Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Outbreaks of emergency animal diseases (EADs) in Australia have the potential to cause significant socio-economic impacts, and affect animal, human and environmental health. New diseases of animals continue to emerge and it is important... more
Outbreaks of emergency animal diseases (EADs) in Australia have the potential to cause significant socio-economic impacts, and affect animal, human and environmental health. New diseases of animals continue to emerge and it is important that veterinarians can investigate and report unusual outbreaks of disease in domestic animals.
The field guide on emergency animal diseases provides information on important emergency animal diseases that do not exist in Australia or that are rare. It will help veterinarians in the field include appropriate EADs in their differential diagnoses, and take appropriate action if presented with signs of an unusual disease.
Recent studies have clearly shown that bats are the reservoir hosts of a wide diversity of novel viruses with representatives from most of the known animal virus families. In many respects bats make ideal reservoir hosts for viruses: they... more
Recent studies have clearly shown that bats are the reservoir hosts of a wide diversity of novel viruses with representatives from most of the known animal virus families. In many respects bats make ideal reservoir hosts for viruses: they are the only mammals that fly, thus assisting in virus dispersal; they roost in large numbers, thus aiding transmission cycles; some bats hibernate over winter, thus providing a mechanism for viruses to persist between seasons; and genetic factors may play a role in the ability of bats to host viruses without resulting in clinical disease. Within the broad diversity of viruses found in bats are some important neurological pathogens, including rabies and other lyssaviruses, and Hendra and Nipah viruses, two recently described viruses that have been placed in a new genus, Henipaviruses in the family Paramyxoviridae. In addition, bats can also act as alternative hosts for the flaviviruses Japanese encephalitis and St Louis encephalitis viruses, two important mosquito-borne encephalitogenic viruses, and bats can assist in the dispersal and over-wintering of these viruses. Bats are also the reservoir hosts of progenitors of SARS and MERS coronaviruses, although other animals act as spillover hosts. This chapter presents the physiological and ecological factors affecting the ability of bats to act as reservoirs of neurotropic viruses, and describes the major transmission cycles leading to human infection.
Research Interests:
Following an FMD eradication program, surveillance will be required to demonstrate that the program has been successful. The World Organization for Animal Health (OIE) provides guidelines including waiting periods and appropriate... more
Following an FMD eradication program, surveillance will be required to demonstrate that the program has been successful. The World Organization for Animal Health (OIE) provides guidelines including waiting periods and appropriate surveillance to support regaining FMD-free status. Serological surveillance is the recommended method for demonstrating freedom but is time consuming and expensive. New technologies such as real-time reverse transcription polymerase chain reaction (RT-qPCR) tests and sampling techniques such as bulk milk testing (BMT) of dairy cattle, oral swabs, and saliva collection with rope tethers in piggeries could enable surveillance to be done more efficiently. Epidemiological modelling was used to simulate FMD outbreaks, with and without emergency vaccination as part of the response, in Australia. Baseline post-outbreak surveillance approaches for unvaccinated and vaccinated animals based on the European FMD directive were compared with alternative approaches in which the sampling regime, sampling approaches and/or the diagnostic tests used were varied. The approaches were compared in terms of the resources required, time taken, cost, and effectiveness i.e., ability of the surveillance regime to correctly identify the infection status of herds. In the non-vaccination scenarios, the alternative approach took less time to complete and cost less, with the greatest benefits seen with larger outbreaks. In vaccinated populations, the alternative surveillance approaches significantly reduced the number of herds sampled, the total number of tests done and costs of the post-outbreak surveillance. There was no reduction in effectiveness using the alternative approaches, with one of the benefits being a reduction in the number of false positive herds. Alternative approaches to FMD surveillance based on non-invasive sampling methods and RT-qPCR tests have the potential to enable post outbreak surveillance substantiating FMD freedom to be done more quickly and less expensively than traditional approaches based on serological surveys.
