Selection Path for Energy-Efficient Food Waste Management in Urban Areas: Scenario Analysis and Insights from Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Technology Selection Criteria
2.2. Demographic Analysis and Classification of Areas
2.3. Scenario Analysis
2.4. Energy Potential Analysis
3. Results
3.1. The Current State of Food Waste Processing Technologies
3.2. Demographic Changes in Poland
3.3. Food Waste Generation in Poland
3.4. Spatial FW Generation Rate
3.5. Energy Potential of FW in Poland
4. Discussion
4.1. Technology Selection Analysis
4.2. A Vision for Food Waste Processing Technologies in Poland by 2030 and 2050
4.2.1. Short-Term Perspective
4.2.2. Long-Term Perspective
4.3. Energy Potential
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Flanagan, K.; Robertson, K.; Hanson, C. Reducing Food Loss and Waste: Setting a Global Action Agenda; WRI Publications: Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- Martin-Rios, C.; Arboleya, J.; Bolton, J.; Erhardt, N. Editorial: Sustainable Food Waste Management. Front. Sustain. Food Syst. 2022, 6, 885250. [Google Scholar] [CrossRef]
- Amato, C.; Jerie, S.; Mutekwa, T.V. Impacts of Solid Waste Management Strategies in Urban High-Density Suburbs: A Case of Amaveni Suburb, Kwekwe, Zimbabwe. Discov. Environ. 2024, 2, 97. [Google Scholar] [CrossRef]
- Tamasiga, P.; Miri, T.; Onyeaka, H.; Hart, A. Food Waste and Circular Economy: Challenges and Opportunities. Sustainability 2022, 14, 9896. [Google Scholar] [CrossRef]
- Garcia-Garcia, G.; Woolley, E.; Rahimifard, S. A Framework for a More Efficient Approach to Food Waste Management. Int. J. Food Eng. 2015, 1, 65–72. [Google Scholar] [CrossRef]
- Papargyropoulou, E.; Lozano, R.; Steinberger, J.K.; Wright, N.; bin Ujang, Z. The food waste hierarchy as a framework for the management of food surplus and food waste. J. Clean. Prod. 2014, 76, 106–115. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, H.; Vittuari, M.; Wu, J.A.; Wang, Y. Mapping quantity, composition, and embedded environmental impacts of post-consumer waste in the food service industry in China. Waste Manag. 2024, 187, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food waste within food supply chains: Quantification and potential for change to 2050. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3065–3081. [Google Scholar] [CrossRef]
- Ferdeș, M.; Zăbavă, B.Ș.; Paraschiv, G.; Ionescu, M.; Dincă, M.N.; Moiceanu, G. Food Waste Management for Biogas Production in the Context of Sustainable Development. Energies 2022, 15, 6268. [Google Scholar] [CrossRef]
- Tursun, Y.; Xu, S.; Abulikemu, A.; Dilinuer, T. Biomass gasification for hydrogen rich gas in a decoupled triple bed gasifier with olivine and NiO/olivine. Bioresour. Technol. 2019, 272, 241–248. [Google Scholar] [CrossRef]
- Zhou, J.; Li, D.; Zhang, X.; Liu, C.; Chen, Y. Valorization of protein-rich waste and its application. Sci. Total Environ. 2023, 901, 166141. [Google Scholar] [CrossRef]
- Bujak, J.; Sitarz, P. Incineration of animal by-products–The impact of selected parameters on the flux of flue gas enthalpy. Waste Manag. 2016, 50, 309–323. [Google Scholar] [CrossRef]
- Diaz-Ruiz, R.; Costa-Font, M.; López-i-Gelats, F.; Gil, J.M. Food waste prevention along the food supply chain: A multi-actor approach to identify effective solutions. Resour. Conserv. Recycl. 2019, 149, 249–260. [Google Scholar] [CrossRef]
- Lelicińska-Serafin, K.; Manczarski, P.; Rolewicz-Kalińska, A. An Insight into Post-Consumer Food Waste Characteristics as the Key to an Organic Recycling Method Selection in a Circular Economy. Energies 2023, 16, 1735. [Google Scholar] [CrossRef]
- Bojanowicz-Bablok, A.; Bidłasik, M.; Horak, N.; Kuśmierz, A.; Potapowicz, I. The Institute of Environmental Protection; National Research Institute: Warsaw, Poland, 2024; ISBN 978-83-972509-2-5. Available online: https://open.icm.edu.pl/handle/123456789/24728 (accessed on 20 November 2024).
- Eurostat. Food Waste and Food Waste Prevention—Estimates. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Food_waste_and_food_waste_prevention_-_estimates (accessed on 30 November 2024).
