Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Engineering surveying and Deformation surveys

2020, Monograph, Publisher: HST "T. Kableshkov", Sofia, ISBN: 978-954-12-0272-2

This monograph defines the place, role, and importance of engineering surveying in the field of deformation monitoring, deformation surveys, and geotechnical monitoring. Тhe monograph represents the author’s experience in this field-the presentation of deformation ellipsoid in a topocentric (local level) coordinate system for deformation analysis, strain analysis, common processing of GPS and terrestrial measurements, determining the tilting of buildings and facilities, and preliminary and optimal design of deformation monitoring schemes.

Roumen Anguelov Ivanov ENGINEERING SURVEYING AND DEFORMATION SURVEYS Monograph B C A 3 2 1 n SOFIA 2020 4 REFERENCES Abdelrazaq, A., “Validating the Dynamics of the Burj Khalifa”, CTBUH Journal, Issue II, 2011. Abidin H.Z., H. Andreas, M. Gamal, Surono, M. Hendrasto, On the Use of GPS Survey Method for Studying Land Displacements on the Landslide Prone Areas, FIG Working Week 2004, Athens, Greece, May 22-27, 2004. Adam, J., F. Halmos, M. Vagra, (1982), “On the concepts of the combination of Doppler satellite and terrestrial geodetic networks”, Acta Geodaetica, Geophysica at Monataistica Acad. Sci. Hung., 17, 147-170pp. Aharizad, Nezhla & Setan, Halim & Lim, Mengchan. (2012). Optimized Kalman filter versus rigorous method in deformation analysis. Journal of Applied Geodesy. 6. 135-142. 10.1515/jag-2012-0039. Albaa, M., G., Bernardinib, A., Giussania, P.,Riccib, F., Roncoronia, M., Scaionia, P., K., Zhangd, Measurement of dam deformations by terrestrial interferometric techniques, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B1. Beijing 2008. Aleshin, Igor & Ivanov, Stanislav & Koryagin, V. & Kuzmin, Yuri & Perederin, F. & Shirokov, I. & Fattakhov, Evgeniy. (2018). Online Publication of Tiltmeter Data Based on the SeedLink Protocol. Seismic Instruments. 54. 254-259. 10.3103/S0747923918030027. Alizadeh-Khameneh, M. Amin. (2017). Optimal Design in Geodetic GNSS-based Networks, Doctoral Thesis, Royal Institute of Technology, Sweden, 10.13140/RG.2.2.32790.45123. Almejda, Elisa, A. Alexandrino, D. Fernandes, Geodetic Observations in Portuguese Dams, INGEO 2008–4th International Conference on Engineering Surveying, Bratislava, Slovakia, 2008. Alsadik, Bashar & Al-Kanani, Yousif. (2010). Displacement Computation of Mosul Dam by Using Free Geodetic Network Adjustment. Journal of engineering - Baghdad university. Alshareefi, Osamah. (2017), Estimating the size of water erosion of the slopes of mateen fold, I.J.S.N., VOL.8 (4),2017, 847-860. Ambrožič, Tomaž & Mulahusic, Admir & Tuno, Nedim & Topoljak, Jusuf & Hajdar, Amir & Kogoj, Dušan. (2019). Deformation analysis with robust methods in geodetic nets. Geodetski Vestnik. 63. 163-178. 10.15292/geodetski-vestnik.2019.02.163-178. Amiri-Simkooei, A. & Alaei Tabatabaei, Sayedmohsen & Zangeneh-Nejad, Farzaneh & Voosoghi, Behzad. (2016). Stability Analysis of DeformationMonitoring Network Points Using Simultaneous Observation Adjustment of Two Epochs. Journal of Surveying Engineering. 143. 10.1061/ (ASCE)SU.19435428.0000195. Angelov, A., Geodetic methods for research the deformation process of high buildings (in Bulgarian), Monograph, 2017. Antova, G., I., Kunchev, C., Mickrenska-Cherneva, Point clouds in BIM, Journal IOP Conference Series:Earth and Environmental Science (EES), 2016, Vol. 44. Ardalan, A. and R. Esmaeili (2003), 3-D deformation analysis via invariant geodetic observations, Geophysical Research Abstracts 5: 09615. EGS-EGUEUG Joint Assembly Nice, France, April 2003. Atanasova-Zlatareva M., & Nikolov, H. (2016). Detection of the Earth's crust deformation in Provadia area using InSAR technique, XXVI International symposium on modern technologies, education and professional practice in geodesy and related fields, ISSN 2367-6051. Atkinson, J., Dam Deformation Surveys with Modern Technology, Dissertation, University of Southern Queensland, Faculty of Engineering and Surveying, 2014. Attaouia, Belhadj & Ghezali, Boualem & Kahlouche, Salem. (2012). Triangulation of Delaunay:Application to the deformation monitoring of geodetic network by use of strain tensors, FIG Working Week 2012 Knowing to manage the territory, protect the environment, evaluate the cultural heritage Rome, Italy, 6-10, May 2012. Avella, S., An analysis of a worldwide status of monitoring and analysis of dam deformations, The University of New Brunswick November, 1992. Babunska-Ivanova N., Analysis of the Parameters of the Tunnel Primary Lining (in Bulgarian), International scientific conference “TRANSPORT 2019” (in Bulgarian), Academic journal “Mechanics Transport Communications”, Volume 17, Issue 3, article 1851, VIII-48÷VIII-53 pp., ISSN 1312-3823 (print), ISSN 2367-6620 (online), 2019. Babunska-Ivanova N., Comparison of Criteria of Mohr-Coulomb and DruckerPrager in Modelling Primary Lining in Tunneling (in Bulgarian), Annual of the University of Architecture, Civil Engineering and Geodesy, Volume 51, Issue 7, 93-106 pp., ISSN 1310- 814X (print), ISSN 2534-9759 (online), 2018. Babunska-Ivanova N., Creation of Dynamic Engineering Model for Design of Transport Infrastructure (in Bulgarian), International scientific conference “TRANSPORT 2015”, Academic journal “Mechanics Transport Communications”, Volume 13, Issue 3/3, article 1222, VIII-28÷VIII-33 pp., ISSN 1312-3823 (print), ISSN 2367-6620 (online), 2015. Baishen, Zhou & Donghang, Li & Feng, Yanming & Jingjun, Guo & Pinggen, Zhou & Zhigang, Ding. (2005). A Demonstrative GPS-aided Automatic Landslide Monitoring System in Sichuan Province. Journal of Global Positioning Systems. 4. 10.5081/jgps.4.1.184. Balodimou, A & Mitsakaki, C., (2001). The effect of old geodetic data on deformation analysis. Survey Review. 36. 249-254. 10.1179/003962601791483461. Bancroft, S., (1985) An Algebraic Solution of the GPS Equations. IEEE Trans. Aerospace Electron. Syst., 21 (7):56–59. Banimostafavi, Niloufar & Sharifi, Mohammad A. & Farzaneh, Saeed. (2019). Assessment of single and combinatorial point approaches for datum definition in classical monitoring networks, XXIX INTERNATIONAL SYMPOSIUM, Istanbul, Nov 2019. Banyai, L., Rigorous 3D Integrated Adjustment of GPS Baselines, Geodetic Total Station and Levelling Measurements, FIG Working Week 2011 Bridging the Gap between Cultures Marrakech, Morocco, 18-22 May 2011. Barzaghi, R. & Cazzaniga, Noemi & De Gaetani, Carlo & Pinto, Livio & Tornatore, Vincenza, (2018). Estimating and Comparing Dam Deformation Using Classical and GNSS Techniques. Sensors, Basel, Switzerland. 18. 10.3390/s18030756. Bayrak, T., Modelling the relationship between water level and vertical displacements on the Yamula Dam, Turkey, Natural Hazards and Earth System Sciences,7, 2007. Bevis, Michael & Brown, Abel. (2014). Trajectory models and reference frames for crustal motion geodesy. Journal of Geodesy. 88. 10.1007/s00190-0130685-5. Bikbulatova, G., & Kupreyeva, E. (2019). Geodetic control in construction of steel roof structures. IOP Conference Series: Materials Engineering. 698. 044001. 10.1088/1757-899X/698/4/044001. Science and Bilgen, Burhaneddin & Inal, Cevat & Bülbül, Sercan., The Effect of Session Duration in Determination of Point Movements with GNSS. FIG Congress 2018 Embracing our smart world where the continents connect: enhancing the geospatial maturity of societies Istanbul, Turkey, May 6–11, 2018. Bird, B., Analysis of Survey Point Displacements Using Total Station Measurements, Тechnical report, 2009. Bomford, G., “Geodesy”, 4ed., Oxford, Clarendon Pr., 1980, 855pp. Bos, Machiel & Montillet, Jean-Philippe & Williams, Simon & Fernandes, Rui, (2019). Introduction to Geodetic Time Series Analysis. 10.1007/978-3-03021718-1_2. Brown, R. G, P.Y.C. Hwang ., ”Introduction to random signals and applied Kalman filtering with MATLAB exercises and solutions”, 3.ed.,New York,Wiley,1997, 484pp. Cardenal, J., & Mata, Emilio & Pérez, Jose & Delgado, Jorge & Hernandez, M & Gonzalez, A., & Diaz-De-Teran, J. (2008). Close range digital photogrammetry techniques applied to landslides monitoring. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B8. Beijing, 2008. Caspary, W.F., Concepts of network and deformation analysis, School of Geomatic Engineering, University of New South Wales, Monograph, 1988. Chen, Y.Q. & Chrzanowski, Adam & Secord, J.M., (1990). A strategy for the analysis of the stability of reference points in deformation surveys. 