The novel coronavirus SARS-CoV-2 likely emerged from a wildlife source with transmission to humans followed by rapid geographic spread throughout the globe and severe impacts on both human health and the global economy. Since the onset of... more
The novel coronavirus SARS-CoV-2 likely emerged from a wildlife source with transmission to humans followed by
rapid geographic spread throughout the globe and severe impacts on both human health and the global
economy. Since the onset of the pandemic, there have been many instances of human-to-animal transmission
involving companion, farmed and zoo animals, and limited evidence for spread into free-living wildlife. The
establishment of reservoirs of infection in wild animals would create significant challenges to infection control in
humans and could pose a threat to the welfare and conservation status of wildlife. We discuss the potential for
exposure, onward transmission and persistence of SARS-CoV-2 in an initial selection of wild mammals (bats, canids,
felids, mustelids, great apes, rodents and cervids). Dynamic risk assessment and targeted surveillance are important
tools for the early detection of infection in wildlife, and here we describe a framework for collating and
synthesising emerging information to inform targeted surveillance for SARS-CoV-2 in wildlife. Surveillance efforts
should be integrated with information from public and veterinary health initiatives to provide insights into the
potential role of wild mammals in the epidemiology of SARS-CoV-2.
The transmission of pathogens across the interface between wildlife and livestock presents a challenge to the development of effective surveillance and control measures. Wild birds, especially waterbirds such as the Anseriformes and... more
The transmission of pathogens across the interface between wildlife and livestock presents a challenge to the development of effective surveillance and control measures. Wild birds, especially waterbirds such as the Anseriformes and Charadriiformes are considered to be the natural hosts of Avian Influenza (AI), and are presumed to pose one of the most likely vectors for incursion of AI into European poultry flocks. We have developed a generic quantitative risk map, derived from the classical epidemiological risk equation, to describe the relative, spatial risk of disease incursion into poultry flocks via wild birds. We then assessed the risk for AI incursion into British flocks. The risk map suggests that the majority of AI incursion risk is highly clustered within certain areas of Britain, including in the east, the south west and the coastal northwest of England. The clustering of high risk areas concentrates total risk in a relatively small land area; the top 33% of cells contribute over 80% of total incursion risk. This suggests that targeted risk-based sampling in a relatively small geographical area could be a much more effective and cost-efficient approach than representative sampling. The generic nature of the risk map method, allows rapid updating and application to other diseases transmissible between wild birds and poultry.
Influenza A viruses of H5 and H7 subtype in poultry can circulate subclinically and subsequently mutate from low to high pathogenicity with potentially devastating economic and welfare consequences. European Union Member States undertake... more
Influenza A viruses of H5 and H7 subtype in poultry can circulate subclinically and subsequently mutate from low to high pathogenicity with potentially devastating economic and welfare consequences. European Union Member States undertake surveillance of commercial and backyard poultry for early detection and control of subclinical H5 and H7 influenza A infection. This surveillance has moved towards a risk-based sampling approach in recent years; however, quantitative measures of relative risk associated with risk factors utilized in this approach are necessary for optimization. This study describes serosurveillance for H5 and H7 influenza A in domestic and commercial poultry undertaken in the European Union from 2004 to 2010, where a random sampling and thus representative approach to serosurveillance was undertaken. Using these representative data, this study measured relative risk of seropositivity across poultry categories and spatially across the EU. Data were analysed using multivariable logistic regression. Domestic waterfowl, game birds, fattening turkeys, ratites, backyard poultry and the 'other' poultry category holdings had relatively increased probability of H5 and/or H7 influenza A seropositivity, compared to laying-hen holdings. Amongst laying-hen holdings, free-range rearing was associated with increased probability of H7 seropositivity. Spatial analyses detected 'hotspots' for H5 influenza A seropositivity in western France and England, and H7 influenza A seropositivity in Italy and Belgium, which may be explained by the demographics and distribution of poultry categories. Findings suggest certain poultry category holdings are at increased risk of subclinical H5 and/or H7 influenza A circulation, and free-range rearing increases the likelihood of exposure to H7 influenza A. These findings may be used in further refining risk-based surveillance strategies and prioritizing management strategies in influenza A outbreaks.
