to avoid emission of NR in the absence of 7KC. During 7KC-induced cell death,flow cytometry and CLSM revealed a modification of the cellular lipid content. Factor images show FRET occurrence and...
    ABSTRACT But Des mécanismes inflammatoires locaux sont mis en cause dans la genèse des lésions de dégénérescence maculaire liée à l’âge (DMLA). Les capacités pro inflammatoires des oxystérols ont ainsi été testées sur des cellules... more
    ABSTRACT But Des mécanismes inflammatoires locaux sont mis en cause dans la genèse des lésions de dégénérescence maculaire liée à l’âge (DMLA). Les capacités pro inflammatoires des oxystérols ont ainsi été testées sur des cellules épithéliales pigmentaires en culture. La sécrétion d’IL-8, chémokine connue pour ses pouvoirs chimioattractif surles cellules de l’inflammation et pour son rôle pro-angiogénique a été particulièrement étudiée ainsi que les protéines impliquées dans le contrôle de sa sécrétion. Matériels et Méthodes Des cellules épithéliales pigmentaires en lignée (ARPE-19) ont été cultivées et traitées par différents oxystérols : le 7-cétocholestérol, le 7- betahydroxycholestérol et le 25-hydroxycholestérol (25-OH). Après 24 h et 48 h de traitement à différentes concentrations les surnageants étaient récupérés et un dosage de plusieurs cytokines a été réalisé d’une part avec une technique d’analyse multiplexée et d’autre part par méthode ELISA. L’implication de la voie des MAP-kinases dans la sécrétion d’IL-8 a été évaluée en utilisant des inhibiteurs spécifiques de cette voie U0126 et PD98059. Résultats Le dosage a été réalisé par cytométrie en flux avec analyse simultanée de la sécrétion de 6 cytokines (IL-8, IL-1ß, IL-6, IL-10, TNF- αet IL-12). Seule la sécrétion d’IL-8 a été identifiée sous l’influence du 25-OH. Le 7-céto et le 7- βn’induisent pas la sécrétion d’IL-8. Ceci a été confirmé par les dosages avec la méthode ELISA qui montrent que seul le 25-OH stimule la sécrétion d’IL-8. L’utilisation des inhibiteurs spécifiques de la voie des MAP-kinases diminue la sécrétion d’IL-8 induite par le 25-OH. Les valeurs mesurées sont alors comparables à celles obtenues sur le surnageant de cellules non traitées. Discussion L’IL-8 est la seule cytokine dont la sécrétion par les cellules ARPE-19 est stimulée et ce uniquement par le 25-OH. Cet oxystérol qui n’a par ailleurs aucun effet cytotoxique peut donc être considéré comme un promoteur de l’inflammation. La voie des MAP-kinases semble être une des voies de signalisation majeure impliquée dans le contrôle de la sécrétion d’IL-8 par les cellules ARPE-19. Conclusion Le 25-OH semble être un agent pro-inflammatoire qui favorise au travers de la sécrétion d’IL-8 le recrutement des cellules inflammatoires contribuant auxlésions observées dans la DMLA. Par ailleurs l’IL-8 possède aussi des propriétés pro-angiogèniques qui pourraient favoriser le développement des lésions néo vasculaires observées au cours de la DMLA.