44. 141149., CISM JOURNAL ACSGC. Chen, Y.Q., (1983) Analysis of deformation surveys–A generalized method. Department of Geodesy and Geomatics Engineering, Technical Report No. 94, University of New Brunswick, Canada. Choudhury, M., N. Politi, C., Rizos, Slow structural deformation monitoring using Locata-a case study at the tumut pond dam, 5th World Conference on Structural Control and Monitoring, 2010. Chrzanowski, A, Ding, XL, Roberts, G., Whitaker, C., Goals and achievements of FIG working group 6.1-deformation measurements, Proceedings of 11th International FIG Symposium on Deformation Measurements, Santorini Island, Greece, 25-29 May, 2003. Chrzanowski, A., “A Comparison of Different Approaches into the Analysis of Deformation Measurements”, FIG, XVI Congress, Montreux, Switzerland, 1981. Chrzanowski, A., Anna Szostak-Chrzanowski, Jason Bond, Rick Wilkins, Increasing Public and Environmental Safety through Integrated Monitoring and Analysis of Structural and Ground Deformations, Geomatics Solutions for Disaster Management (eds: J. Li, S.Zlatanova, A. Fabbri) Springer, pp. 407426, 2007. Chrzanowski, A., S.Avella, Y.Q.Chen, J.Secord, “Existing Resources, Standards, and Procedures for Precise Monitoring and Analysis of Structural Deformations”, (2 Vol. s) Prepared for and published by: U.S. Army Corps of Engineers, Topographic Engineering Center, Fort Belvoir, Virginia, Report No. TEC-0025A, 1992. Chrzanowski, A., Y.Q. Chen and J. Secord, On the strain analysis of tectonic movements using fault crossing geodetic surveys, Tectonophysics, Vol. 97, 1983. Chrzanowski, Adam & Chen, Yongqi & Romero, Pablo & M. Secord, James. (1986). Integration of geodetic and geotechnical deformation survey in the geosciences. Tectonophysics. Vol. 130. 10.1016/0040-1951 (86)90126-5. Cooper, M. & Robson, Stuart. (2006). High precision photogrammetric monitoring of the deformation of a steel bridge. The Photogrammetric Record. 13. 505 - 510. 10.1111/j.1477-9730.1990.tb00712.x. Costachel, A., Einige neue Aspekte bei Präzisionsnivellements zur Bestimmung der Senkung von Bauten. Vermessungstechnik, 7, 1967. Czaplewski, Krzysztof & Wiśniewski, Zbigniew & Specht, Cezary & Koc, Władysław & Wilk, Andrzej & Karwowski, Krzysztof & Dąbrowski, Paweł & Specht, Mariusz & Chrostowski, Piotr & Szmagliński, Jacek. (2019). Use of a Least Squares with Conditional Equations Method in Positioning a Tramway Track in the Gdansk Agglomeration. 13. 895-900. 10.12716/1001.13.04.25. Dach, R., S. Lutz, P. Walser, P. Fridez (Eds); 2015: Bernese GNSS Software Version 5.2. User manual, Astronomical Institute, University of Bern, Bern Open Publishing. DOI: 10.7892/boris.72297; ISBN: 978-3-906813-05-9. Dare, Peter & Saleh, Hussain. (2000). GPS network design: Logistics solution using optimal and near-optimal methods. Journal of Geodesy. 74. 467-478. 10.1007/s001900000104. Daskalova, M., Mathematical Geodesy, Sofia, Technics, 1989. Daskalova, M., R., Ivanov, "About some characteristics of deformations of the Earth's surface", Jubilee Scientific Session "50 Years Central Laboratory of Higher Geodesy", Sofia, 1998. Daxinger, W., R. Stirling, “Kombinierte Ausgleichung von terrestrischen und GPS –Messungen“, VGI, 1994, 1+2, 48-55pp. Del Soldato, Matteo & Farolfi, Gregorio & Rosi, Ascanio & Raspini, Federico & Casagli, Nicola. (2018). Subsidence evolution of the Firenze-Prato-Pistoia plain (Central Italy) combining PSI and GNSS data. Remote Sensing. 10. 10.3390/rs10071146. Dermanis, Athanasios & Livieratos, Evangelos. (1983). Applications of Deformation Analysis in Geodesy and Geodynamics, Reviews of Geophysics and Space Physics. 21. 41-50. 10.1029/RG021i001p00041. Detchev, I., Habib, A., and El-Badry, M., ‘‘Estimation of Vertical Deflections in Concrete Beams Through Digital Close Range Photogrammetry,’’ISPRS Remote Sensing and Spatial Information Sciences,vol.XXXVIII/5-W12, Calgary, Canada 2011. Devanthéry, Núria & Crosetto, M & Monserrat, O & Cuevas-González, María & Crippa, B. (2018). Deformation Monitoring Using Sentinel-1 SAR Data. Proceedings. 2. 5157. 10.3390/ecrs-2-05157. Dimitrov, D., R., Ivanov, “Tectonic strains in the area Southeast of Sofia determined by geodetic measurements”, Geodesy, Cartography, Land Management, Issue 1, 1997. Dimitrov, N., (2017). Study of crustal movements in Mirovo salt deposit with GPS and classical geodetic measurements, Geodesy 22, Bulgarian Academy of Sciences. Dimitrov, N., Georgiev, I., Crustal strain from GPS and triangulation data in Central Western Bulgaria. REVIEW OF BULGARIAN GEOLOGICAL SOCIETY. vol. 72. 27–32, 2011. Dimitrova, E., S., Stefanov, “Optimization of systems for positioning and navigation of transport vehicles”, Academic journal “Mechanics Transport Communications”, Volume 17, Issue 3, article 1885, 2019. DIN 18710-1 (1999): Ingenieurvermessung, Allgemeine Anforderungen. Ding, X., W. Dai, W. Yang, X. Zhou, J. Lam, Q. Zhang, L. Wang, Application of Multy-Antenna GPS Technology in Monitoring Stability of Slopes, Hong Kong, FIG, 2007. Djaha, Siti & Prayuda, Hakas. (2019). Quality Assessment of Road Pavement using Lightweight Deflectometer. 10.2991/icosite-19.2019.16. Doganalp, Serkan & B., Turgut & Inal, Cevat. (2010). Deformation analysis using the S transformation and Kalman filtering technique, International Multidisciplinary Scientific GeoConference SGEM 2010. Dominici, D., F. Radicioni, S. Selli, A. Stoppini, The Assisi Landslide GPS Network, In Brunner, F. (Ed.): Advances in Positioning and Reference Frames (IAG Scientific Assembly, Rio de Janeiro, Brazil, September 3-9, 1997), Vol.118, 1998. Dorafshan, Sattar. (2019). A Practitioner’s Guide to Small Unmanned Aerial Systems for Bridge Inspection. Infrastructures. 4. 72. 10.3390/infrastructures4040072. Duchnowski, R., (2009). Geodetic Application of R-Estimation-Levelling Network Examples. Technical Sciences. 12. 10.2478/v10022.008-0012-9. Dunnicliff, J., „Geotechnical Instrumentation for Monitoring Field Performance”, Wiley, 1993. Ebadi, M., Bagheri M., Lajevardi M.S., Haas B. (2019) Defect Detection of Railway Turnout Using 3D Scanning. In: Fraszczyk A., Marinov M. (eds) Sustainable Rail Transport. Lecture Notes in Mobility. Springer, Cham. Ebeling, A., Ground-Based Deformation Monitoring, DISSERTATION, DEPARTMENT OF GEOMATICS ENGINEERING, CALGARY, ALBERTA, 2014. Ebeling, Axel & Radovanovic, R. & Teskey, B., (2009). Deformation analysis using a multi-parameter transformation. 63. 203-210. Engineering and Design: Structural Deformation Surveying (Engineer Manual EM 1110-2-1009), US Army Corps Of Engineers 2018. ERENOĞLU, R. & YÜCESES, Okan. (2019). Deformation Analysis by Geomatic and Geotechnical Methods in Highway Tunnels. International Journal of Environment and Geoinformatics. 6. 163-171. 10.30897/ijegeo.540837. Eschelbach, Cornelia & Loesler, Michael & Haas, Rüdiger & Greiwe, Ansgar. (2019). Photogrammetric Measurement of Gravitational Deformations of a VGOS Antenna using UAV. 10.13140/RG.2.2.30528.07687. Even-Tzur, G., GPS vector configuration design for monitoring deformation network in the north of Israel, Session Iv: Earth Crustal Deformation, Earthquakes, And Regional Movements, The 10th FIG International Symposium on Deformation Measurements, 2001. Even-Tzur, G., H. Papo, Optimization of GPS Networks by Linear Programming, Survey Review, Vol. 33, №262, 1996, 537-545pp. Fraštia, Marek. (2016). DEFORMATIONS BY THE MEASUREMENT METHODS OF OF BUILDING DIGITAL COMPONENTS PHOTOGRAMMETRY. 10.5593/SGEM2016/B22/S10.122. Fritzensmeier, K., G. Kloth, W. Niemeier, E. Eichholtz , “Simulation studies on the improvement of terrestrial 2-D Networks by additional GPS information”, Universität der Bundeswehr, München, Heft Nr.20-1,1985, 291-310pp. Gasaca, J., M., Henriques. The Geodetic Surveying Methods in The Monitoring of Large Dams in Portugal, The FIG International Symposium on Deformation measurements, Washington D.C., USA, April 19-26, 2002. Gaxiola-Camacho, J. Ramon & Vazquez Becerra, Guadalupe & Millan-Almaraz, Jesus & Vazquez-Ontiveros, J. & Lopez-Varelas, Francisco & Gaxiola-Camacho, Oscar. (2019). Structural Health Monitoring of Bridges using GPS Technology, IABSE-SMIS 2nd Bridge Engineering Workshop Mexico 2019 June 6-7, 2019, Puerto Vallarta, Mexico. Geodetic Deformation Monitoring:From Geophysical to Engineering Roles: IAG Symposium Jaén, Fernando Sansò, Antonio J. Gil (eds.), IAG Symposium Jaen, Spain, 2005. Germanov, T., Soil mechanics, Lectures for the specialty construction of buildings and structures (in Bulgarian), Sofia, 2009. Gielsdorf, F., L. Gruending, I. Milev. Deformation analysis with 3D laser scanning–In: 13th FIG symposium on deformation measurement and analysis and 4rd IAG symposium of geodesy for geotechnical and structural engineering, LNEC, Lisbon, 12-15 May, 2008. Gikas, V., M. Sakellariou, Horizontal deflection analysis of a large earthen dam by means of geodetic and geotechnical methods, 13th FIG Symposium on Deformation Measurement and Analysis, Lisbon, 2008. Githumbi, J., Deformation monitoring of an oil storage tank by geodetic methods, Project report, University of Nairobi, 2014. Glaus, R., The swiss trolley-a modular system for track surveying, Geodatischgeophysikalische arbeiten in der Schweiz, 70, 2006. Głowacki, Tadeusz & Milczarek, Wojciech. (2018). SURFACE DEFORMATION OF THE SECONDARY FORMER MINING AREAS. Archives of Mining Sciences. 