Research Interests:
We analyzed the highly pathogenic avian influenza (HPAI) H5 epizootic of 2016–17 in Europe by epidemiologic and genetic characteristics and compared it with 2 previous epizootics caused by the same H5 Guangdong lineage. The 2016–17... more
We analyzed the highly pathogenic avian influenza (HPAI) H5 epizootic of 2016–17 in Europe by epidemiologic and genetic characteristics and compared it with 2 previous epizootics caused by the same H5 Guangdong lineage. The 2016–17 epizootic was the largest in Europe by number of countries and farms affected and greatest diversity of wild birds infected. We observed significant differences among the 3 epizootics regarding region affected, epidemic curve, seasonality, and outbreak duration, making it difficult to predict future HPAI epizootics. However, we know that in 2005–06 and 2016–17 the initial peak of wild bird detections preceded the peak of poultry outbreaks within Europe. Phylogenetic analysis of 2016–17 viruses indicates 2 main pathways into Europe. Our findings highlight the need for global surveillance of viral changes to inform disease preparedness, detection, and control.
Rabies is a fatal neurologic disease caused by lyssavirus infection. People are infected through contact with infected animals. The relative increase of human rabies acquired from bats calls for a better understanding of lyssavirus... more
Rabies is a fatal neurologic disease caused by lyssavirus infection. People are infected through contact with infected animals. The relative increase of human rabies acquired from bats calls for a better understanding of lyssavirus infections in their natural hosts. So far, there is no experimental model that mimics natural lyssavirus infection in the reservoir bat species. Lagos bat virus is a lyssavirus that is endemic in straw-colored fruit bats (Eidolon helvum) in Africa. Here we compared the susceptibility of these bats to three strains of Lagos bat virus (from Senegal, Nigeria, and Ghana) by intracranial inoculation. To allow comparison between strains, we ensured the same titer of virus was inoculated in the same location of the brain of each bat. All bats (n = 3 per strain) were infected, and developed neu-rological signs, and fatal meningoencephalitis with lyssavirus antigen expression in neu
Research Interests:
Research Interests:
Previous introductions of highly pathogenic avian influenza virus (HPAIV) to the EU were most likely via migratory wild birds. A mathematical model has been developed which indicated that virus amplification and spread may take place when... more
Previous introductions of highly pathogenic avian influenza virus (HPAIV) to the EU were most likely via migratory wild birds. A mathematical model has been developed which indicated that virus amplification and spread may take place when wild bird populations of sufficient size within EU become infected. Low pathogenic avian influenza virus (LPAIV) may reach similar maximum prevalence levels in wild bird populations to HPAIV but the risk of LPAIV infection of a poultry holding was estimated to be lower than that of HPAIV. Only few non-wild bird pathways were identified having a non-negligible risk of AI introduction. The transmission rate between animals within a flock is assessed to be higher for HPAIV than LPAIV. In very few cases, it could be proven that HPAI outbreaks were caused by intrinsic mutation of LPAIV to HPAIV but current knowledge does not allow a prediction as to if, and when this could occur. In gallinaceous poultry, passive surveillance through notification of suspicious clinical signs/mortality was identified as the most effective method for early detection of HPAI outbreaks. For effective surveillance in anseriform poultry, passive surveillance through notification of suspicious clinical signs/mortality needs to be accompanied by serological surveillance and/or a virological surveillance programme of birds found dead (bucket sampling). Serosurveillance is unfit for early warning of LPAI outbreaks at the individual holding level but could be effective in tracing clusters of LPAIV-infected holdings. In wild birds, passive surveillance is an appropriate method for HPAIV surveillance if the HPAIV infections are associated with mortality whereas active wild bird surveillance has a very low efficiency for detecting HPAIV. Experts estimated and emphasised the effect of implementing specific biosecurity measures on reducing the probability of AIV entering into a poultry holding. Human diligence is pivotal to select, implement and maintain specific, effective biosecurity measures.
