Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Jacques Balthazart

    Jacques Balthazart

    Research Interests:
    ... 2; out = implant rostral to the POM; see also text for additional explanations]. The data (means ___ standard errors) have been analyzed by two-tailed t-test (A, B) or by two-way ANOVA followed by Fisher PLSD tests (C, D) whose... more
    ... 2; out = implant rostral to the POM; see also text for additional explanations]. The data (means ___ standard errors) have been analyzed by two-tailed t-test (A, B) or by two-way ANOVA followed by Fisher PLSD tests (C, D) whose results are indicated by asterisks on the figures. ...
    Many effects of testosterone (T) in the zebra finch (Taeniopygia guttata) can be mimicked by T-metabolites, mainly estradiol and 5 alpha-dihydrotestosterone. We have therefore studied the neuroanatomical distribution of... more
    Many effects of testosterone (T) in the zebra finch (Taeniopygia guttata) can be mimicked by T-metabolites, mainly estradiol and 5 alpha-dihydrotestosterone. We have therefore studied the neuroanatomical distribution of testosterone-metabolizing enzymes by means of the Palkovits punch technique combined with radioenzyme assay in the brain of adult and young male and female zebra finches. The activity of these enzymes was studied by a one-point assay in 5 nuclei of the song system (X, MAN, HVc, RA, ICo), 2 nuclei of the visual system (ectostriatum, nucleus rotundus) and in limbic and hypothalamic areas. Very noticeable was the presence of a very high aromatase activity in the hippocampal and parahippocampal region and in the nucleus taeniae and the absence of this enzyme in ICo. We found a higher aromatase activity in female than male HVc and RA and a higher 5 alpha-reductase activity in MAN, HVc, RA and ICo of males compared to females. The 5 alpha-reductase was more active in the preoptic area of females. A few sex-related differences in the activity of the 5 beta-reductase were also observed (higher activity in females than in males for area X and RA, but difference in the opposite direction for the ectostriatum). The statistical significance of these differences depended, to some extent, on the statistical technique used to demonstrate them, with the sex differences in RA being by far the most robust ones. Many age-related metabolic differences were also detected but these do not have a clear interpretation since the Km of these enzymes also changes with age. Extremely low levels of 5 beta-reductase activity were found in the nuclei of the visual system in adult birds while this enzymatic activity was very high in young birds. The biological significance of this change with age remains obscure. Correlations are thus observed between the neuroanatomical distribution of T-metabolizing enzymes and of androgen and estrogen receptors with the important exception of ICo which has no aromatase but contains high concentrations of estrogen receptors. Testosterone-metabolizing enzymes are however also present in areas which are not known as steroid targets.
    An immunocytochemical peroxidase-antiperoxidase procedure using a purified polyclonal antibody raised against human placental aromatase was used to localize aromatase-containing cells in the brain of three avian species: the Japanese... more
    An immunocytochemical peroxidase-antiperoxidase procedure using a purified polyclonal antibody raised against human placental aromatase was used to localize aromatase-containing cells in the brain of three avian species: the Japanese quail, the ring dove, and the zebra finch. In quail and dove, immunoreactive cells were found only in the preoptic area and hypothalamus, with a high density of positive cells being present in the medial preoptic area, in the septal area above the anterior commissure, in the ventromedial nucleus of the hypothalamus, and in rostral part of the infundibulum. Immunoreactivity was weaker in zebra finches, and no signal could therefore be detected in the ventromedial and tuberal hypothalamus. The positive material was localized in the perikarya and in adjacent cytoplasmic processes, including the full length of axons always leaving a clear unstained cell nucleus. These features could be observed in more detail on sections cut from perfused brains and stained with an alkaline phosphatase procedure. The distribution of aromatase immunoreactivity was similar in the three species although minor differences were observed in the preoptic area. The localization of labelled neurons coincided with the distribution of aromatase activity as studied by in vitro radioenzyme assays on brain nuclei dissected by the Palkovits punch method. There was one striking exception to this rule: no immunoreactivity was detected in the zebra finch telencephalon, while assays had shown the presence of an active enzyme in several nuclei such as the robustus archistriatalis, the hyperstriatum ventrale pars caudale, and the hippocampus and area parahippocampalis. The origins of this discrepancy and the functional role of the aromatase observed in the axons are discussed.