20. 39-55. 10.5277/gig132004. Gonzalez-Aguilera, D., J. Gomes-Lahoz, J. Sanches. A new approach for structural monitoring of large dams with three-dimensional laser scanner, Sensors, 8, 2008. Gordon, S. J., D. D. Lichti. Modeling terrestrial laser scanner data for precise structural deformation measurement, Journal of Surveying Engineering, Vol. 133,2,2007. Gosliga van R., Lindenberg R., Pfeifer N. Deformation analysis of a bored tunnel by means of terrestrial laser scanning, Proceedings of the ASPRS Archives, Vol. 36, 2006. Gospodinov, S., Determination of block-dependent plane deformations of the Earth's crust by measured spatial chords(in Bulgarian), Military-Geographical Service, 2001. Gospodinov, S., Peneva, E., & Zdravchev, I. (2002). Combined GPS and gravimetric observations for salt deposit localization. 3rd Meeting of the International Gravity and Geoid Commission, Thessaloniki, Greece, August 2630, International Association of Geodesy (IAG) – Section III, poster presentation. Gospodinov, Slaveyko & Peneva, Elena & Lambeva, Tatyana. (2019). Investigation of Crustal Deformation by the Means of Directly Defined Spatial Chords–Possibility or Predeterminancy. IOP Conference Series: Earth and Environmental Science. 362. 012155. 10.1088/1755-1315/362/1/012155. Götz, B., Zur Bestimmung der Veränderungen von Höhenanschlusspunkten. Vermessungstechnik, 19 , 1971. Grafarend, E. W., 1987, “Der Einfluß der Lotrichtung auf lokale geodatische Netze“, ZfV, 112, Heft Nr.8, 413-422pp. Grafarend, E.W., F. Sanso, (eds.), “Optimization and design of geodetic networks”,Berlin, Heidelberg, New York, Springer , 1985, 606pp. Gramola, Michela & J. K. Bruce, Paul & Santer, Matthew. (2019). Photogrammetry for accurate model deformation measurement in a supersonic wind tunnel. Experiments in Fluids. 60. 10.1007/s00348-018-2652-7. Grewal, M., A.P. Andrews, “ Kalman filtering-theory and practice using MATLAB”, 2. ed., New York, Wiley , 2001, 401pp. Gründig, L., M. Neureither and J. Bahndorf (1985), Detection and location of geometrical movements, the Journal of Surveying Engineering, vol. III, No.2. Guo, Guanming. (2019). Analysis on the deformation monitoring theory of fabricated high-rise residential buildings. IOP Conference Series: Earth and Environmental Science. 237. 032023. 10.1088/1755-1315/237/3/032023. Guo, Wen & Wang, Guoquan & Bao, Yan & Li, Pengfei & Zhang, Mingju & Gong, Qiuming & Li, Rui & Gao, Yang & Zhao, Ruibin & Shen, Shui-Long. (2019). Detection and Monitoring of Tunneling-Induced Riverbed Deformation Using GPS and BeiDou:A Case Study. Applied Sciences. 9. 2759. 10.3390/app9132759. Haberler-Weber M., Analysis and interpretation of geodetic landslide monitoring data based on fuzzy systems. Natural Hazards and Earth System Science, Copernicus Publications on behalf of the European Geosciences Union, 5, 2005. Halicioglu, Kerem & Ozener, Haluk. (2008). Geodetic Network Design and Optimization on the Active Tuzla Fault (Izmir, Turkey) for Disaster Management. Sensors. 8. 10.3390/s8084741. Hamza, Veton, (2017). PRACTICAL IMPLEMENTATION OF THE MIHAJLOVIČ METHOD IN THE " MANTOVO " DAM, Geo information 8, 2017. Hamzic, Adis & Avdagic, Zikrija & Besic, Ingmar. (2020). Multistage Cascade Predictor of Structural Elements Movement in the Deformation Analysis of Large Objects Based on Time Series Influencing Factors. ISPRS International Journal of Geo-Information. 9. 47. 10.3390/ijgi9010047. Han, Junqiang & Huang, Guanwen & Zhang, Qin & Tu, Rui & Du, Yuan & Wang, Xiaolei. (2018). A New Azimuth-Dependent Elevation Weight (ADEW) Model for Real-Time Deformation Monitoring in Complex Environment by Multi-GNSS. Sensors. 18. 2473. 10.3390/s18082473. Hartinger, H., ”Development of a continuous deformation monitoring system using GPS “, Aachen, Shaker, 2001. Hatjidakis, N., I. Michailidis, G. Nakas, C. Pikridas, D. Rossikopoulos, L. Sakkos, Statistical analysis and displacement determination using different GPS sessions. An application on dam of Thesarus, 3rd 3rd IAG/12th FIG symposium, Baden,May 22-24, 2006. Heck, B., Die Verwendung relativer Fehlerellipsen zur Analyse von Deformationsmessungen. In L. Hallermann (Ed.) “Proc. Of the IIth Int. Symp. of Deformation Measurements by Geodetic Methods, Bonn, 1978” Konrad Witter, Stuttgart, 1981. Heitz, S., "Koordinaten auf geodätischen Bezugsflächen“, Berlin, Springer, 1988. Hekimogolu S, Huseyn Demiret and Caneyt Aydin, (2002). Reliability of the Conventional International Deformation Net Published Washinton, D.C. USA. Analysis Paper, Methods FIG, XXII for Vertical International Networks, Congress, Henriques, Maria & Lima, José & Oliveira, Sérgio. (2012). Measuring Inclinations in Cabril Dam with an Optoelectronic Sensor. FIG Working Week 2012 Knowing to manage the territory, protect the environment, evaluate the cultural heritage Rome, Italy, 6-10 May 2012. Ho, Shei-Chen & Chen, I-Hui & Lin, Yu-Shu & Chen, Jun-Yang & Su, M. (2019). Slope deformation monitoring in the Jiufenershan landslide using time domain reflectometry technology. Landslides. 10.1007/s10346-019-01139-1. Hofmann-Wellenhof, B., G. Kienast, H. Lichtenegger, “GPS in der Praxis”, Springer, 1994. Hofmann-Wellenhof, B., H. Lichtenegger, E. Wasle, “GNSS Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and More”, Springer, 2008. Hofmann-Wellenhof, B., H. Lichtenegger, J. Collins, “GPS Theory and Practice“, 5.rev.ed., Wien, Springer, 2001, 389pp. Hofmann-Wellenhof, B., K. Legat, M. Wieser, “Navigation: Principles of Positioning and guidance”, Springer, 2003. Holts, C., H. Kuhlmann, Challenges and resent fields of action at laser scanner deformation analyses, Journal of Applied Geodesy, 2016, 10 (1), p. 17-25. Hradilek, L., “Three-dimensional terrestrial triangulation-Application in surveying engineering”, Konrad Wittwer, 1984, 250pp. Hristov, W.K. Gemeinsame Ausgleichung von Höhen und Vertikalgeschwindigkeiten einets Nivellierungsnetzes, Acta Geodaet. Geophys. et Montanist., Acad. Sci. Hung. Tomus 9 (1–2),1974. Hussein, Zahraa & Hadi, Raghad. (2016). Optimal Design of Global Navigation Satellite System (GNSS) Network using the Neural Network Model. GIS & Geospatial Technologies Conference, Special Issue, December 2016, pp:277281. Ilie, A.,Ș., Combining GNSS and Terrestrial Observations in 2D Geodetic Networks through Sequential Adjustment, RevCAD Journal of Geodesy and Cadastre 16, 2014. Ilieva, T., Communication protocols and formats for data transfer used for real time kinematic GNSS measurements (in Bulgarian), ANNUAL of the University of Architecture, Civil Engineering and Geodesy Sofia,vol.XLV, 2013. Ilk, K.H., ” Introduction to the gravity field theory “, Bandung, ITB Press, 1996, 153pp. Ilk, K.H., ”Reference systems in geodesy”, Bandung, ITB Press, 1996, 68pp. Ince, C. D. and Sahin M. (2000), ‘Real Time Deformation Monitoring with GPS and Kalman Filter’, Istanbul Technical University, Faculty of Civil Engineering, Department of Geodesy and Photogrammetry, Turkey. Iontchev, E., Radostin Kenov, Rossen Miletiev, Inertial measurement system for evaluation of the bogie-railway system dynamics, 36th International Spring Seminar on Electronics Technology, „Automotive Electronics“, May 8 – 12, 2013, Alba Iulia, Romania, pp 172-173, pp.172, ISBN 978-606-613-064-6. Iontchev, E., Radostin Kenov, Rossen Miletiev, Ivaylo Simeonov, Yavor Isaev, Hardware implementation of quad microelectromechanical sensor structure for inertial systems, 37th International Spring Seminar on Electronics Technology, „Advances in Electronic System Integration“, May 7 – 11, 2014, Dresden, Germany, pp 