Research Interests:
Highlights • Risk assessment for entry of zoonotic bat-borne viruses into the European Union • Comparison of relative risk of incursion of five viruses by four routes • An Ebola outbreak similar to 2013-2016 posed the highest risk of... more
Highlights

Risk assessment for entry of zoonotic bat-borne viruses into the European Union

Comparison of relative risk of incursion of five viruses by four routes

An Ebola outbreak similar to 2013-2016 posed the highest risk of introduction

Relative risk to countries varied due to extent of global trade and human travel

Model provides a horizon scanning tool for use when available data is limited
SUMMARY As part of further investigations into three linked haemorrhagic fever with renal syndrome (HFRS) cases in Wales and England, 21 rats from a breeding colony in Cherwell, and three rats from a household in Cheltenham were screened... more
SUMMARY As part of further investigations into three linked haemorrhagic fever with renal syndrome (HFRS) cases in Wales and England, 21 rats from a breeding colony in Cherwell, and three rats from a household in Cheltenham were screened for hantavirus. Hantavirus RNA was detected in either the lungs and/or kidney of 17/21 (81%) of the Cherwell rats tested, higher than previously detected by blood testing alone (7/21, 33%), and in the kidneys of all three Cheltenham rats. The partial L gene sequences obtained from 10 of the Cherwell rats and the three Cheltenham rats were identical to each other and the previously reported UK Cherwell strain. Seoul hantavirus (SEOV) RNA was detected in the heart, kidney, lung, salivary gland and spleen (but not in the liver) of an individual rat from the Cherwell colony suspected of being the source of SEOV. Serum from 20/20 of the Cherwell rats and two associated HFRS cases had high levels of SEOV-specific antibodies (by virus neutralisation). The high prevalence of SEOV in both sites and the moderately severe disease in the pet rat owners suggest that SEOV in pet rats poses a greater public health risk than previously considered.
Research Interests:
Highly pathogenic avian influenza (HPAI) H5N8 is currently causing an epizootic in Europe, infecting many poultry holdings as well as captive and wild bird species in more than 10 countries. Given the clear clinical manifestation, passive... more
Highly pathogenic avian influenza (HPAI) H5N8 is currently causing an epizootic in Europe, infecting many poultry holdings as well as captive and wild bird species in more than 10 countries. Given the clear clinical manifestation, passive surveillance is considered the most effective means of detecting infected wild and domestic birds. Testing samples from new species and non-previously reported areas is key to determine the geographic spread of HPAIV H5N8 2016 in wild birds. Testing limited numbers of dead wild birds in previously reported areas is useful when it is relevant to know whether the virus is still present in the area or not, e.g. before restrictive measures in poultry are to be lifted. To prevent introduction of HPAIV from wild birds into poultry, strict biosecurity implemented and maintained by the poultry farmers is the most important measure. Providing holding-specific biosecurity guidance is strongly recommended as it is expected to have a high impact on the achieved biosecurity level of the holding. This is preferably done during peace time to increase preparedness for future outbreaks. The location and size of control and in particular monitoring areas for poultry associated with positive wild bird findings are best based on knowledge of the wider habitat and flight distance of the affected wild bird species. It is recommended to increase awareness among poultry farmers in these established areas in order to enhance passive surveillance and to implement enhanced biosecurity measures including poultry confinement. There is no scientific evidence suggesting a different effectiveness of the protection measures on the introduction into poultry holdings and subsequent spread of HPAIV when applied to H5N8, H5N1 or other notifiable HPAI viruses.
Research Interests:
Passive surveillance for lyssaviruses in UK bats has been ongoing since 1987 and has identified 13 cases of EBLV-2 from a single species; Myotis daubentonii. No other lyssavirus species has been detected. Between 2005 and 2015, 10 656... more
Passive surveillance for lyssaviruses in UK bats has been ongoing since 1987 and has identified 13 cases of EBLV-2 from a single species; Myotis daubentonii. No other lyssavirus species has been detected. Between 2005 and 2015, 10 656 bats were submitted, representing 18 species, creating a spatially and temporally uneven sample of British bat fauna. Uniquely, three UK cases originate from a roost at Stokesay Castle in Shropshire, England, where daily checks for grounded and dead bats are undertaken and bat carcasses have been submitted for testing since 2007. Twenty per cent of Daubenton's bats submitted from Stokesay Castle since surveillance began, have tested positive for EBLV-2. Phylogenetic analysis reveals geographical clustering of UK viruses. Isolates from Stokesay Castle are more closely related to one another than to viruses from other regions. Daubenton's bats from Stokesay Castle represent a unique opportunity to study a natural population that appears to maintain EBLV-2 infection and may represent endemic infection at this site. Although the risk to public health from EBLV-2 is low, consequences of infection are severe and effective communication on the need for prompt post-exposure prophylaxis for anyone that has been bitten by a bat is essential.
