buku yang penulis angkat adalah buku yang membahas tentang Pemrograman MFC pada program Microsoft Visual Studio C++. Yang dimaksud tema dari judul yang diangkat yaitu proses untuk mengemplementasikan urutan langkah untuk menyelesaikan... more
buku yang penulis angkat adalah buku yang membahas tentang Pemrograman MFC pada program Microsoft Visual Studio C++. Yang dimaksud tema dari judul yang diangkat yaitu proses untuk mengemplementasikan urutan langkah untuk menyelesaikan suatu masalah dalam bentuk program dengan memanfaatkan aplikasi MFC yang ada pada Microsoft Visual Studio C++.
The surface morphology of biocathode was one of the limiting factors for microbial fuel cell (MFC) design. Up-flow membrane-less single-chambered MFC (UFML MFC) was used to investigate the effect of surface morphology of carbon material... more
The surface morphology of biocathode was one of the limiting factors for microbial fuel cell (MFC) design. Up-flow membrane-less single-chambered MFC (UFML MFC) was used to investigate the effect of surface morphology of carbon material as aqueous biocathode. Pt-loaded carbon paper, carbon felt, and carbon plate were examined and compared on the power output, surface morphology for biofilm formation, Cou-lombic efficiency (CE), and chemical oxygen demand (COD) reduction. The COD reduction was up to 90 % in UFML MFC with Pt-loaded carbon paper, carbon felt, and carbon plate as aqueous biocathodes. The results obtained showed that the performance in voltage output was not related to internal resistance but mainly due to the ability of cathode material in oxygen reduction process. The performance of voltage output with different materials as aqueous biocathode was mainly based on to the surface morphology as it was related to the ability of biofilm formation. Roughness of aqueous biocathode's surface morphology could prompt the bio-film growth, while biofilm overgrowth on aqueous biocathode could decrease voltage output. Therefore, smoother surface morphology of aqueous biocathode is more suitable for long-term operation.
ABSTRACTFour types of titanium (Ti)-based electrodes were tested in the same microbial fuel cell (MFC) anodic compartment. Their electrochemical performances and the dominant microbial communities of the electrode biofilms were compared.... more
ABSTRACTFour types of titanium (Ti)-based electrodes were tested in the same microbial fuel cell (MFC) anodic compartment. Their electrochemical performances and the dominant microbial communities of the electrode biofilms were compared. The electrodes were identical in shape, macroscopic surface area, and core material but differed in either surface coating (Pt- or Ta-coated metal composites) or surface texture (smooth or rough). The MFC was inoculated with electrochemically active, neutrophilic microorganisms that had been enriched in the anodic compartments of acetate-fed MFCs over a period of 4 years. The original inoculum consisted of bioreactor sludge samples amended withGeobacter sulfurreducensstrain PCA. Overall, the Pt- and Ta-coated Ti bioanodes (electrode-biofilm association) showed higher current production than the uncoated Ti bioanodes. Analyses of extracted DNA of the anodic liquid and the Pt- and Ta-coated Ti electrode biofilms indicated differences in the dominant b...
Background: Herbal medicines have long been used for various ailments in various societies and natural bioactive compounds are gaining more and more importance due to various factors. In this context, three plant species i.e., Eryngium... more
Background: Herbal medicines have long been used for various ailments in various societies and natural bioactive compounds are gaining more and more importance due to various factors. In this context, three plant species i.e., Eryngium caeruleum, Notholirion thomsonianum and Allium consanguineum have been aimed for the scientific verification of their purported traditional uses against various infectious diseases. Methods: In this study, three plants were assayed for antibacterial and antifungal potentials. The antibacterial investigations were performed via well diffusion method and nutrient broth dilution method. The bacterial strains used in the study were Enterococcus faecalis, Proteus mirabilis, Escherichia coli, Salmonella typhi, Klebsiella pneumonia and Pseudomonas aeruginosa. The antifungal potential was investigated by dilution method of Muller-Hinton agar media of the plants' samples. The fungal strains used were Aspergillis fumigatus, Aspergillis flavus and Aspergillis niger. Ceftriaxone and nystatin were used as standard drugs in antibacterial and antifungal assays respectively.
Background: Herbal medicines have long been used for various ailments in various societies and natural bioactive compounds are gaining more and more importance due to various factors. In this context, three plant species i.e., Eryngium... more
Background: Herbal medicines have long been used for various ailments in various societies and natural bioactive compounds are gaining more and more importance due to various factors. In this context, three plant species i.e., Eryngium caeruleum, Notholirion thomsonianum and Allium consanguineum have been aimed for the scientific verification of their purported traditional uses against various infectious diseases. Methods: In this study, three plants were assayed for antibacterial and antifungal potentials. The antibacterial investigations were performed via well diffusion method and nutrient broth dilution method. The bacterial strains used in the study were Enterococcus faecalis, Proteus mirabilis, Escherichia coli, Salmonella typhi, Klebsiella pneumonia and Pseudomonas aeruginosa. The antifungal potential was investigated by dilution method of Muller-Hinton agar media of the plants' samples. The fungal strains used were Aspergillis fumigatus, Aspergillis flavus and Aspergillis niger. Ceftriaxone and nystatin were used as standard drugs in antibacterial and antifungal assays respectively.