190-192, ISBN 978-3-934142-49-7. Ivanov, B., R., Ivanov, “Control of the geometry of the renewed section of the railway, redesigned at a speed of 130km/h”, in Proceedings “TEMPT 2001Transport of XXI”, VTU “T. Kableshkov ”, November 15-16, 2001, Sofia, 523526. Ivanov, R., “Accuracy of measurements in determining the movements of points from precise angle-distance networks”, Jubilee Scientific Session “50 Years Central Laboratory of Higher Geodesy”, Sofia, 1998. Ivanov, R., “Common processing of GPS and terrestrial measurements”, International Symposium on “Modern Technologies, Education and Professional practice in the globalizing world”, 6-7 November 2003, Bulgaria, 177-181pp. Ivanov, R., “Manual of engineering surveying”, Sofia, 3-rd edition, 2014. Ivanov, R., N., Babunska-Ivanova, “Optimal GPS network for monitoring of landslides”, XVIII International Transport Conference 2008, VTU “T. Kableshkov ”, 2008, Sofia, V-5 ÷ V-8pp. Ivanov, R., P. Branzalov, “Determining the Tilting of Buildings and Facilities”, Scientific Conference, “Mechanics, Transport, Communications”, vol.14, issue 3/3, 2016. Ivanov, R., P. Branzalov, “Low-Power Radio Frequency Interference on a GPS Receiver”, Conference Proceedings of the Second International Conference, European Polytechnical University/June 9-10.06.2012, 99-101pp. Ivanov, R., P. Branzalov, N. Babunska, K. Kostov, “Using powerful laser levels in transportation civil engineering, Scientific Conference, “Mechanics, Transport, Communications”, vol.12, issue 3/3, 2014. Iz, H., An algorithmic approach to crustal deformation analysis, NASA,1987. Jacob, O. Ehiorobo, Raphael Irughe-Ehigiator, Monitoring for Horizontal Movement in an Earth Dam Using Differential GPS, Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS) 2 (6): 908-913, © Scholarlink Research Institute Journals, 2011. Janssen, Volker & Roberts, Craig & Rizos, Chris & Abidin, Hasanuddin Z., (2002). Low-cost GPS-based volcano deformation monitoring at Mt. Papandayan, Indonesia. Journal of Volcanology and Geothermal Research. 115. 139-151. 10.1016/S0377-0273 (01)00312-2. Javadi, Peyman. (2016). Detecting the Unstable Points in Deformation Monitoring Geodetic Networks in Analysis Method of Subnetwork. Modern Applied Science. 11. 61. 10.5539/mas.v11n3p61. Jiang, W. & Liu, H. & Liu, W. & He, Y. (2012). CORS development for Xilongchi dam deformation monitoring. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University. 37. 949-952. Kalkan, Y., K., R., Alkan, S. Bilgi, Deformation Monitoring Studies At Atatürk Dam, Fig Congress, Facing The Challenges – Building The Capacity Sydney, Australia, 11-16, APRIL, 2010. Kaloop, Mosbeh & Elbeltagi, Emad & Hu, Jong & El Refai, Ahmed. (2017). Recent Advances of Structures Monitoring and Evaluation Using GPS-Time Series Monitoring Systems:A Review. International Journal of Geo-Information. 6. 382. 10.3390/ijgi6120382. Kaloop, Mosbeh & Yigit, Cemal & Anil Dindar, Ahmet & Elsharawy, Mohamed & Wan Hu, Jong. (2018). Evaluation of the High-Rate GNSS-PPP Method for Vertical Structural Motion. Survey Review. 10.1080/00396265.2018.1534362. Kastreva, P., 2000, “Improvement of existing geodetic networks”, Ph.D Thesis, (in Bulgarian), Sofia. Keller, W., B. Schramm, B. Weniger, 1993, “Dreidimensionale Netzausgleichung im lokalen Horizontsystem“, AVN, Nr.1, 13-28pp. Ketchakmadze, Ivane & Durglishvili, Nino & Ketchakmadze, Dimitri. (2020). Survey Weighting Methods-Individual Weights. 10.13140/RG.2.2.13613.03045. Khan, Shfaqat Abbas, Surface deformation analysis using GPS time series, 2005. Kirici, Ulku & Sisman, Yasemin. (2019). THE DEFORMATION ANALYSIS USING HYPOTHESIS TESTS. International Journal of Engineering and Geosciences. 4. 88-093. 10.26833/ijeg.473944. KLEIN, Karl-Hans & HEUNECKE, Otto. (2000). AIMS AND ACTIVITIES IN GERMAN STANDARDISATION RESPECTIVE ENGINEERING SURVEYS. Kobryń, Andrzej. (2019). Multicriteria Decision Making in Geodetic Network Design. Journal of Surveying Engineering. 146. 1-10. 10.1061/ (ASCE)SU.1943-5428.0000301. Koler, B., & Savšek, Simona & Ambrožič, Tomaž & Oskar, Sterle & Stopar, Bojan & Kogoj, Dušan. (2010). Realisation of geodesy in geotechnics. Geodetski vestnik. 54. 450-468. 10.15292/geodetski-vestnik.2010.03.450468. Koler, B., Tilen Urbanic , Ales Breznikar, DETERMINATION OF THE VERTICAL MOVEMENTS IN THE LEVELLING NETWORKS ON THE AREA OF LJUBLJANA BASIN, ENVIRONMENTAL ENGINEERING, The 8 th International Conference May 19–20, 2011, Vilnius, Lithuania Selected papers, ISSN 2029-7106, 2011. Konak, Haluk & Küreç Nehbit, Pakize & Ince, Cankut. (2017). SENSITIVITY OPTIMIZATION at the DENSIFICATION GPS NETWORKS for MONITORING CRUSTAL MOVEMENTS. 10.18509/GBP.2017.02. Konakoglu, Berkant & Gökalp, Ertan. (2018). Deformation Measurements and Analysis with Robust Methods A Case Study Deriner Dam. Turkish Journal of Science & Technology. 13. 99-103. Kostadinov, K., V., Valchinov, Mathematical processing of geodetic measurements (in Bulgarian), Sofia, UACEG, 2012. Kostov, K., Mircheva Ts., "Expert evaluation of the technical condition of the railway after derailment of a railway vehicle" (in Bulgarian), MNF - "T. Kableshkov", September 15-17, 2016. Kostov, K., Mircheva Ts., "Expert Techno-Economic Assessment of the State of the Railway after the Natural Disaster-Flood" (in Bulgarian), MNF – “T.Kableshkov”, September 13-15, 2018. Kostov, V., Monitoring in Geotechnical Engineering (in Bulgarian), Direct Services, 2015. Kováč, M., J. Hefty, A universal approach to processing 4-dimensional geodetic reference networks, Slovak journal of civil engineering, 2007. Kregar, Klemen & Možina, Jan & Ambrožič, Tomaž & Kogoj, Dušan & Marjetič, Aleš & Stebe, Gasper & Savšek, Simona. (2017). Control Measurements of Crane Rails Performed by Terrestrial Laser Scanning. Sensors. 2017. 1671. 10.3390/s17071671. Krumova, V., “Comprehensive methodology for geodynamic geodetic surveys in seismically active regions” (in Bulgarian), PhD Thesis, Sofia, 2019. Kuhlmann, H., Kalman-filtering with coloured measurement noise for deformation analysis, 11th FIG Symposium on Deformation Measurements, Santorini, Greece, 2003. Kulkarni, M.N., Crustal and Dam deformation studies using GPS, Indian Surveyor, January, Journal of the Institution of Surveyors, 2001. Kunchev, I., 3D models for determining crustal Deformations through GNSS estimated geodetic points (in Bulgarian), ANNUAL of the University of Architecture, Civil Engineering and Geodesy Sofia, Fascicule III Geodesy, Vol. XLVI, 21 – 32 p., 2014, ISSN 1310-814X. Kunchev, I., Combination of GNSS and terrestrial data through Cartesian transformation models (in Bulgarian), ANNUAL of the University of Architecture, Civil Engineering and Geodesy Sofia, Fascicule III Geodesy, Vol. XLVI, 33 – 43 p., 2014, ISSN 1310-814X. Kunchev, I., Covariance analysis on Kalman filter adjustment (in Bulgarian), ANNUAIRE De L’Universite D’Architecture, De Genie Civil Et De Geodesie Sofia, Fascicule III, Vol. XL, Sofia, 27 – 41 p., 1999, ISSN 1310-814X. Kunchev, I., Ellipsoidal model for transforming data (in Bulgarian), 95 Anniversaire De Vladimir K. Hristov, ANNUAIRE De L’Universite D’Architecture, De Genie Civil Et De Geodesie Sofia, Fascicule IX, Vol. XXXIX, Sofia, 213 – 221 p., 1998, ISSN 1310-814X. Kurt, Orhan. (2018). Deformation Analysis in Tectonic GNSS Networks., November 2018, Conference: Sismojeodezik Çalışmalar, Türkiye Ulusal Jeodezi Komisyonu Çalıştayı (TUJK 2018), At:9 Eylül Üniversitesi, İzmir/Turkey. Kuzmin, Yuri & Deshcherevsky, Alexey & Fattakhov, Evgeniy & Kuzmin, Dmitriy & Kazakov, A & Aman, D. (2018). Inclinometric Observations at the Korchagin Deposit. Izvestiya Atmospheric and Oceanic Physics. 54. 932-940. 10.1134/S0001433818080066. Lanigan, C., Repair, Evaluation, Maintenance, and Rehabilitation Research Program. Continuous Deformation Monitoring System (CDMS), Final rept., ARMY TOPOGRAPHIC ENGINEERING CENTER FORT BELVOIR VA, 1992. Lardelli A. ECDS 1 – An Electronic Coordinate Determination System for Industrial Applications. Kern & Co. Ltd; 1985. Mechanical, Optical and Electronic Precision Instruments, Aarau, Switzerland, 11 pp. Lichtenegger, H., Eine direkte Lösung des räumlichen Bogenschnittes, Österreichische Zeitschrift für Vermessung und Geoinformation, 83 (4), 1995. Lienhart, W., Geotechnical monitoring using total stations and laser scanners: critical aspects and solutions, J Civil Struct Health Monit (2017) 7: 315. Lim, C., & Halim Setan, A Practical Deformation Monitoring Procedure and Software System for CORS Coordinate Monitoring, XXV FIG Congress, April, 2014. Lim, M., C., H. Setan, R. Othman, Continuous Deformation Monitoring Using GPS and Robust Method, Department of Geomatic Engineering, Faculty of Geoinformation and Real Estate, Universiti Teknologi Malaysia, 2011. Liu, Donglie & Chen, R. & Riedel, Björn & Niemeier, W. (2014). An improved approach to estimate large-gradient deformation using high resolution TerraSAR-X data. Solid Earth Discussions. 