Research Interests:
Hendra virus spillover risk in horses: heightened
vigilance and precautions being urged this winter
Research Interests:
Drivers and risk factors for Influenza A virus transmission across species barriers are poorly understood, despite the ever present threat to human and animal health potentially on a pandemic scale. Here we review the published evidence... more
Drivers and risk factors for Influenza A virus transmission across species barriers are poorly understood, despite the ever present threat to human and animal health potentially on a pandemic scale. Here we review the published evidence for epidemiological risk factors associated with influenza viruses transmitting between animal species and from animals to humans. A total of 39 papers were found with evidence of epidemiological risk factors for influenza virus transmission from animals to humans; 18 of which had some statistical measure associated with the transmission of a virus. Circumstantial or observational evidence of risk factors for transmission between animal species was found in 21 papers, including proximity to infected animals, ingestion of infected material and potential association with a species known to carry influenza virus. Only three publications were found which presented a statistical measure of an epidemiological risk factor for the transmission of influenza between animal species. This review has identified a significant gap in knowledge regarding epidemiological risk factors for the transmission of influenza viruses between animal species.
Research Interests:
The straw-coloured fruit bat, Eidolon helvum, is a common and conspicuous migratory species, with an extensive distribution across sub-Saharan Africa, yet hunting and habitat loss are thought to be resulting in decline in some areas.... more
The straw-coloured fruit bat, Eidolon helvum, is a common and conspicuous migratory species, with an extensive distribution across sub-Saharan Africa, yet hunting and habitat loss are thought to be resulting in decline in some areas. Eidolon helvum is also a known reservoir for potentially zoonotic viruses. Despite E. helvum's importance, ecological and behavioural traits are poorly described for this species. Here we present extensive data on the distribution, migration patterns, roost size, age and sex composition of 29 E. helvum roosts from nine countries across tropical Africa, including roosts not previously described in the literature. Roost age and sex composition were dependent on timing of sampling relative to the annual birth pulse. Rather than a single 'breeding season' as is frequently reported for this species, regional asynchrony of reproductive timing was observed across study sites (with birth pulses variably starting in March, April, September, November or December). Considered together with its genetic panmixia, we conclude that the species has a fluid, fission-fusion social structure, resulting in different roost 'types' at different times of the year relative to seasonal reproduction. Bat-human interactions also varied across the species' geographical range. In the absence of significant hunting, large urban colonies were generally tolerated, yet in regions with high hunting pressure, bats tended to roost in remote or protected sites. The extensive quantitative and qualitative data presented in this manuscript are also valuable for a wide range of studies and provide an historical snapshot as its populations become increasingly threatened.
Research Interests:
Research Interests:
Bat-borne viruses have been linked to a number of zoonotic diseases; in 2014 there have been human cases of Nipah virus (NiV) in Bangladesh and Ebola virus in West and Central Africa. Here we describe a model designed to provide initial... more
Bat-borne viruses have been linked to a number of zoonotic diseases; in 2014 there have been human cases of Nipah virus (NiV) in Bangladesh and Ebola virus in West and Central Africa. Here we describe a model designed to provide initial quantitative predictions of the risk of entry of such viruses to European Union (EU) Member States (MSs) through four routes: human travel, legal trade (e.g. fruit and animal products), live animal movements and illegal importation of bushmeat. The model utilises available datasets to assess the movement via these routes between individual countries of the world and EU MSs. These data are combined with virus specific data to assess the relative risk of entry between EU MSs. As a case study, the model was parameterised for NiV. Scenario analyses showed that the selection of exporting countries with NiV and potentially contaminated trade products were essential to the accuracy of all model outputs. Uncertainty analyses of other model parameters identified that the model expected number of years to an introduction event within the EU was highly susceptible to the prevalence of NiV in bats. The relative rankings of the MSs and routes, however, were more robust. The UK, the Netherlands and Germany were consistently the most likely points of entry and the ranking of most MSs varied by no more than three places (maximum variation five places). Legal trade was consistently the most likely route of entry, only falling below human travel when the estimate of the prevalence of NiV in bats was particularly low. Any model-based calculation is dependent on the data available to feed into the model and there are distinct gaps in our knowledge, particularly in regard to various pathogen/virus as well as host/bat characteristics. However , the strengths of this model lie in the provision of relative comparisons of risk among routes and MSs. The potential for expansion of the model to include other routes and viruses and the possibility of rapid parameterisation demonstrates its potential for use in an outbreak situation.
