As part of a program to assess the adverse biological effects expected from astronaut exposure to space radiation, numerous different biological effects relating to astronaut health have been evaluated. There has been major focus recently... more
As part of a program to assess the adverse biological effects expected from astronaut exposure to space radiation, numerous different biological effects relating to astronaut health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronaut vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), ...
Changes to cognition, including memory, following radiation exposure are a concern for cosmic ray exposures to astronauts and in Hadron therapy with proton and heavy ion beams. The purpose of the present work is to develop computational... more
Changes to cognition, including memory, following radiation exposure are a concern for cosmic ray exposures to astronauts and in Hadron therapy with proton and heavy ion beams. The purpose of the present work is to develop computational methods to evaluate microscopic energy deposition (ED) in volumes representative of neuron cell structures, including segments of dendrites and spines, using a stochastic track structure model. A challenge for biophysical models of neuronal damage is the large sizes (> 100µm) and variability in volumes of possible dendritic segments and pre-synaptic elements (spines and filopodia). We consider cylindrical and spherical microscopic volumes of varying geometric parameters and aspect ratios from 0.5 to 5 irradiated by protons, and (3)He and (12)C particles at energies corresponding to a distance of 1cm to the Bragg peak, which represent particles of interest in Hadron therapy as well as space radiation exposure. We investigate the optimal axis length...
Astronauts could be exposed to solar particle event (SPE) radiation, which is comprised mostly of proton radiation. Proton radiation is also a treatment option for certain cancers. Both astronauts and clinical patients exposed to ionizing... more
Astronauts could be exposed to solar particle event (SPE) radiation, which is comprised mostly of proton radiation. Proton radiation is also a treatment option for certain cancers. Both astronauts and clinical patients exposed to ionizing radiation are at risk for white blood cell (WBC) loss, which are the body's main defense against infection. In this report, the effect of Neulasta treatment, a granulocyte colony stimulating factor, after proton radiation exposure is discussed. Mini pigs exposed to total body proton irradiation at a dose of 2 Gy received 4 treatments of either Neulasta or saline injections. Peripheral blood cell counts and thromboelastography parameters were recorded up to 30 days post-irradiation. Neulasta significantly improved white blood cell (WBC), specifically neutrophil, loss in irradiated animals by approximately 60% three days after the first injection, compared to the saline treated irradiated animals. Blood cell counts quickly decreased after the las...
Cet ebook propose un entretien avec le Dr Cameron Smith, anthropologue de la colonisation spatiale et professeur à la Portland State University. Il comprend également un avant-propos inédit de l’interviewé et 5 fiches permettant une... more
Cet ebook propose un entretien avec le Dr Cameron Smith, anthropologue de la colonisation spatiale et professeur à la Portland State University.
Il comprend également un avant-propos inédit de l’interviewé et 5 fiches permettant une meilleure appréhension du sujet :
* Le vaisseau générationnel : « paquebot » de l’espace * La colonisation de l’espace en question * Vaisseaux interstellaires et habitats spatiaux * Faisabilité d’un voyage à bord d’un vaisseau générationnel * Deux initiatives d’avenir : Copenhaguen Suborbitals et Icarus Interstellar
The interest in re-using flown hardware for new and different space biology experiments is increasing. To match the constraints of the flown hardware with the requirements of the new biological system, innovative methodological approaches... more
The interest in re-using flown hardware for new and different space biology experiments is increasing. To match the constraints of the flown hardware with the requirements of the new biological system, innovative methodological approaches are necessary. MULTITROP was a successful plant biology experiment that was performed on the ISS to investigate multiple-tropism interactions during the early stage of seedling growth. We used the hardware designed and flown for the IFOAM experiment in 2009. The main challenge was to implement seeds of a crop species in a growth chamber conceived for yeast culture and to grow the seedlings in microgravity condition but activating seed germination on ground before the launch. Our approach was to adapt the biological system to the hardware constraints and also to the experiment timing and the environmental factors expected during the prelaunch, launch and flight operations. We looked for an objective and repeatable method to effectively select the be...
A recently developed biologically motivated dynamical model of the assessment of the excess relative risk (ERR) for radiogenic leukemia among acutely/continuously irradiated humans (Smirnova, 2015, 2017) is applied to estimate the ERR for... more
A recently developed biologically motivated dynamical model of the assessment of the excess relative risk (ERR) for radiogenic leukemia among acutely/continuously irradiated humans (Smirnova, 2015, 2017) is applied to estimate the ERR for radiogenic leukemia among astronauts engaged in long-term interplanetary space missions. Numerous scenarios of space radiation exposure during space missions are used in the modeling studies. The dependence of the ERR for leukemia among astronauts on several mission parameters including the dose equivalent rates of galactic cosmic rays (GCR) and large solar particle events (SPEs), the number of large SPEs, the time interval between SPEs, mission duration, the degree of astronaut's additional shielding during SPEs, the degree of their additional 12-hour's daily shielding, as well as the total mission dose equivalent, is examined. The results of the estimation of ERR for radiogenic leukemia among astronauts, which are obtained in the framewor...
Segmental bone defects (SBDs) secondary to trauma invariably result in a prolonged recovery with an extended period of limited weight bearing on the affected limb. Soldiers sustaining blast injuries and civilians sustaining high energy... more
Segmental bone defects (SBDs) secondary to trauma invariably result in a prolonged recovery with an extended period of limited weight bearing on the affected limb. Soldiers sustaining blast injuries and civilians sustaining high energy trauma typify such a clinical scenario. These patients frequently sustain composite injuries with SBDs in concert with extensive soft tissue damage. For soft tissue injury resolution and skeletal reconstruction a patient may experience limited weight bearing for upwards of 6 months. Many small animal investigations have evaluated interventions for SBDs. While providing foundational information regarding the treatment of bone defects, these models do not simulate limited weight bearing conditions after injury. For example, mice ambulate immediately following anesthetic recovery, and in most cases are normally ambulating within 1-3 days post-surgery. Thus, investigations that combine disuse with bone healing may better test novel bone healing strategies...
NASA has funded several projects that have provided evidence for the radiation risk in space. One radiation concern arises from solar particle event (SPE) radiation, which is composed of energetic electrons, protons, alpha particles and... more
NASA has funded several projects that have provided evidence for the radiation risk in space. One radiation concern arises from solar particle event (SPE) radiation, which is composed of energetic electrons, protons, alpha particles and heavier particles. SPEs are unpredictable and the accompanying SPE radiation can place astronauts at risk of blood cell death, contributing to a weakened immune system and increased susceptibility to infection. The doses, dose rates, and energies of the proton radiation expected to occur during a SPE have been simulated at the NASA Space Radiation Laboratory, Brookhaven National Laboratory, delivering total body doses to mice. Hematological values were evaluated at acute time points, up to 24 hrs. post-radiation exposure.