6. 2759-2778. 10.5194/sed-6-27592014. Liwen, D, J. Wang, Ch. Rizos, Sh. Han, Applications Of Pseudolites In Deformation Monitoring Systems, Orange, California, USA, 03, 2001. Lukac, S., J. Kozar. Deformation Monitoring of Objects of the Gabcikovo Dam by the Terrestrial Surveying Methods and GPS Methods. GIG XXII International Congress, Wasington, D.C. USA, April 19-26 2002. Lutes, J., Adam Chrzanowski, Geffrrey Bastin and Cecilia Whitaker. “Dimons” Software for automatic data collection and automatic deformation collection and automatic deformation analysis. Orange, California, USA, 19-22.III, 2001. Lutes, J., AUTOMATED DAM DISPLACEMENT MONITORING USING A ROBOTIC TOTAL STATION, TECHNICAL REPORT, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton, 2002. Luzi, Guido & Crosetto, M & Fernandez, Enric. (2017). Radar Interferometry for Monitoring the Vibration Characteristics of Buildings and Civil Structures: Recent Case Studies in Spain. Sensors (Switzerland). 17. 10.3390/s17040669. Maksimović, Jovana & Kuzmić, Tatjana & Batilović, Mehmed & Sušić, Zoran & Bulatovic, Vladimir & Kanović, Željko. (2019). Design of geodetic networks by using global optimization methods. 10.14415/konferencijaGFS2019.090. Marjetič, Aleš & Zemljak, Matjaž & Ambrožič, Tomaž. (2012). Deformation analysis:the DELFT approach. Geodetski 10.15292/geodetski-vestnik.2012.01.009-026. vestnik. 56. 009-026. Marković, Marko & Бајић, Јован & Нинков, Тоша & Васић, Дејан & Сушић, Зоран & Булатовић, Владимир. (2015). САВРЕМЕНЕ МЕТОДЕ МОНИТОРИНГА ДЕФОРМАЦИЈА ГРАЂЕВИНСКИХ ОБЈЕКАТА, Novi Sad. Marsella, M., & Scaioni, Marco. (2018). Sensors for Deformation Monitoring of Large Civil Infrastructures. Sensors. 18. 3941. 10.3390/s18113941. Martuszewicz, J., Podstawowy zaznaczenia premieszczen geodezyjnych - GIK, Warszawa, 1982. Masson, Christine & Mazzotti, Stephane & Vernant, Philippe. (2019). Precision of continuous GPS velocities from statistical analysis of synthetic time series. Solid Earth. 10. 329-342. 10.5194/se-10-329-2019. Matsuoka, Marcelo & Rofatto, Vinicius & Klein, Ivandro & Gomes, Alexandre & Guzatto, Matheus. (2019). Monte Carlo Simulation for Outlier Identification Studies in Geodetic Network: An Example in A Levelling Network Using Iterative Data Snooping. Geoplanning: Journal of Geomatics and Planning. 6. 21. 10.14710/geoplanning.6.1.21-30. Mauro, M., J., van Cranenbroeck, Geodetic and Geotechnical Combined Monitoring Concept, Dam and Reservoir Engineering Surveying, 5505, FIG Working Week 2012, Rome, Italy, 6-10 May, 2012. Meng, X., Real-time Deformation Monitoring of Bridges Using GPS/Accelerometers, University of Nottingham, 2002. Mickrenska-Cherneva C., P., Pavlov, T., Ilieva-Tsvetkova, Guide for Work with Total Stations (in Bulgarian), 2017. Mickrenska-Cherneva, C. (2009). LAND SURVEYING MEASUREMENTS WITH TOTAL STATION IN COORDINATE MODE. International Conference UACEG 2009: Science & Practice. Mikkelsen, P.E., 1996. Field instrumentation. Landslides; investigation and mitigation. Special Re-port Transportation Research Board, National Research Council: 278-316. Miletiev, R., Petar Kapanakov, Emil Iontchev and Rumen Yordanov, Hardware implementation of integrated navigation and inertial system, 40th International Spring Seminar on Electronics Technology (ISSE), Sofia, May 10 – 14, 2017. Miletiev, R., Radostin Kenov, Ivaylo Simeonov, Emil Iontchev, Design of high speed GSM/GPS/INS system for inertial navigation, 20th Saint Petersburg International Conference on Integrated Navigation Systems, Saint Petersburg, Russia, May 27 – 29, 2013. Milev, G., D. Dimitrov, T. Tonkov, G. Lazarov. Instruction for the determination of Deformations of Buildings and Structures by Geodetic Methods (in Bulgarian), GGCC, Sofia, 1980. Milev, G., Milev, I., Applied geodesy, Part 1, Engineering surveying, Book 1: Basics, Systems and technologies of engineering surveying, Union of surveyors and land managers in Bulgaria, Sofia, 2017. Milev, G., Some results of precise geodetic surveys of landslides in the area of Balchik, Geol. inst., ser. geol. and hydrogeol., Books 19-20, 1972. Milev, I., Integrierte Modelle zur physikalischen Interpretation Geodätischer Deformationsuntersuchungen, Dissertationen, Berlin, 2001. Milev, I., L. Gründig, 1999, “Integrated Net Adjustment of Terrestrial and GPS observations”, In Altan/Gründig (Eds.), “Third Turkish-German Joint Geodetic Day”, Istanbul, Turkey, June 1-4,vol.1, 81-89pp. Milev, N., “Interaction of foundations with the Earth's foundation”, PhD Thesis (in Bulgarian), Sofia, 2016. Mironov, Aleksey & Mironovs, Deniss & Kabashkin, Igor. (2018). Advanced Structural Health Monitoring and Diagnostics of Transport, Industrial and Energy Facilities. 10.1007/978-3-319-74454-4_15. The 17th International Multi-Conference “RELIABILITY and STATISTICS in TRANSPORTATION and COMMUNICATION - 2017”. Mirzaii, Zahra & Hasanlou, Mahdi & Samiei Esfahany, Sami & Rojhani, M. & Ajourlou, Parviz. (2019). INSAR TIME SERIES INVESTIGATION OF LAND SURFACE DEFORMATION IN AZAR OIL FIELD. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLII4/W18. 733-736. 10.5194/isprs-archives-XLII-4-W18-733-2019. Morales, Anieri & Amelung, Falk & Mothes, Patricia. (2016). Volcano deformation survey over the Northern and Central Andes with ALOS InSAR time series. Geochemistry, Geophysics, Geosystems. 17. 10.1002/2016GC006393. Moritz, H., B. Hofmann-Wellenhof, ”Geometry, relativity, geodesy”, Karlsruhe, Wichmann, 1993, 367pp. Muryamto, Rochmad & Taftazani, Iqbal & Yulaikhah, Yulaikhah & Cahyono, Bambang & Prasidya, Anindya. (2019). Development and Definition of Prambanan Temple Deformation Monitoring Control Points. JGISE: Journal of Geospatial Information Science and Engineering. 1. 10.22146/jgise.40788. Nan, Shen & Chen, Liang & LIU, Jingbin & Wang, Lei & TAO, Tingye & WU, Dewen & Chen, Ruizhi. (2019). A Review of Global Navigation Satellite System (GNSS)-Based Dynamic Monitoring Technologies for Structural Health Monitoring. Remote Sensing. 11. 1001. 10.3390/rs11091001. Neitzel, F., Identifizierung konsistenter Datengruppen am Beispiel der Kongruenzuntersuchung geodätischer Netze, München, 2004, Verlag der Bayerischen Akademie der Wissenschaften in Kommission bei der C. H. Beck'schen Verlagsbuchhandlung München, ISSN 0065-5325 ISBN 3 7696 5004 2. Neitzel, Frank & Niemeier, W & Weisbrich, Sven & Lehmann, Martin. (2012). Investigation of low-cost accelerometer, terrestrial laser scanner and groundbased radar interferometer for vibration monitoring of bridges. Proceedings of the 6th European Workshop - Structural Health Monitoring 2012, EWSHM 2012. 1. 542 - 551. Newcomen, Waren H., C. Murray and L. Shwydiuk. Monitoring pit wall deformations in real time at Highland Valley Copper. Proceedings of the Fourth International Conference on Computer Applications in the Minerals Industry, Calgary, Alberta, Canada, September 8-10, 2003. Nie, Yufeng & Yang, Ling & Shen, Yunzhong. (2019). Specific Direction-Based Outlier Detection Approach for GNSS Vector Networks, Sensors. 19. 10.3390/s19081836. Niemeier, W. (1985). Deformationsanalyse, In Pelzer (Hrsg.), Geodaetische Netze in Landes-und Ingeniuervemessung II Hearusg. Stuttgart. Niemeier, W., “Zur Nutzung von GPS - Meßergebnissen in Netzen der Landesund Ingenieurvermessung”, ZfV, 117, Nr.8/9, 1992, 542-556pp. Niemeier, W., Kraus, B., Miima, J.-B., Riedel, B., Thomson, S.:Continuous Monitoring of bridges with a motorized total station. 9th FIG International Symposium on Deformation Measurements, Proceedings, Olsztyn, 1999. Nikolov V. A.,Todorov S. P. Interfactory Motor Transport - Ordinary and Specialized in the Heavy Industry., MOTAUTO 2000 PROCEEDING Volume ІІ AUTOMOBILES, TRANSPORT, INFRASTRUCTURE AND AIRCRAFTS. Sofia, 2000. Nikolov, V. (2012). Design and Construction of Roads (in Bulgarian), Higher School of Transport "T. Kableshkov", Sofia. Nikolov, V., & Gadzhov, I. (2012). Handbook for Road Design, First edition, Sofia. Norizan, Faezal & Fadhli, Mohd & Rashid, Abd & Liyana, Nurul & Sa'ari, Radzuan & Ibrahim, Zulkiflee & Mustaffar, Mushairry & Hezmi, Muhammad. (2016). THE APPLICATION OF DIGITAL CLOSE RANGE PHOTOGRAMMETRY FOR MONITORING CHANGES IN CHANNEL PROFILE, The 11 International Civil Engineering Postgraduate Conference-The 1 International Symposium on Expertise of Engineering Design, Malaysia. Nowel, Krzysztof & Kamiński, Waldemar. (2014). Robust estimation of deformation from observation differences for free control networks. Journal of Geodesy. 