Research Interests:
Avian influenza viruses affect both poultry production and public health. A subtype H5N8 (clade 2.3.4.4) virus, following an outbreak in poultry in South Korea in January 2014, rapidly spread worldwide in 2014–2015. Our analysis of H5N8... more
Avian influenza viruses affect both poultry production and public health. A subtype H5N8 (clade 2.3.4.4) virus, following an outbreak in poultry in South Korea in January 2014, rapidly spread worldwide in 2014–2015. Our analysis of H5N8 viral sequences, epidemiological investigations, waterfowl migration, and poultry trade showed that long-distance migratory birds can play a major role in the global spread of avian influenza viruses. Further, we found that the hemagglutinin of clade 2.3.4.4 virus was remarkably promiscuous, creating reassortants with multiple neuraminidase subtypes. Improving our understanding of the circumpolar circulation of avian influenza viruses in migratory waterfowl will help to provide early warning of threats from avian influenza to poultry, and potentially human, health.
Research Interests:
Surveillance for pathogens in animal populations can be a costly and labour-intensive activity. Hence the targeting of surveillance to where infection is considered more likely to occur can lead to increased efficiency. A risk-based... more
Surveillance for pathogens in animal populations can be a costly and labour-intensive activity. Hence the targeting of surveillance to where infection is considered more likely to occur can lead to increased efficiency. A risk-based surveillance model was developed in response to the detection of Eurasian lineage H5N1 highly pathogenic avian influenza (HPAI) in Great Britain (GB) in 2006 and the ongoing risk of introduction of this virus to poultry via wild birds. The model aims to identify areas in GB in which commercial poultry were at the greatest risk of H5N1 HPAI from wild birds. Here we update the geo-spatial risk model to provide revised estimates of relative risk of incursion across GB. The distribution of risk of incursion was similar to the model published in 2007 (Snow et al., 2007) with poultry holdings in Scotland and Wales at lower risk and those in England generally at medium risk with isolated areas of higher risk.
Research Interests:
Research Interests:
A novel lyssavirus was isolated from brains of Indian flying-foxes (Pteropus medius) in Sri Lanka. Phylogenetic analysis of complete virus genome sequences, and geographic location and host species, provides strong evidence that this... more
A novel lyssavirus was isolated from brains of Indian flying-foxes (Pteropus medius) in Sri Lanka. Phylogenetic analysis of complete virus genome sequences, and geographic location and host species, provides strong evidence that this virus is a putative new lyssavirus species, designated as Gannoruwa bat lyssavirus.
Research Interests:
Research Interests:
Research Interests:
Research Interests:
Research Interests:
Highly pathogenic avian influenza (HPAI) H5N8 outbreaks in poultry farms have been reported in Asia and Europe since January and November 2014, respectively. The entry of HPAI H5N8 into Europe and its subsequent spread within Europe are... more
Highly pathogenic avian influenza (HPAI) H5N8 outbreaks in poultry farms have been reported in Asia and Europe since January and November 2014, respectively. The entry of HPAI H5N8 into Europe and its subsequent spread within Europe are two separate events with possibly different transmission vectors. Following epidemiological investigations of infected poultry holdings, there is not yet a clear indication of the source of the virus. There are no known direct bird migration routes from Asia to western Europe. It has been hypothesised that long-distance transmission of HPAI viruses could occur as a result of cross-infection between different birds in north Eurasian breeding areas, but this hypothesis needs further investigation. HPAI H5N8 has been detected in wild bird populations in Germany and the Netherlands. Direct contact between wild birds and farmed birds in the affected holdings was unlikely. It is more plausible that indirect introduction of HPAI H5N8 to poultry holdings via humans, vehicles, equipment, fomites, live animals and/or animal-derived products contaminated with virus (for instance in faeces) of infected birds took place. Investigations in the Netherlands suggest separate introductions into four holdings and one between-farm transmission. Assessing biosecurity procedures is recommended with a focus on segregation, cleaning and disinfection, and improving where necessary. Given the apparent low pathogenicity of HPAI H5N8 for several wild bird species, focused strategic and proportionate enhancement of active and passive surveillance of living and dead wild birds in the high risk areas would improve the understanding of the risk of virus transmission to poultry. It might also facilitate the design of targeted measures to reduce the risk of virus transmission between poultry and wild birds. Timely updated analyses on the evolving situation within the European Union are required, as well as assessment of all transmission routes that might transport HPAI viruses from Asia to Europe.