    Oxidized low-density lipoproteins play important roles in the development of atherosclerosis and contain several lipid-derived, bioactive molecules which are believed to contribute to atherogenesis. Of these, some cholesterol oxidation... more
    Oxidized low-density lipoproteins play important roles in the development of atherosclerosis and contain several lipid-derived, bioactive molecules which are believed to contribute to atherogenesis. Of these, some cholesterol oxidation products, referred to as oxysterols, are suspected to favor the formation of atherosclerotic plaques involving cytotoxic, pro-oxidant and pro-inflammatory processes. Ten commonly occurring oxysterols (7alpha-, 7beta-hydroxycholesterol, 7-ketocholesterol, 19-hydroxycholesterol, cholesterol-5alpha,6alpha-epoxide, cholesterol-5beta,6beta-epoxide, 22R-, 22S-, 25-, and 27-hydroxycholesterol) were studied for both their cytotoxicity and their ability to induce superoxide anion production (O2*-) and IL-8 secretion in U937 human promonocytic leukemia cells. Cytotoxic effects (phosphatidylserine externalization, loss of mitochondrial potential, increased permeability to propidium iodide, and occurrence of cells with swollen, fragmented and/or condensed nuclei) were only identified with 7beta-hydroxycholesterol, 7-ketocholesterol and cholesterol-5beta,6beta-epoxide, which also induce lysosomal destabilization associated or not associated with the formation of monodansylcadaverine-positive cytoplasmic structures. No relationship between oxysterol-induced cytotoxicity and HMG-CoA reductase activity was found. In addition, the highest O2*- overproduction quantified with hydroethidine was identified with 7beta-hydroxycholesterol, 7-ketocholesterol and cholesterol-5beta,6beta-epoxide, with cholesterol-5alpha, 6alpha-epoxide and 25-hydroxycholesterol. The highest capacity to simultaneously stimulate IL-8 secretion (quantified by ELISA and by using a multiplexed, particle-based flow cytometric assay) and enhance IL-8 mRNA levels (determined by RT-PCR) was observed with 7beta-hydroxycholesterol and 25-hydroxycholesterol. None of the effects observed for the oxysterols were detected for cholesterol. Therefore, oxysterols may have cytotoxic, oxidative, and/or inflammatory effects, or none whatsoever.
    Oxysterols, mainly those oxidized at the C7 position, induce a complex mode of cell death exhibiting some characteristics of apoptosis associated with a rapid induction of lipid rich multilamellar cytoplasmic structures (myelin figures)... more
    Oxysterols, mainly those oxidized at the C7 position, induce a complex mode of cell death exhibiting some characteristics of apoptosis associated with a rapid induction of lipid rich multilamellar cytoplasmic structures (myelin figures) observed in various pathologies including atherosclerosis. The aim of this study was to determine the relationships between myelin figure formation, cell death, and lipid accumulation in various cell lines (U937, THP-1, MCF-7 [caspase-3 deficient], A7R5) treated either with oxysterols (7-ketocholesterol [7KC], 7beta-hydroxycholesterol, cholesterol-5alpha,6alpha-epoxide, cholesterol-5beta,6beta-epoxide, 25-hydroxycholesterol) or cytotoxic drugs (etoposide, daunorubicin, tunicamycin, rapamycin). Cell death was assessed by the measurement of cellular permeability with propidium iodide, characterization of the morphological aspect of the nuclei with Hoechst 33342, and identification of myelin figures by transmission electron microscopy. Nile Red staining...
    Ageing is accompanied by increasing vulnerability to major pathologies (atherosclerosis, Alzheimer's disease, age-related macular degeneration, cataract, and osteoporosis) which can have similar underlying pathoetiologies. All of... more
    Ageing is accompanied by increasing vulnerability to major pathologies (atherosclerosis, Alzheimer's disease, age-related macular degeneration, cataract, and osteoporosis) which can have similar underlying pathoetiologies. All of these diseases involve oxidative stress, inflammation and/or cell death processes, which are triggered by cholesterol oxide derivatives, also named oxysterols. These oxidized lipids result either from spontaneous and/or enzymatic oxidation of cholesterol on the steroid nucleus or on the side chain. The ability of oxysterols to induce severe dysfunctions in organelles (especially mitochondria) plays key roles in RedOx homeostasis, inflammatory status, lipid metabolism, and in the control of cell death induction, which may at least in part contribute to explain the potential participation of these molecules in ageing processes and in age related diseases. As no efficient treatments are currently available for most of these diseases, which are predicted to...
    The development of cataract is associated with some lipid changes in human lens fibers, especially with increased accumulation and redistribution of cholesterol inside these cells. Some direct and indirect lines of evidence, also suggest... more
    The development of cataract is associated with some lipid changes in human lens fibers, especially with increased accumulation and redistribution of cholesterol inside these cells. Some direct and indirect lines of evidence, also suggest an involvement of cholesterol oxide derivatives (also named oxysterols) in the development of cataract. Oxysterol formation can result either from nonenzymatic or enzymatic processes, and some oxysterols can induce a wide range of cytotoxic effects (overproduction of reactive oxygen species (ROS); phospholipidosis) which might contribute to the initiation and progression of cataract. Thus, the conception of molecules capable of regulating cholesterol homeostasia and oxysterol levels in human lens fibers can have some interests and constitute an alternative to surgery at least at early stages of the disease.