88. 10.1007/s00190-014-0719-7. Nowel, Krzysztof. (2015). Robust M-Estimation in Analysis of Control Network Deformations: Classical and New Method. Journal of Surveying Engineering. 141. 10.1061/ (ASCE)SU.1943-5428.0000144. Nowel, Krzysztof. (2018). Squared Msplit (q) S-transformation of control network deformations. Journal of Geodesy. 10.1007/s00190-018-1221-4. Ogundare, J., Precision Surveying:The Principles and Geomatics Practice, ISBN: 978-1-119-10251-9, 2015. Okiemute, E., S., (2019). Comparative Analysis of Geodetic Techniques for Monitoring Deformation in Large Structures. 10.5281/zenodo.3385044. Oliveira, José & Larocca, Ana & Neto, João & Cunha, André & Santos, Marcelo & Schaal, Ricardo. (2019). Vibration monitoring of a small concrete bridge using wavelet transforms on GPS data. Journal of Civil Structural Health Monitoring. 4. 12. Omidalizarandi, Mohammad & Neumann, Ingo & Kemkes, Eva & Kargoll, Boris & Diener, D. & Rüffer, J. & Paffenholz, Jens-André. (2019). MEMS BASED BRIDGE MONITORING SUPPORTED BY IMAGE-ASSISTED TOTAL STATION. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLII-4/W18. 833-842. 10.5194/isprs-archivesXLII-4-W18-833-2019. Owerko, Tomasz & Ortyl, Łukasz & Kocierz, Rafał & Kuras, Przemysław & Salamak, Marek. (2012). Investigation of displacements of road bridges under test loads using radar interferometry–Case study. 181-188. 10.1201/b1235219. Papadopoulos, Nestoras & Melissinos, Paraskevas & Ioannis, Katsafados & Georgios, Nikolaidis & Eyaggelos, Anagnwstou. (2019). Deformation detection through the realization of reference frames, 4th Joint International Symposium on Deformation Monitoring (JISDM), 15-17 May 2019, Athens, Greece. Papo, HB, Perelmuter A (1991) Dynamical modeling in deformation analysis. Manuscr. Geod. 18 (5):295–300. Papo, HB, Perelmuter A (1993) Two step analysis of dynamical networks. Manuscr Geod 18 (6):422–430. Pavlov, P., Graphs and geomatics, Monograph(in Bulgarian), Sofia, 2018, ISBN 978-954-795-507-3 Paziewski, Jacek & Sieradzki, Rafal & Baryla, Radoslaw. (2019). Detection of Structural Vibration with High-Rate Precise Point Positioning: Case Study Results Based on 100 Hz Multi-GNSS Observables and Shake-Table Simulation. Sensors. 19. 4832. 10.3390/s19224832. Pehlivan, Hüseyin & Aydin, Ömer & Gülal, Engin & Bilgili, Erdem. (2013). Determining the behaviour of high-rise structures with geodetic hybrid sensors. Geomatics, Natural Hazards and Risk. 6. 1-16. 10.1080/19475705.2013.854280. Pelzer, H. (1974). “Neuere Ergebnisse bei der statistischen Analyse von Deformationsmessungen.” Proceedings of the FIG XIV International Congress, Washington, paper No. 608.3. Pelzer, H., Kinematische und Dynamische Fragestellungen der Ingenieurgeodasie, VR 8, 1993. Pelzer, H., Zur Analyse geodätischer Deformationsmessungen, München, 1971. Penev, P., Designing Networks for Determining Deformations of Engineering Facilities with Predefined Orientation and Size of Error Ellipses, Geodesy, Cartography and Land Management, vol.5, Sofia, 1978. Peneva, E., 2004, А preliminary gravimetric geoid model on the territory of Bulgaria, Allgemeine Vermessungs-Nachrichten, 10-2004, 322-324. Peneva, E., Gospodinov S., Lambeva T., Penev P. (2015) Some Aspects on Basic Gravimetric Network Adjustment. FIG Working Week 2015 “From the Wisdom of the Ages to the Challenges of the Modern World”, Sofia, Bulgaria, 17 – 21 May, 2015. PERELMUTER, A., H.B. PAPO, VELOCITIES OR DISPLACEMENTS, Deformationsanalysen '83: geometrische Analyse und Interpretation von Deformationen Geodätischer Netze, Beiträge zum Geodätischen Seminar, 22. April, 1983. Pesci, А., P.Baldi, A.Bedin, G.Casula, N.Cenni, M.Fabris, F.Loddo, P.Mora, М.Bacchetti, Digital elevation models for landslide evolution monitoring: application on two areas located in the Reno River Valley (Italy), Annals of Geophysics, Vol.47, №4, 2004. Petrova, M., Deformation analysis of engineering facility through application of technology „TERRESTRIAL LASER SCANNING“ (in Bulgarian), Presentation, International Jubilee Scientific Conference “75th Anniversary of UACEG”, 1–3 NOVEMBER, 2017. Pipitone, Claudia & Cigna, Francesca & Dardanelli, Gino & Maltese, Antonino & Muller, J.-P & la Loggia, Goffredo. Reservoir monitoring using satellite SAR and GNSS:a case study in southern Italy, Conference:HIC 2018, 13th International Conference on Hydroinformatics, Palermo, September, 2018. Polak, M., Examination of the stability of reference points in distance and combined angle-distance networks, Proceedings of the II International Symposium of deformation measurements by geodetic methods, Germany, 1978. Price, W.F. (2002) Monitoring of glulam structures by theodolite intersection. PhD thesis, University of Nottingham. Qiu, Dongwei & Huang, He & Song, Dongseob. (2012). Deformation Monitoring and Prediction Technique of Existing Subway Tunnel: A Case Study of Guangzhou Subway in China. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography. 30. 10.7848/ksgpc.2012.30.62.623. Quesada-Olmo, Nieves & Jiménez-Martínez, María Jesús & Farjas, Mercedes. (2018). Real-time high-rise building monitoring system using global navigation satellite system technology. Measurement. 123. 10.1016/j.measurement.2018.03.054. Rau, J. & Jhan, Jyun-Ping & Andaru, Ruli. (2019). LANDSLIDE DEFORMATION MONITORING BY THREE-CAMERA IMAGING SYSTEM. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLII-2/W13. 559-565. 10.5194/isprs-archives-XLII-2-W13-559- 2019. Revhaug, I., “A model for the transformation of the satellite vectors to the plane of the map”, Survey Review, 1999, 277-285pp. Rofatto, Vinicius & Matsuoka, Marcelo & Klein, Ivandro & Veronez, Mauricio & Gonzaga da Silveira Jr, Luiz. (2020). A Monte Carlo-Based Outlier Diagnosis Method for Sensitivity Analysis. 10.20944/preprints202001.0298.v1. Rosa, Guilherme & Monico, Galera & Chaves, Joao. (2010). Time series analysis of coordinates estimated with GPS: A methodological approach to detect, remove and recover seasonal effects. Boletim de Ciencias Geodesicas. 16. 51-72. Rózsa, S., ENGINEERING SURVEYING 2., Lecture Notes for the BSc course BMEEOAFASI1, Budapest, 2009. Rueger, J., (2006). Overview of geodetic deformation measurements of dams, ANCOLD Conference. Sanlioglu, Ismail & Zeybek, Mustafa & Yigit, Cemal. (2016). Landslide Monitoring with GNSS-PPP on Steep-Slope and Forestry Area: Taşkent Landslide. Santos, Renaude & Larocca, Ana & Neto, João & Barros Barbosa, Augusto & Oliveira, José. (2019). Detection of a curved bridge deck vibration using robotic total stations for structural health monitoring. Journal of Civil Structural Health Monitoring. 9. 1-14. 10.1007/s13349-019-00322-1. Savšek, Simona & Ambrožič, Tomaž & Kogoj, Dušan & Božo, Koler & Oskar, Sterle & Stopar, Bojan. (2010). Geodesy in geotechnics. Geodetski vestnik. 54. 031-045. 10.15292/geodetski-vestnik.2010.01.031-045. Savšek, Simona & Ambrožič, Tomaž & Stopar, Bojan & Turk, Goran. (2006). Determination of Point Displacements in the Geodetic Network. Journal of Surveying Engineering-asce - J SURV ENG-ASCE. 132. 10.1061/ (ASCE)07339453 (2006)132:2 (58). Savšek, Simona. (2017). An alternative approach to testing displacements in a geodetic network. Geodetski Vestnik. 61. 387-411. 10.15292//geodetskivestnik.2017.03.387-411. Savšek-Safić, S., Tomaž Ambrožič, Bojan Stopar, Dušan Kogoj: Local stability monitoring of the Koper tide gauge station. Allgemeine Vermess-sungsNachrichten, letn. 115, št. 6. Heidelberg, 2008, str. 210–215. Scaioni, Marco & Marsella, M & Crosetto, Michele & Tornatore, Vincenza & Wang, Jin. (2018). Geodetic and Remote-Sensing Sensors for Dam Deformation Monitoring. Sensors. 18. 3682. 10.3390/s18113682. Schill, Florian & Eichhorn, Andreas. (2019). Deformation Monitoring of Railway Bridges with a Profile Laser Scanner. ZFV - Zeitschrift fur Geodasie, Geoinformation und Landmanagement. 144. 109-118. 