- Institute of Environmental Protection—Conference Material. Available online: https://ios.edu.pl/wp-content/uploads/2024/09/konferencja-mrirw.pdf (accessed on 6 December 2024).
- Dou, Z.; Toth, J.D. Global primary data on consumer food waste: Rate and characteristics—A review. Resour. Conserv. Recycl. 2021, 168, 105332. [Google Scholar] [CrossRef]
- European Parliament and Council. Consolidated Text: Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives (Text with EEA Relevance); European Union: Brussels, Belgium, 2024; Available online: http://data.europa.eu/eli/dir/2008/98/2024-02-18 (accessed on 20 December 2024).
- Teigiserova, D.A.; Hamelin, L.; Thomsen, M. Towards transparent valorization of food surplus, waste and loss: Clarifying definitions, food waste hierarchy, and role in the circular economy. Sci. Total Environ. 2020, 706, 136033. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Tester, J.W. Sustainable management of unavoidable biomass wastes. Green. Energy Res. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Elgarahy, A.M.; Eloffy, M.G.; Alengebawy, A.; El-Sherif, D.M.; Gaballah, M.S.; Elwakeel, K.Z.; El-Qelish, M. Sustainable management of food waste; pre-treatment strategies, techno-economic assessment, bibliometric analysis, and potential utilizations: A systematic review. Environ. Res. 2023, 225, 115558. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Sarsaiya, S.; Wainaina, S.; Rajendran, K.; Awasthi, S.K.; Liu, T.; Duan, Y.; Jain, A.; Sindhu, R.; Binod, P.; et al. Techno-economics and life-cycle assessment of biological and thermochemical treatment of bio-waste. Renew. Sustain. Energy Rev. 2021, 144, 110837. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, Y.; Wang, S.; Wu, G.; Zhan, X. A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies. Renew. Sustain. Energy Rev. 2023, 176, 113208. [Google Scholar] [CrossRef]
- Menzel, T.; Neubauer, P.; Junne, S. Role of microbial hydrolysis in anaerobic digestion. Energies 2020, 13, 5555. [Google Scholar] [CrossRef]
- Hu, Y.; Shen, C. Thermophilic-mesophilic temperature phase anaerobic co-digestion compared with single phase co-digestion of sewage sludge and food waste. Sci. Rep. 2024, 14, 62998. [Google Scholar] [CrossRef] [PubMed]
- Economou, F.; Voukkali, I.; Papamichael, I.; Phinikettou, V.; Loizia, P.; Naddeo, V.; Sospiro, P.; Liscio, M.C.; Zoumides, C.; Țîrcă, D.M.; et al. Turning Food Loss and Food Waste into Watts: A Review of Food Waste as an Energy Source. Energies 2024, 17, 3191. [Google Scholar] [CrossRef]
- Wang, S.; Zou, C.; Lou, C.; Yang, H.; Mei, M.; Jing, H.; Cheng, S. Effects of hemicellulose, cellulose and lignin on the ignition behaviors of biomass in a drop tube furnace. Bioresour. Technol. 2020, 310, 123456. [Google Scholar] [CrossRef]
- Gong, J.S.; Zhang, Q.; Gu, B.C.; Dong, T.T.; Li, H.; Li, H.; Lu, Z.M.; Shi, J.S.; Xu, Z.H. Efficient biocatalytic synthesis of nicotinic acid by recombinant nitrilase via high density culture. Bioresour. Technol. 2018, 260, 427–431. [Google Scholar] [CrossRef]
- Ellacuriaga, M.; Cascallana, J.G.; González, R.; Gómez, X. High-Solid Anaerobic Digestion: Reviewing Strategies for Increasing Reactor Performance. Environments 2021, 8, 80. [Google Scholar] [CrossRef]
- Faisal, S.; Thakur, N.; Jalalah, M.; Harraz, F.A.; Al-Assiri, M.S.; Saif, I.; Salama, E.S. Facilitated lignocellulosic biomass digestibility in anaerobic digestion for biomethane production: Microbial communities’ structure and interactions. J. Chem. Technol. Biotechnol. 2021, 96, 1798–1817. [Google Scholar] [CrossRef]
- Carraro, G.; Tonderski, K.; Enrich-Prast, A. Solid-liquid separation of digestate from biogas plants: A systematic review of the techniques’ performance. J. Environ. Manag. 2024, 356, 120585. [Google Scholar] [CrossRef]
- Tse, T.J.; Wiens, D.J.; Chicilo, F.; Purdy, S.K.; Reaney, M.J.T. Value-Added Products from Ethanol Fermentation—A Review. Fermentation 2021, 7, 267. [Google Scholar] [CrossRef]