    In demyelinating or non-demyelinating neurodegenerative diseases, increased levels of 7-ketocholesterol (7KC), 7β-hydroxycholesterol (7β-OHC) and 24(S)-hydroxycholesterol (24S-OHC) can be observed in brain lesions. In 158N murine... more
    In demyelinating or non-demyelinating neurodegenerative diseases, increased levels of 7-ketocholesterol (7KC), 7β-hydroxycholesterol (7β-OHC) and 24(S)-hydroxycholesterol (24S-OHC) can be observed in brain lesions. In 158N murine oligodendrocytes, 7KC triggers a complex mode of cell death defined as oxiapoptophagy, involving simultaneous oxidative stress, apoptosis and autophagy. In these cells, 7KC as well as 7β-OHC and 24S-OHC induce a decrease of cell proliferation evaluated by phase contrast microscopy, an alteration of mitochondrial activity quantified with the MTT test, an overproduction of reactive oxygen species revealed by staining with dihydroethidium and dihydrorhodamine 123, caspase-3 activation, PARP degradation, reduced expression of Bcl-2, and condensation and/or fragmentation of the nuclei which are typical criteria of oxidative stress and apoptosis. Moreover, 7KC, 7β-OHC and 24S-OHC promote conversion of microtubule-associated protein light chain 3 (LC3-I) to LC3-II...
    Among the oxysterols accumulating in atherosclerotic plaque, 7-ketocholesterol (7KC) is a potent apoptotic inducer, which favours myelin figure formation and polar lipid accumulation. This investigation performed on U937 cells consisted... more
    Among the oxysterols accumulating in atherosclerotic plaque, 7-ketocholesterol (7KC) is a potent apoptotic inducer, which favours myelin figure formation and polar lipid accumulation. This investigation performed on U937 cells consisted in characterizing the myelin figure formation process; determining the effects of 7KC on the PI3-K/PDK-1/Akt signalling pathway; evaluating the activities of vitamin E (Vit-E) (alpha-tocopherol) on the formation of myelin figures and the PI3-K/PDK-1/Akt signalling pathway and assessing the effects of PI3-K inhibitors (LY-294002, 3-methyladenine) on the activity of Vit-E on cell death and polar lipid accumulation. The ultrastructural and biochemical characteristics of myelin figures (multilamellar cytoplasmic inclusions rich in phospholipids and 7KC present in acidic vesicles and the reversibility of these alterations) support the hypothesis that 7KC is an inducer of phospholipidosis. This oxysterol also induces important changes in lipid content and/or organization of the cytoplasmic membrane demonstrated with merocyanine 540 and fluorescence anisotropy, a loss of PI3-K activity and dephosphorylation of PDK-1 and Akt. It is noteworthy that Vit-E was able to counteract phospholipidosis and certain apoptotic associated events (caspase activation, lysosomal degradation) to restore PI3-K activity and to prevent PDK-1 and Akt dephosphorylation. When Vit-E was associated with LY-294002 or 3-methyladenine, impairment of 7KC-induced apoptosis was inhibited, and accumulation of polar lipids was less counteracted. Thus, 7KC-induced apoptosis is a PI3-K-dependent event, and Vit-E up- and down-regulates PI3-K activity and phospholipidosis, respectively.
    Oxysterols, mainly those oxidized at the C7 position, induce a complex mode of cell death exhibiting some characteristics of apoptosis associated with a rapid induction of lipid rich multilamellar cytoplasmic structures (myelin figures)... more
    Oxysterols, mainly those oxidized at the C7 position, induce a complex mode of cell death exhibiting some characteristics of apoptosis associated with a rapid induction of lipid rich multilamellar cytoplasmic structures (myelin figures) observed in various pathologies including atherosclerosis. The aim of this study was to determine the relationships between myelin figure formation, cell death, and lipid accumulation in various cell lines (U937, THP-1, MCF-7 [caspase-3 deficient], A7R5) treated either with oxysterols (7-ketocholesterol [7KC], 7beta-hydroxycholesterol, cholesterol-5alpha,6alpha-epoxide, cholesterol-5beta,6beta-epoxide, 25-hydroxycholesterol) or cytotoxic drugs (etoposide, daunorubicin, tunicamycin, rapamycin). Cell death was assessed by the measurement of cellular permeability with propidium iodide, characterization of the morphological aspect of the nuclei with Hoechst 33342, and identification of myelin figures by transmission electron microscopy. Nile Red staining (distinguishing neutral and polar lipids) was used to identify lipid content by flow cytometry and spectral imaging microscopy. Whatever the cells considered, myelin figures were only observed with cytotoxic oxysterols (7KC, 7beta-hydroxycholesterol, cholesterol-5beta, 6beta-epoxide), and their formation was not inhibited by the broad spectrum caspase inhibitor z-VAD-fmk. When U937 cells were treated with oxysterols or cytotoxic drugs, polar lipid accumulation was mainly observed with 7KC and 7beta-hydroxycholesterol. The highest polar lipid accumulation, which was triggered by 7KC, was counteracted by z-VAD-fmk. These findings demonstrate that myelin figure formation is a caspase-independent event closely linked with the cytotoxicity of oxysterols, and they highlight a relationship between caspase activity and polar lipid accumulation.
