Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Myelin basic protein (MBP) is a multifunctional protein involved in maintaining the stability and integrity of the myelin sheath by a variety of interactions with membranes and with cytoskeletal and other proteins. A central segment of... more
Myelin basic protein (MBP) is a multifunctional protein involved in maintaining the stability and integrity of the myelin sheath by a variety of interactions with membranes and with cytoskeletal and other proteins. A central segment of MBP is highly conserved in mammals and consists of a membrane surface-associated amphipathic R-helix, immediately followed by a proline-rich segment that we hypothesize is
Myelin basic protein (MBP) is an intrinsically disordered (unstructured) protein known to play an important role in the stability of myelin's multilamellar membrane structure in the central nervous system. The adsorption of MBP and... more
Myelin basic protein (MBP) is an intrinsically disordered (unstructured) protein known to play an important role in the stability of myelin's multilamellar membrane structure in the central nervous system. The adsorption of MBP and its capacity to interact with and bridge solid substrates has been studied using a surface forces apparatus (SFA) and a quartz crystal microbalance with dissipation (QCM-D). Adsorption experiments show that MBP molecules adsorb to the surfaces in a swollen state before undergoing a conformational change into a more compact structure with a thickness of ∼3 nm. Moreover, this compact structure is able to interact with nearby mica surfaces to form adhesive bridges. The measured adhesion force (energy) between two bridged surfaces is 1.0 ± 0.1 mN/m, (Ead = 0.21 ± 0.02 mJ/m(2)), which is slightly smaller than our previously reported adhesion force of 1.7 mN/m (Ead = 0.36 mJ/m(2)) for MBP adsorbed on two supported lipid bilayers (Lee et al., Proc. Natl. Aca...
We have demonstrated that sonic hedgehog (Shh), vital for oligodendrocyte development, is present in both gray and white matter of normal human brain. Both the 45 kDa precursor protein and the 20 kDa N-terminal sonic hedgehog signaling... more
We have demonstrated that sonic hedgehog (Shh), vital for oligodendrocyte development, is present in both gray and white matter of normal human brain. Both the 45 kDa precursor protein and the 20 kDa N-terminal sonic hedgehog signaling portion (ShhN) were demonstrated by immunoblot and a partial purification has been achieved. In gray matter from brains of multiple sclerosis (MS) victims, the total amount of Shh was less than normals and the signaling 20 kDa protein was greatly reduced. In white matter homogenates, prepared from MS victims, only the 45 kDa precursor protein was found. None of the 20 kDa signaling protein was detected, suggesting that the 45 kDa signaling protein was not cleaved in the autocatalytic reaction carried out by the C-terminal portion. The 45 kDa protein and a small amount of the 20 kDa ShhN was detected in isolated MS myelin by Western blot, demonstrating some cleavage was possible. The cleavage of the 45 kDa protein was demonstrated in normal myelin in vitro, but not in myelin prepared from MS brain.
ABSTRACT: The basic protein of myelin may be involved in association of the cytoplasmic surfaces of myelin by a bridging mechanism whereby the N-terminal half of the protein binds to one surface and the C-terminal half binds to the... more
ABSTRACT: The basic protein of myelin may be involved in association of the cytoplasmic surfaces of myelin by a bridging mechanism whereby the N-terminal half of the protein binds to one surface and the C-terminal half binds to the opposing surface. The feasibility of this mechanism ...
Myelin basic protein (MBP) occurs as a number of charge isomers due to phosphorylation, deamidation, and deimination of arginine to citrulline. All of these modifications decrease the net positive charge of the protein and its ability to... more
Myelin basic protein (MBP) occurs as a number of charge isomers due to phosphorylation, deamidation, and deimination of arginine to citrulline. All of these modifications decrease the net positive charge of the protein and its ability to cause aggregation of negatively charged lipid vesicles. This is used as a model system for the ability of MBP to cause adhesion of the cytosolic surfaces of myelin. Therefore, the effect of two deiminated forms of MBP on lipid vesicles was compared with that of the unmodified, most positively charged isomer, C1, to determine how loss of positively charged arginines would affect the function of MBP. The deiminated forms were the isomer isolated from normal human brains, in which only 6 Arg are deiminated to citrulline (MBP-Cit(6)), and an isomer isolated from the brain of a patient who died with acute, fulminating multiple sclerosis (Marburg type), in which 18 of the 19 Arg were deiminated (MBP-Cit(18)). Whereas C1 caused aggregation of lipid vesicles, resulting in an increase in absorbance due to light scattering, MBP-Cit(18) caused a decrease in absorbance of the lipid vesicles. Size exclusion chromatography and negative staining electron microscopy showed that this was due to fragmentation of the large multilayered vesicles into much smaller vesicles. MBP-Cit(6) caused less aggregation of lipid vesicles than did C1. However, no fragmentation of the vesicles into smaller ones in the presence of C1 and MBP-Cit(6) was detected by size exclusion chromatography or electron microscopy. The membrane fragmentation caused by MBP-Cit(18) is dramatically different from the effects of other forms of MBP from normal brain and may indicate a pathogenic effect of this charge isomer, which may have contributed to the severity of the Marburg type of multiple sclerosis. Alternatively, the deimination may have been a secondary effect resulting from the disease process. Regardless of the role of MBP-Cit(18) in multiple sclerosis, the effect of this modification indicates that, when most of the arginines of MBP are modified to an uncharged amino acid, the protein acquires properties similar to an apolipoprotein; thus, it may take up an amphipathic structure when bound to lipid. A partly amphipathic character may also be related to the role of MBP-Cit(6) in normal immature myelin, where it is the predominant charge isomer.