Research Interests:
In December 2011, the European Food Safety Authority awarded a Grant for the implementation of the FLURISK project. The main objective of FLURISK was the development of an epidemiological and virological evidence-based influenza risk... more
In December 2011, the European Food Safety Authority awarded a Grant for the implementation of the FLURISK project. The main objective of FLURISK was the development of an epidemiological and virological evidence-based influenza risk assessment framework (IRAF) to assess influenza A virus strains circulating in the animal population according to their potential to cross the species barrier and cause infections in humans. With the purpose of gathering virological data to include in the IRAF, a literature review was conducted and key findings are presented here. Several adaptive traits have been identified in influenza viruses infecting domestic animals and a significance of these adaptations for the emergence of zoonotic influenza, such as shift in receptor preference and mutations in the replication proteins, has been hypothesized. Nonetheless, and despite several decades of research, a comprehensive understanding of the conditions that facilitate interspecies transmission is still lacking. This has been hampered by the intrinsic difficulties of the subject and the complexity of correlating environmental, viral and host factors. Finding the most suitable and feasible way of investigating these factors in laboratory settings represents another challenge. The majority of the studies identified through this review focus on only a subset of species, subtypes and genes, such as influenza in avian species and avian influenza viruses adapting to humans, especially in the context of highly pathogenic avian influenza H5N1. Further research applying a holistic approach and investigating the broader influenza genetic spectrum is urgently needed in the field of genetic adaptation of influenza A viruses.
Research Interests:
Research Interests:
Research Interests:
A survey of national animal influenza surveillance programmes was conducted to assess the current capacity to detect influenza viruses with zoonotic potential in animals (i.e. those influenza viruses that can be naturally transmitted... more
A survey of national animal influenza surveillance programmes was conducted to assess the current capacity to detect influenza viruses with zoonotic potential in animals (i.e. those influenza viruses that can be naturally transmitted between animals and humans) at regional and global levels. Information on 587 animal influenza surveillance system components was collected for 99 countries from Chief Veterinary Officers (CVOs) (n = 94) and published literature. Less than 1% (n = 4) of these components were specifically aimed at detecting influenza viruses with pandemic potential in animals (i.e. those influenza viruses that are capable of causing epidemic spread in human populations over large geographical regions or worldwide), which would have zoonotic potential as a prerequisite. Those countries that sought to detect influenza viruses with pandemic potential searched for such viruses exclusively in domestic pigs. This work shows the global need for increasing surveillance that targets potentially zoonotic influenza viruses in relevant animal species.(Received March 30 2014)(Revised June 17 2014)(Accepted July 24 2014)
Research Interests:
Research Interests:
AimsTo estimate qualitatively the probabilities of release (or entry) of Eurasian lineage H5N1 highly pathogenic avian influenza (HPAI) virus into Great Britain (GB), the Netherlands and Italy through selected higher risk species of... more
AimsTo estimate qualitatively the probabilities of release (or entry) of Eurasian lineage H5N1 highly pathogenic avian influenza (HPAI) virus into Great Britain (GB), the Netherlands and Italy through selected higher risk species of migratory water bird.To estimate qualitatively the probabilities of release (or entry) of Eurasian lineage H5N1 highly pathogenic avian influenza (HPAI) virus into Great Britain (GB), the Netherlands and Italy through selected higher risk species of migratory water bird.Methods and ResultsThe probabilities of one or more release events of H5N1 HPAI per year (prelease) were estimated qualitatively for 15 avian species, including swans, geese, ducks and gulls, by assessing the prevalence of H5N1 HPAI in different regions of the world (weighted to 2009) and estimates of the total numbers of birds migrating from each of those regions. The release assessment accommodated the migration times for each species in relation to the probabilities of their surviving infection and shedding virus on arrival. Although the predicted probabilities of release of H5N1 per individual bird per year were low, very low or negligible, prelease was high for a few species reflecting the high numbers of birds migrating from some regions. Values of prelease were generally higher for the Netherlands than for GB, while ducks and gulls from Africa presented higher probabilities to Italy compared to the Netherlands and GB.The probabilities of one or more release events of H5N1 HPAI per year (prelease) were estimated qualitatively for 15 avian species, including swans, geese, ducks and gulls, by assessing