    Some oxysterols are identified in atheromatous plaques and in plasma of atherosclerotic patients. We asked whether they might modulate cytokine secretion on human monocytic cells. In healthy and atherosclerotic subjects, we also... more
    Some oxysterols are identified in atheromatous plaques and in plasma of atherosclerotic patients. We asked whether they might modulate cytokine secretion on human monocytic cells. In healthy and atherosclerotic subjects, we also investigated the relationships between circulating levels of C-reactive protein (CRP), conventional markers of hyperlipidemia, some oxysterols (7beta-hydroxycholesterol, 7-ketocholesterol, and 25-hydroxycholesterol), and various cytokines. Different flow cytometric bead-based assays were used to quantify some cytokines (IL-1beta, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-17, G-CSF, GM-CSF, IFN-gamma, MCP-1, MIP-1beta, or TNF-alpha) in the culture media of oxysterol-treated U937 and THP-1 cells, and in the sera of healthy and atherosclerotic subjects. CRP and markers of hyperlipidemia were determined with routine analytical methods. Oxysterols were quantified by gas chromatography/mass spectrometry. Flow cytometric and biochemical methods we...
    There is some evidence that oxidized derivatives of cholesterol, 7-ketocholesterol (7KC) and 7β-hydroxycholesterol (7βOHC), are increased in the plasma of patients with neurodegenerative diseases associated with demyelinization of the... more
    There is some evidence that oxidized derivatives of cholesterol, 7-ketocholesterol (7KC) and 7β-hydroxycholesterol (7βOHC), are increased in the plasma of patients with neurodegenerative diseases associated with demyelinization of the central nervous system (CNS). It was therefore of interest to investigate the effects of these oxysterols on oligodendrocytes, the myelin-forming cells in the CNS. To this end, 158N murine oligodendrocytes were treated with 7KC or 7βOHC inducing an apoptotic mode of cell death characterized by condensation/fragmentation of the nuclei, dephosphorylation of Akt and GSK3, mitochondrial depolarization involving Mcl-1, and caspase-3 activation. In contrast, under treatment with 27-hydroxycholesterol (27OHC), no cell death was observed. When the cells were stained with Fura-2, no significant Ca(2+) rise was found with the different oxysterols, whereas strong signals were detected with ionomycin used as positive control. At concentrations which induced apoptosis, 7KC but not 7βOHC accumulated in lipid rafts. Although not cytotoxic, 27OHC was mainly detected in lipid rafts. It is noteworthy that α-tocopherol (but not ellagic acid and resveratrol) was able to counteract 7KC- and 7βOHC-induced apoptosis and to decrease the accumulation of 7KC and 27OHC in lipid rafts. Thus, in 158N cells, the ability of oxysterols to trigger a mode of cell death by apoptosis involving GSK-3 and caspase-3 activation is independent of the increase in the Ca(2+) level and of their accumulation in lipid raft microdomains.