10.12902/zfv-02482018. Schödlbauer, A., K. Krack, H. Glasmacher, 1989. “Densification of horizontal networks by GPS“, Proceedings of the Fifth International Symposium on Satellite Positioning , Las Crues, New Mexico, March 13-17, vol. 2, 10901103pp. Schofield, W., Breach, M., Engineering Surveying, Sixth Edition, 2007. Schön, S., Comparison of correction models for distance dependent systematic effects in GPS monitoring networks with large height differences, 3rd IAG/12th FIG Symposium, Baden, May 22-24, 2006. SEDLÁK, V., Miloš JEČNÝ, Marián MESÁROŠ, Monitoring static deformation of the bulk dam in the EAST SLOVAKIA, LNEC, LISBON, May 12-15, 2008. Sedlák, Vladimír & Hofierka, Jaro & Gallay, Michal & Kaňuk, Ján. (2018). Specific solution of 3D deformation vector in mine subsidence: A case study of the Košice-Bankov abandoned magnesite mine, Slovakia. Archives of Mining Sciences. 63. 511-531. 10.24425/122910. Seeber, G., “Satellitengeodäsie“, Berlin, de Gruyter, 1993, 531pp. Setan, Halim, Ranjit Singh, Deformation analysis of a geodetic monitoring network, Center for Industrial Measurement and Engineering Surveying, Faculty of Geoinformation Science and Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia, Geomatica. Vol. 55, No. 3, 2001. Shahar, L., Even-Tzur, G., (2014) Definition of dynamic datum for deformation monitoring: carmel fault environs as a case study. J Surv. Eng. 140 (2):04014002. Shestakov, Nikolay & Waithaka, Edward & Kasahara, M & Gerasimenko, Mikhail. (2005). Two examples of optimal design of geodynamic GPS networks. 10.1007/3-540-27432-4_91. SHU, K., HIGH RISE BUILDING MOVEMENT MONITORING USING RTK-GPS (CASE STUDY: MENARA SARAWAK ENTERPRISE), Thesis, (Geomatic Engineering) Faculty of Geoinformation Science and Engineering, Universiti Teknologi Malaysia, 2005. Singh, Vineet & Dwivedi, Ramji & Dikshit, Onkar & Singh, Ajai. (2016). FirstOrder Design of GPS Networks Using Particle Swarm Optimization. Journal of Surveying Engineering. 142. 04016002. 10.1061/ (ASCE)SU.1943- 5428.0000176. Soldo, Jure & Ambrožič, Tomaž. (2018). Deformation analysis:The München approach. Geodetski vestnik. 62. 10.15292/geodetski-vestnik.2018.03.392414. Specht, Cezary & Koc, Władysław & Chrostowski, Piotr & Szmagliński, Jacek. (2019). Metrology and Measurement Systems Accuracy Assessment of Mobile Satellite Measurements in Relation to the Geometrical Layout of Rail Tracks. Metrology and Measurement Systems. 26. 309-321. 10.24425/mms.2019.128359. Stolz, A., ”An introduction to geodesy”, Monograph, School of Geomatic Engineering, The University of New South Wales, Sydney, 1994, 112pp. Strang, G., K.Borre, ”Linear algebra, geodesy and GPS”, Wellesley-Cambridge Press, 1997, 624pp. Sušić, Zoran & Batilović, Mehmed & Ninkov, Toša & Aleksić, Ivan & Bulatovic, Vladimir. (2015). Identification of movements using different geodetic methods of deformation analysis. Geodetski vestnik. 59. 537-553. 10.15292/geodetskivestnik.2015.03.537-553. Sütti, Juraj, Török, Csaba. (1996). Testing 3D displacement vectors by confidence ellipsoids. Acta Montanistica Slovaca. 1. Talich, Milan. (2016). The Deformation Monitoring of Dams by the GroundBased InSAR Technique-Case Study of Concrete Hydropower Dam Orlík. Vol. 3. 192-197. 10.15242/IJAAEE.A0416051. Tang, Xu & Roberts, Gethin & Li, Xingxing & Hancock, Craig. (2017). Real-time kinematic PPP GPS for structure monitoring applied on the Severn Suspension Bridge, UK. Advances in Space Research. 10.1016/j.asr.2017.05.010. Taşçi, L., (2010). Analysis of dam deformation measurements with the robust and non-robust methods. Scientific Research and Essays. 5. 1770-1779. Teke, Kamil & Yalcınkaya, Mualla & Konak, Haluk. (2008). Optimization of GPS networks for landslide areas. Fresenius Environmental Bulletin. 17. Todorov, S., P., Nikolov, V., A Repairs Technology and Routine Maintenance of Interfactory Transport in MK DEBELT, MOTAUTO 2000 PROCEEDING Volume ІІ AUTOMOBILES, TRANSPORT, INFRASTRUCTURE AND AIRCRAFTS. Sofia, 2000. Torge,W., “Geodäsie“ 3.ed., Berlin, de Gruyter , 2001, 416pp. Tsanovski, J., Application of GNSS for the research of displacements of points of eartfill dams (in Bulgarian), PhD Thesis, Sofia, 2014. Tsanovski, Yuri & Danchev, Tsocho. (2019). Practical Application of a Horizontal Intraplate Velocity Field Model for the Territory of Bulgaria. IOP Conference Series: Earth and 10.1088/1755-1315/362/1/012040. Environmental Science. 362. 012040. Tsanovski, Yuri. (2017). Resistance of control points in deformation networks. UACEG, 22. 35-50. Tsenkov, T., I., Georgiev, L., Pashova, I., Radev, D., Georgiev, Monitoring of landslide processes in the region of the Botanical garden of BAC, GEOSCIENCES, 2006. Tsenkov, Ts., Interpretation of geodetic data for studying the modern dynamics of landslide processes, Dissertation, 1983. Tsonkov, A., Determination of invariant deformation characteristics by surveying measurements, PhD Thesis, 2018. Tsvetkov, Roman & Shardakov, Igor & Shestakov, A & Yepin, V. (2018). Online Deformation Monitoring of Building Estate Above Mining. 10.1007/978981-10-7197-3_11. Ustinov, Alexander & Kaftan, Vladimir. (2019). Technology of Geodetic Monitoring of Hydropower Structures During Compensation Grouting. Power Technology and Engineering. 10.1007/s10749-019-01049-1. Valcheva S., Yovev I., Grebenitcharsky R., Tidal Systems and Reductions for Improvement of the Bulgarian National Vertical Reference System. In: Marti U. (eds) Gravity, Geoid and Height Systems. International Association of Geodesy Symposia, vol.141, Springer, 2014. Valchinov, V., T., Kostadinov. Marine Surveying, Sofia, UACEG, 2000. Valev, G., M., Minchev, “Combined adjustment of GPS and classical network data“, Veröffentlichungen der Bayerischen Kommission für die internationale Erdmessung, Heft Nr.56, 1995, 213-220pp. Valev, G., Y., Yunakov. Alignment of an astronomy-geodetic network in spatial coordinates at known heights above the ellipsoid. Geodesy, Cartography, Land Management. S. 1990, issue. 1. Van Sickle J., GPS for Land Surveyors, CRC Press, 2001. Vārna, Inese & Haritonova, Diana & Balodis, Janis. (2019). Velocity Fields of the Latvian CORS Station Daily Coordinates for 2012-2017. Geophysica. 54. 137-144. Vassileva, Keranka. (2013). Effect of Datum Definition on Estimated Station Velocities from GPS Solutions-Case study, 7th Congress of Balkan Geophysical Society – Tirana, Albania, 10.3997/2214-4609.20131723. Velsink, H., The Elements of Deformation Analysis, Blending Geodetic Observations and Deformation Hypotheses, Publications on Geodesy 92, 2018. Vincenty, T., “Methods of adjusting space systems data and terrestrial measurements”, Bull. Geod., vol. 56, 1982, 231-241pp. Vrecko, Anja & Ambrožič, Tomaž. (2013). Deformation analysis:The fredericton approach. Geodetski vestnik. 57. 479-497. 10.15292/geodetski- vestnik.2013.03.479-497. Vulić, M., Ana Vehovec, Assessment of surface deformation with simultaneous adjustment with several epochs of leveling networks by using nD relative pedaloid, RMZ - Materials and Geoenvironment, Vol. 53, No. 3, 2006. Wan Aziz W.A., Khamarrul A.R., An appropriate GPS technology for landslide monitoring at East-West highway, Perak, Malaysia, MAP ASIA 2003 Conference, October 13-15, Kuala Lumpur, 2003. Wan Aziz, W.A. Othman, Z. and Nagib, H. (2001). Monitoring High-rise Building Deformation Using Global Positioning System, International Net Published Paper, Department of Geomatics, Faculty of Engineering and Geoinfor-mation Science, University Technology-Malysia, Skudai Malaysia. Wang, Jin, Block-to-Point Fine Registration in Terrestrial Laser Scanning, Remote Sensing 2013, 5 (12), 6921-6937. Wasilewski Al., Z. Rzepecka, St. Oszczak, Studies Of Displacements Of GPS Stations on Polish Copper Basin Area, The 10th FIG International Symposium on Deformation Measurements, 2001. Welsch, W. (1983a): Finite element analysis of strain patterns from geodetic observations across a plate margin., Tectonophysics, 97 (1983), Elsevier Science Publishers B.V., Amsterdam, pp. 57-71. Welsch, W., “A general 7-parameter transformation for the combination, comparison and accuracy control of terrestrial and satellite network observations“, Manuscripta geodaetica, 18, 1993, 295-305pp. Welsch, W., O., Heunecke, Models And Terminology For The Analysis Of Geodetic Monitoring Observations, The 10th FIG International Symposium on Deformation Measurements, 2001. Welsch, W., W. Satellitennetzen Oswald, und “Kombinierte terrestrischen Ausgleichung Netzen”, In messungen”, Hochschule der Bundeswehr München, Heft von Doppler - “Satelliten-Doppler Nr.15, 1984, 155- 191pp. Whitaker, Cecilia & A. Duffy, Michael & Chrzanowski, Adam. (2019). Design of an Automated Dam Deformation Monitoring System: A Case Study, Journal of Geospatial Engineering, Vol. 2, No.1, pp.23-34. Widjajanti, Nurrohmat & Shinta Emalia, Sherly & Parseno, Parseno. (2018). GNSS Monitoring Network Optimization Case Study:Opak Fault Deformation, Yogyakarta. JGISE: Journal of Geospatial Information Science and Engineering. 