    Polyclonal antibodies were raised in rabbits against polypeptides corresponding to the N-terminal part (heptapeptides) of the two avian gonadotropin-releasing hormones, chicken (c) LHRH-I and -II. These peptides, which were synthesized by... more
    Polyclonal antibodies were raised in rabbits against polypeptides corresponding to the N-terminal part (heptapeptides) of the two avian gonadotropin-releasing hormones, chicken (c) LHRH-I and -II. These peptides, which were synthesized by the continuous-flow technique, were selected because they contained the smallest number of common amino acid residues. The pGlu-His-Trp-Ser sequence at the C-terminal was suppressed to avoid possible cross-reactions between the antisera. The antisera generated in this way were tested for specificity by solid and liquid phase absorption as well as by antigen spot tests. The antiserum raised against cLHRH-I recognized this peptide preferentially though not exclusively. Some cross-reaction with cLHRH-II was observed in the absorption test, although spotting tests suggested a total specificity. The anti cLHRH-II appeared to be completely specific in all tests. These two antibodies were then used to study the distribution of cLHRH-I and -II immunoreactive structures in the quail and chicken brain. cLHRH-I immunoreactive perikarya were observed in a fairly wide area covering the preoptic-anterior hypothalamic and septal region. By contrast, cLHRH-II cells were confined to a single group located in the dorsal aspects of the occulomotor nuclei, at the junction of the di- and mesencephalon. A sex difference in the number of cLHRH-I cells was detected in the anterior lateral preoptic region of the quail. Fibers immunoreactive for either cLHRH-I or cLHRH-II were widely distributed in the telencephalon, diencephalon, and mesencephalon but showed a specific pattern of anatomical localization. In particular, a high density of cLHRH-I fibers were seen in the external layer of the median eminence, while cLHRH-II fibers were less prominent at this level. Contrary to previous reports, a significant amount of cLHRH-II fibers were however seen throughout the median einence (mostly external layer). The extensive distribution of both cLHRH-I and -II fibers in the quail and chicken brain is consistent with the potential role played by these peptides in the gonadotropin secretion and in the control of reproductive behavior. The specific role of cLHRH-II remains however elusive at present. © 1993 Wiley-Liss, Inc.
    The relative distributions of aromatase and of estrogen receptors were studied in the brain of the Japanese quail by a double-label immunocytochemical technique. Aromatase immunoreactive cells (ARO-ir) were found in the medial preoptic... more
    The relative distributions of aromatase and of estrogen receptors were studied in the brain of the Japanese quail by a double-label immunocytochemical technique. Aromatase immunoreactive cells (ARO-ir) were found in the medial preoptic nucleus, in the septal region, and in a large cell cluster extending from the dorso-lateral aspect of the ventromedial nucleus of the hypothalamus to the tuber at the level of the nucleus inferioris hypothalami. Immunoreactive estrogen receptors (ER) were also found in each of these brain areas but their distribution was much broader and included larger parts of the preoptic, spetal, and tuberal regions. In the ventromedial and tuberal hypothalamus, the majority of the ARO-ir cells (over 75%) also contained immunoreactive ER. By contrast, very few of the ARO-ir cells were double-labeled in the preoptic area and in the septum. More than 80% of the aromatase-containing cells contained no ER in these regions. This suggests that the estrogens, which are formed centrally by aromatization of testosterone, might not exert their biological effects through binding with the classical nuclear ER. The fact that significant amounts of aromatase activity are found in synaptosomes purified by differential centrifugation and that aromatase immunoreactivity is observed at the electron microscope level in synaptic boutons suggests that aromatase might produce estrogens that act at the synaptic level as neurohomones or neuromodulators.