    Exposure of Pseudomonas aeruginosa to aminoglycosides frequently selects for recalcitrant subpopulations exhibiting an unstable,... more
    Exposure of Pseudomonas aeruginosa to aminoglycosides frequently selects for recalcitrant subpopulations exhibiting an unstable, "adaptive" resistance to these antibiotics. In this study, we investigated the implication in the phenomenon of MexXY-OprM, an active efflux system known to export aminoglycosides in P. aeruginosa. Immunoblotting experiments demonstrated that the transporter MexY, but not the outer membrane pore OprM, was overproduced during the post-drug exposure adaptation period in wild-type strain PAO1. Furthermore, MexY production was dependent upon the degree of bacterial exposure to gentamicin (drug concentration). In contrast to parental strain PAO1, mutants defective in MexXY or in OprM were unable to develop adaptive resistance. Altogether, these results indicate that the resistance process requires the rapid production of MexXY and the interaction of these proteins with the constitutively produced component OprM.
    To demonstrate CD36 expression with quantum dots (QDs) 525 and/or 605 on human monocytic U937 cells and atherosclerotic tissue sections by means of flow cytometry (FCM) and/or confocal laser scanning microscopy (CLSM). U937 cells and... more
    To demonstrate CD36 expression with quantum dots (QDs) 525 and/or 605 on human monocytic U937 cells and atherosclerotic tissue sections by means of flow cytometry (FCM) and/or confocal laser scanning microscopy (CLSM). U937 cells and tissue sections were analyzed by means of FCM and/or CLSM. FCM was performed, using different ultraviolet (UV) and visible (488/532 nm) excitation modes. In the visible mode, fluorescence intensities of QDs, phycoerythrin (PE) and fluorescein isothiocyanate (FITC) were compared. Three-dimensional (3-D) sequences of images were obtained by spectral analysis in a CLSM and analyzed by the factor analysis of medical image sequences (FAMIS) algorithm, providing factor curves and images. Factor images are the result of the FAMIS image processing method, which differentiates emission spectra from 3D sequences of images. In CLSM analysis, preparations are screened in a UV excitation mode to optimize the possibilities of QDs and have the benefit of 4',6-diam...
    To evaluate CD36 expression with quantum dots 605 (QDs 605) on untreated and 7-ketocholesterol (7KC)-treated monocytic U937 cells by flow cytometry (FCM) and confocal and multiphoton laser scanning microscopy (CLSM). Cells were analyzed... more
    To evaluate CD36 expression with quantum dots 605 (QDs 605) on untreated and 7-ketocholesterol (7KC)-treated monocytic U937 cells by flow cytometry (FCM) and confocal and multiphoton laser scanning microscopy (CLSM). Cells were analyzed by CLSM, following flow cytometric quantification of CD36 expression and 7KC uptake. Image sequences were obtained by spectral analysis in monophoton and multiphoton CLSM and analyzed by the factor analysis of medical image sequences (FAMIS) algorithm to differentiate emission spectra. In CLSM analysis, cell deposits were screened in ultraviolet excitation modes to optimize the possibilities of QDs 605 and have the benefit of nuclei counterstaining by DAPI. FCM and CLSM reveal the expression of CD36 by means of QDs 605. FCM provides information on 7KC uptake. CLSM provides the localization of 7KC vs. DAPI. As factor curves and images show the red, narrow emission of QDs 605 vs. violet and blue emissions of 7KC and DAPI, respectively, a reliable ident...
    To evaluate CD36 expression with quantum dots 605 (QDs 605) on untreated and 7-ketocholesterol (7KC)-treated monocytic U937 cells by flow cytometry (FCM) and confocal and multiphoton laser scanning microscopy (CLSM). Cells were analyzed... more
    To evaluate CD36 expression with quantum dots 605 (QDs 605) on untreated and 7-ketocholesterol (7KC)-treated monocytic U937 cells by flow cytometry (FCM) and confocal and multiphoton laser scanning microscopy (CLSM). Cells were analyzed by CLSM, following flow cytometric quantification of CD36 expression and 7KC uptake. Image sequences were obtained by spectral analysis in monophoton and multiphoton CLSM and analyzed by the factor analysis of medical image sequences (FAMIS) algorithm to differentiate emission spectra. In CLSM analysis, cell deposits were screened in ultraviolet excitation modes to optimize the possibilities of QDs 605 and have the benefit of nuclei counterstaining by DAPI. FCM and CLSM reveal the expression of CD36 by means of QDs 605. FCM provides information on 7KC uptake. CLSM provides the localization of 7KC vs. DAPI. As factor curves and images show the red, narrow emission of QDs 605 vs. violet and blue emissions of 7KC and DAPI, respectively, a reliable ident...