the prevalence of H5N1 HPAI in different regions of the world (weighted to 2009) and estimates of the total numbers of birds migrating from each of those regions. The release assessment accommodated the migration times for each species in relation to the probabilities of their surviving infection and shedding virus on arrival. Although the predicted probabilities of release of H5N1 per individual bird per year were low, very low or negligible, prelease was high for a few species reflecting the high numbers of birds migrating from some regions. Values of prelease were generally higher for the Netherlands than for GB, while ducks and gulls from Africa presented higher probabilities to Italy compared to the Netherlands and GB.ConclusionsBird species with high values of prelease in GB, the Netherlands and Italy generally originate from within Europe based on data for global prevalence of H5N1 between 2003 and 2009 weighted to 2009. Potential long distance transfer of H5N1 HPAI from North Asia and Eurasia to GB, the Netherlands and Italy is limited to a few species and does not occur from South East Asia, an area where H5N1 is endemic.Bird species with high values of prelease in GB, the Netherlands and Italy generally originate from within Europe based on data for global prevalence of H5N1 between 2003 and 2009 weighted to 2009. Potential long distance transfer of H5N1 HPAI from North Asia and Eurasia to GB, the Netherlands and Italy is limited to a few species and does not occur from South East Asia, an area where H5N1 is endemic.Significance and Impact of the StudyThe approach accommodates bio-geographic conditions and variability in the estimated worldwide prevalence of the virus. The outputs of this release assessment can be used to inform surveillance activities through focusing on certain species and migratory pathways.This article is protected by copyright. All rights reserved.The approach accommodates bio-geographic conditions and variability in the estimated worldwide prevalence of the virus. The outputs of this release assessment can be used to inform surveillance activities through focusing on certain species and migratory pathways.This article is protected by copyright. All rights reserved.

And 34 more

Research Interests:
Research Interests:
Research Interests:
A novel Hendra virus (HeV) variant was identified from a horse that suffered acute fatal disease consistent with HeV infection through multidisciplinary and interagency syndromic sentinel surveillance research. Novel molecular assays for... more
A novel Hendra virus (HeV) variant was identified from a horse that suffered acute fatal disease consistent with HeV infection through multidisciplinary and interagency syndromic sentinel surveillance research. Novel molecular assays for HeV detection are described in the light of routine testing failure. In silico analysis of the variant receptor-binding protein in comparison with prototypic HeV supported that the monoclonal antibody m102.4 used for post-exposure prophylaxis, as well as the equine vaccine, should be effective also against this novel variant. Similarity of this virus (99%) to a partial sequence detected from a South Australian grey-headed flying fox, along with case exposure to this species in Queensland, suggests the variant circulates at least across the range of this flying fox species. Investigation into HeV diversity, comparative kinetics and pathogenicity, reservoir-species associations, viral-host co-evolution and spillover dynamics should be prioritized. Biosecurity practices should be updated to appreciate HeV spillover risk across all regions frequented by flying foxes regardless of species. .
The novel coronavirus SARS-CoV-2 likely emerged from a wildlife source with transmission to humans followed by rapid geographic spread throughout the globe and dramatic impacts on both human health and global economies. Since the onset of... more
The novel coronavirus SARS-CoV-2 likely emerged from a wildlife source with transmission to humans followed by rapid geographic spread throughout the globe and dramatic impacts on both human health and global economies. Since the onset of the pandemic, there have been several instances of human-to-animal transmission involving companion, farmed and zoo animals, with the clear potential for spread into free-living wildlife. The establishment of reservoirs of infection in wild animals would create significant challenges to infection control in humans and could pose a threat to the welfare and conservation status of wildlife. Herein, we discuss the potential for exposure, maintenance and onward transmission of SARS-CoV-2 in an initial selection of wild and feral species (bats, canids, felids, mustelids, great apes). Targeted surveillance and dynamic risk assessment are important tools for the early detection of infection in wildlife and a means of collating and synthesising emerging information in a rapidly changing situation. Such efforts should be integrated with public health information to provide insights into the potential role of wild mammals in the continuing epidemiology of SARS-CoV-2. This approach should also be adopted to address the wider need to proactively assess threats to human and animal health from other diseases that may emerge from wildlife.