    The distribution of androgen receptors was studied in the brain of the Japanese quail (Coturnix japonica), the zebra finch (Taeniopygia guttata), and the canary (Serinus canaria) by immunocytochemistry with a polyclonal antibody (AR32)... more
    The distribution of androgen receptors was studied in the brain of the Japanese quail (Coturnix japonica), the zebra finch (Taeniopygia guttata), and the canary (Serinus canaria) by immunocytochemistry with a polyclonal antibody (AR32) raised in rabbit against a synthetic peptide corresponding to a sequence located at the N-terminus of the androgen receptor molecule. In quail, androgen receptor-immunoreactive cells were observed in the nucleus intercollicularis and in various nuclei of the preoptic-hypothalamic complex, namely, the nucleus preopticus medialis, the ventral part of the nucleus anterior medialis hypothalami, the nucleus paraventricularis magnocellularis, the nucleus ventromedialis hypothalami, and the tuberal hypothalamus. In the two songbird species, labeled cells were also observed in various nuclei in the preoptic-hypothalamic region, in the nucleus taeniae, and in the nucleus intercollicularis. Additional androgen receptor-immunoreactive cells were present in the androgen-sensitive telencephalic nuclei that are part of the song control system. These immunoreactive sells filled and outlined the boundaries of the hyperstriatum ventrale, pars caudalis, nucleus magnocellularis neostriatalis anterioris (both in the lateral and medial subdivisions), and nucleus robustus archistriatalis. The immunoreactive material was primarily present in cell nuclei but a low level of immunoreactivity was also clearly detected in cytoplasm in some brain areas. These studies demonstrate, for the first time, that androgen receptors can be detected by immunocytochemistry in the avian brain and the results are in general agreement with the binding data obtained by autoradiography with tritiated dihydrotestosterone. Immunocytochemical methods offer several advantages over autoradiography and their use for the study of the androgen receptor will greatly facilitate the analysis of steroid-sensitive systems in the avian brain.
    Vasotocin (VT)-immunoreactive fibres were observed in the nuclei of the quail (Coturnix coturnix japonica) septal region. Their distribution in the nucleus septalis lateralis (SL) and the nucleus striae terminalis (nST) was sexually... more
    Vasotocin (VT)-immunoreactive fibres were observed in the nuclei of the quail (Coturnix coturnix japonica) septal region. Their distribution in the nucleus septalis lateralis (SL) and the nucleus striae terminalis (nST) was sexually dimorphic: a dense network of immunoreactive fibres was seen in adult sexually stimulated males but not in females. Experimental manipulation of the hormonal environment influenced this distribution only in males. VT immunoreactivity was absent in SL and nST when male quail were exposed to a shortday photoperiod or castrated. The immunoreactivity was restored to its original level in castrated males by silastic implants of testosterone.
    The effects of testosterone on the volume and cytoarchitecture of the sexually dimorphic nucleus of the preoptic area (POM) were investigated in male and female Japanese quail. It was confirmed that castration decreases the POM volume in... more
    The effects of testosterone on the volume and cytoarchitecture of the sexually dimorphic nucleus of the preoptic area (POM) were investigated in male and female Japanese quail. It was confirmed that castration decreases the POM volume in males and that, in gonadectomized birds of both sexes, testosterone increases this volume to values similar to those observed in intact sexually mature males. This suggests that the sex difference in POM volume results from a differential activation by T so that this brain morphological characteristic is not truly differentiated in the organizational sense. This conclusion was extended here by demonstrating that males exposed to a photoperiod simulating long days and that are known to have high plasma levels of testosterone have a larger POM than short-day males that have inactive testes. Detailed morphometric studies of POM neurons revealed a structural heterogeneity within the nucleus. A population of large neurons (cross-sectional area larger than 70–80 μm2) was well represented in the dorsolateral but was almost absent in the medial part of POM. This lateral population of neurons was sensitive to variations of testosterone levels in males but not in females. The cross-sectional area, diameter, and perimeter of the dorsolateral neurons were significantly increased in males exposed to high testosterone levels (intact birds exposed to long days or castrated birds treated with the steroid). These changes were not observed in the medial part of the nucleus. Interestingly, the size of the dorsolateral neurons was not affected by testosterone treatments in females. These results suggest that the swelling of neurons in the lateral POM of males might be responsible for the increase in total volume of the nucleus, which is observed in physiological situations associated with a high testosteronemia. In addition, the sensitivity to testosterone of the dorsolateral neurons in the POM appears to be sexually differentiated. This differential response to testosterone might represent a truly dimorphic feature in the organizational sense and additional studies manipulating the early steroid environment should be performed to test this possibility.