1. 10.22146/jgise.38458. Wilkins, Rick & Bastin, Geoffrey & Chrzanowski, Adam & Smith, Purdy. (2002). A Precise, Reliable, and Fully Automatic Real Time Monitoring System for Steep Embankments., CIM, 2002, Vancouver. Wiśniewski, Zbigniew & Duchnowski, Robert & Dumalski, Andrzej. (2019). Efficacy of Msplit Estimation in Displacement Analysis. Sensors. 19. 5047. 10.3390/s19225047. Wolf, H., “Stochastic aspects in combined Doppler and triangulation nets“, Bull. Geod., 56, 1982, 63-69pp. Wolf, Paul R., Charles D. Ghilani. Adjustment computations:statistics and least squares in surveying and GIS, 3rd ed., New York, John Wiley & Sons, 1997. Wunderlich, Thomas & Niemeier, W. & Wujanz, Daniel & Holst, Christoph & Neitzel, Frank & Kuhlmann, Heiner. (2016). Areal Deformation Analysis from TLS Point Clouds–The Challenge. AVN Allgemeine Vermessungs-Nachrichten. 123. 340-351. www.glonass-iac.ru/en/guide/beidou.php#about. Xi, Ruijie & Jiang, Wei-Ping & Meng, X & Chen, Hua & Chen, Qusen. (2018). Bridge monitoring using BDS-RTK and GPS-RTK techniques. Measurement. 120. 10.1016/j.measurement.2018.02.001. Xiao, Ruya & Shi, Hongkai & He, Xiufeng & Li, Zhenhong & Dongzhen, Jia & Yang, Zhixiang. (2019). Deformation Monitoring of Reservoir Dams using GNSS: An Application to South-to-North Water Diversion Project, China, IEEE Access. PP. 1-1. 10.1109/ACCESS.2019.2912143. Xiufeng H., G. Yang, X. Ding, Y. Chen, Application and evaluation of a GPS multiantenna system for dam deformation monitoring, Hong Kong, FIG, 2007. Xu, Hao & Li, Haibo & Yang, Xingguo & Qi, Shunchao & Zhou, Jiawen. (2018). Integration of Terrestrial Laser Scanning and NURBS Modeling for the Deformation Monitoring of an Earth-Rock Dam. Sensors. 19. 22. 10.3390/s19010022. Yadav, Manohar & Lohani, B. & Singh, Ajoy. (2018). ROAD SURFACE DETECTION FROM MOBILE LIDAR DATA. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial 10.5194/isprs-annals-IV-5-95-2018. Information Sciences. IV-5. 95-101. Yankov., I., Geodetic methods for studying the deformations of engineering facilities (in Bulgarian), PhD Thesis, 2009. Yetkin, Mevlut & Inal, Cevat. (2015). Optimal Design of Deformation Monitoring Networks Using the Global Optimization Methods. International Association of Geodesy Symposia. 140. 27-31. 10.1007/978-3-319-108285_5. Yu, Jiayong. (2019). Global Navigation Satellite System‐based positioning technology for structural health monitoring:a review. Structural Control and Health Monitoring. 10.1002/stc.2467. Zachos, D., Pantazis, G., Lambrou, E., The significance of 3D network adjustment by using different least squares methods for the constructions’ monitoring. Application on the monitoring network of the Holy Aedicule in Jerusalem, JISDM, May 15th-17th, Athens, 2019. Zarzoura, Fawzi, Методика прогнозирования деформаций вантовых мостов по данным ГНСС-измерений, Диссертация, Новосибирск, 2015. Zhang, K., Y. Hu, G. Liu, F. Wu, R. Deakin, Deformation monitoring and analysis using Victorian regional CORS data, Journal of Global Positioning Systems, 2005. Zhao, Jingwen & Wu, Jicang & Ding, Xiaoli & Mingzhou, Wang. (2017). Elevation Extraction and Deformation Monitoring by Multitemporal InSAR of Lupu Bridge in Shanghai. Remote Sensing. 9. 897. 10.3390/rs9090897. Zhong, D., W. Welsch, W. Niemeier, “Zur Kompensation von Lotabweichungs und Refraktionseinflüssen auf ingenieurgeodätische Netze”, AVN, Nr.6, 1997, 197-203pp. Zhonghai, Yi & Kuang, Cuilin & Wang, Yarong & Yu, Wenkun & Cai, Changsheng & Dai, Wujiao. (2018). Combination of High- and Low-Rate GPS Receivers for Monitoring Wind-Induced Response of Tall Buildings. Sensors. 18. 4100. 10.3390/s18124100. Zhou, L & Huang, D & Li, C & Zhou, D. (2007). Algorithm for GPS network construction based on spherical Delaunay triangulated irregular network. Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University. 42. 380-383. Zienkiewicz, Marek. (2014). Application of M split estimation to determine control points displacements in networks with unstable reference system. Survey Review. 47. 1752270614Y.000. 10.1179/1752270614Y.0000000105. Zienkiewicz, MH, Hejbudzka K, Dumalski A: Multi split functional geodetic model of observations in deformation analyses of the Olsztyn Castle. Acta Geodyn. Geomater., 14, No. 2 (186), 195–204, 2017. DOI: 10.13168/AGG.2017.0003. Ziółkowski, Patryk & Szulwic, Jakub & Miśkiewicz, Mikołaj. (2018). Deformation Analysis of a Composite Bridge during Proof Loading Using Point Cloud Processing. Sensors. 18. 4332. 10.3390/s18124332. Zrinjski, Mladen & Barković, Đuro & Tupek, Antonio. (2019). Testing and Analysis of Chimney Verticality. Geodetski List. 73 (96). 239-260. Богомолова, Н., ГЕОДЕЗИЧЕСКИЙ МОНИТОРИНГ ТРАНСПОРТНЫХ ТОННЕЛЕЙ, СООРУЖАЕМЫХ ГОРНЫМ СПОСОБОМ, Диссертация, 2014. Вьет, Н.,Х., Разработка методики оценки вертикальных смещений оснований зданий и сооружений на основе анализа элементов модели деформационной сети, Диссертация, Санкт-Петербургский горный университет, Санкт-Петербург, 2018. Герасименко, ДВИЖЕНИЙ М.Д., И ИЗМЕРЕНИЯМ. Н.В. Шестаков, ДЕФОРМАЦИЙ Учебно-метод. А.Г. ЗЕМНОЙ пособие Коломиец, КОРЫ ПО ГЕОДЕЗИЧЕСКИМ Инженерная - ОПРЕДЕЛЕНИЕ школа ДВФУ. — Владивосток: Дальневост. федерал. ун-т, 2017. Дьяков, Б.Н., Сравнительный анализ способов Костехеля и Марчака, Маркшейдерский вестник, 2009, №6. Жуков, Б. Н., В. А. Скрипников, И. О. Сучков, ПРИКЛАДНАЯ ГЕОДЕЗИЯ, Геодезический контроль сооружений и оборудования в процессе строительства и эксплуатации, Новосибирск СГГА, 2013. Жуков, Б.Н., РУКОВОДСТВО ПО ГЕОДЕЗИЧЕСКОМУ КОНТРОЛЮ СООРУЖЕНИЙ И ОБОРУДОВАНИЯ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ ПРИ ИХ ЭКСПЛУАТАЦИИ, ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ, Новосибирск, 2004. Иванов, Р., В. Николов, К. Костов, “Современные геодезические технологии для определения геометрии железной дороги”, The Fifth International Conference “Heavy Machinery HM 2005”, Kraljevo, 28 June-03 July 2005, 1D.23-1D.24. Калинченко, И., ИСЛЕДОВАНИЯ МОНИТОРИНГА С., ПО РАЗРАБОТКА ОПТИМИЗАЦИИ ГЕОТЕХНИЧЕСКИХ ТЕХНОЛОГИЧЕСКИХ МЕТОДИКИ СИСТЕМ РЕШЕНИЙ И ГЕОДЕЗИЧЕСКОГО ЗАПОЛЯРЬЯ, Диссертация, Новосибирск, 2014. Карпенко, В.А., Корреляционный анализ осадки фундамента конвейера ШС-1000, Известия вузов “Геодезия и аэрофотосъемка”, Москва, №3, 1966. Карпенко, В.А., Методика анализа осадок сооружений значительного протяжения средствами математической статистики: Автореферат диссертации на соискание ученой степени кандидата технических наук, Москва, 1966. Миловановић, Б., ЛИНЕАРНО И НЕЛИНЕАРНО МОДЕЛИРАЊЕ ГЕОДЕТСКИ РЕГИСТРОВАНИХ ДЕФОРМАЦИОНИХ ПРОЦЕСА КОНСТРУКЦИЈА, докторска дисертација, Београд, 2012. Миловановић, Б., ДЕФОРМАЦИЈА С. Ашанин, ГРАЂЕВИНСКИХ З. Мишковић, МЕТОДЕ ОДРЕЂИВАЊА КОНСТРУКЦИЈА–Грађевински Факултет, Београд, 2008. Пенев, П., Анализ устойчивости реперов высотной основы, Изв. ВУЗ “ Геодезия и аэрофотосъемка”, кн.4 , Москва, 2005. Пенев, П., Оптимизация сетей для определения горизонтальньх деформации плотин, In: Symposium “Automated processing of surveying data”, Varna, 1980. Пенев, П., Пенева, Е., (2012) Преобразование прямоугольных геоцентрических координат в геодезические без применения итерации. Известия высших учебных заведений. геодезия и аэрофотосъемка, №3, Москва. Стороженко, А. Ф., Метод анализа устойчивости реперов, ИВУЗ, Геод. и аэрофотосьемка, 1972. Черников, В. Ф., Создание высотной опорной сети для наблюдений за осадками промышленных сооружений. Изв. ВУЗ-ов, Геод. и аэрофотосьемка, 5, 1963. ШАРОГЛАЗОВА, Г.А., ЩЕРБИЦКИЙ И.Н., КОРОВКИН Применение В.Н., метода СОЛОВЬЕВ А.Н., Христова к ТОВБАС С.К., исследованию вертикальных движений земной коры, Вестн. Полоц. гос.ун-та. Прикладные науки, Строительство, N12, 2008. Шеховцов, Г., определения Р., Шеховцова, деформаций Новгород, ННГАСУ, 2009. „Современные инженерных геодезические сооружений”, методы Монография, Н. ENGINEERING SURVEYING AND DEFORMATION SURVEYS © Roumen Anguelov Ivanov 2020 ISBN 978-954-12-0272-2 First edition Reviews: 1. Prof. Valentin A. Nikolov, PhD 2. Assoc. Prof. Christina O. Mickrenska-Cherneva, PhD Address of the author: Higher School of Transport “Todor Kableshkov”, 1574 Sofia, 158 Geo Milev Street, BULGARIA E-mail: rang75@hotmail.com