- Ladisch, M.R.; Svarczkopf, J.A. Ethanol production and the cost of fermentable sugars from biomass. Bioresour. Technol. 1991, 36, 83–95. [Google Scholar] [CrossRef]
- Iwuozor, K.O.; Emmanuel, S.S.; Bello-Hassan, M.T.; Emenike, E.C.; Adeniyi, A.G. Advancements in high gravity fermentation strategies for optimizing ethanol production from sugarcane-based substrates. Sugar Tech. 2024, 26, 1016–1032. [Google Scholar] [CrossRef]
- Beluhan, S.; Mihajlovski, K.; Šantek, B.; Ivančić Šantek, M. The production of bioethanol from lignocellulosic biomass: Pretreatment methods, fermentation, and downstream processing. Energies 2023, 16, 7003. [Google Scholar] [CrossRef]
- Mankar, A.R.; Pandey, A.; Modak, A.; Pant, K.K. Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresour. Technol. 2021, 334, 125235. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, Z.F.; Zhang, C.C.; Nan, J.; Ren, N.Q.; Lee, D.J.; Chen, C. Advances in pretreatment of lignocellulosic biomass for bioenergy production: Challenges and perspectives. Bioresour. Technol. 2022, 343, 126123. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, R.; Xu, Y.; Wu, X.; Bean, S.R.; Wang, D. Fuel ethanol production from starchy grain and other crops: An overview on feedstocks, affecting factors, and technical advances. Renew. Energy 2022, 188, 223–239. [Google Scholar] [CrossRef]
- Bibra, M.; Samanta, D.; Sharma, N.K.; Singh, G.; Johnson, G.R.; Sani, R.K. Food Waste to Bioethanol: Opportunities and Challenges. Fermentation 2023, 9, 8. [Google Scholar] [CrossRef]
- Yin, J.; Xie, M.; Yu, X.; Feng, H.; Wang, M.; Zhang, Y.; Chen, T. A review of the definition, influencing factors, and mechanisms of rapid composting of organic waste. Environ. Pollut. 2024, 342, 123125. [Google Scholar] [CrossRef]
- Ghinea, C.; Apostol, L.C.; Prisacaru, A.E.; Leahu, A. Development of a model for food waste composting. Environ. Sci. Pollut. Res. 2019, 26, 4056–4069. [Google Scholar] [CrossRef]
- Microbiological activities in the composting process—A review. COLUMELLA-J. Agric. Environ. Sci. 2021, 8, 41–53. [CrossRef]
- Lepesteur, M. Human and livestock pathogens and their control during composting. Crit. Rev. Environ. Sci. Technol. 2021, 52, 1639–1683. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Zhong, H.M.; An., Z.G.; Niu, K.F.; Zhang, X.X.; Yao, Z.Q.; Yuan, J.; Nie, P.; Yang, L.G. Dung treated by high-temperature composting is an optimal bedding material for suckling calves according to analyses of microbial composition, growth performance, health status, and behavior. J. Dairy Sci. 2023, 106, 4785–4798. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Wang, F.; Bai, Z.; Chadwick, D.R.; Misselbrook, T.H.; Ma, L. The progress of composting technologies from static heap to intelligent reactor: Benefits and limitations. J. Clean. Prod. 2020, 270, 122328. [Google Scholar] [CrossRef]
- Fan, S.; Li, A.; Heijne, A.T.; Buisman, C.J.; Chen, W.S. Heat potential, generation, recovery and utilization from composting: A review. Resour. Conserv. Recycl. 2021, 175, 105850. [Google Scholar] [CrossRef]
- Negri, C.; Ricci, M.; Zilio, M.; D’Imporzano, G.; Qiao, W.; Dong, R.; Adani, F. Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review. Renew. Sustain. Energy Rev. 2020, 133, 110138. [Google Scholar] [CrossRef]
- De Boni, A.; Melucci, F.M.; Acciani, C.; Roma, R. Community composting: A multidisciplinary evaluation of an inclusive, participative, and eco-friendly approach to biowaste management. Clean. Environ. Syst. 2022, 6, 100092. [Google Scholar] [CrossRef]
- Mao, I.F.; Tsai, C.J.; Shen, S.H.; Lin, T.F.; Chen, W.K.; Chen, M.L. Critical components of odors in evaluating the performance of food waste composting plants. Sci. Total Environ. 2006, 370, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Azim, K.; Soudi, B.; Boukhari, S.; Perissol, C.; Roussos, S.; Thami Alami, I. Composting parameters and compost quality: A literature review. Org. Agric. 2018, 8, 141–158. [Google Scholar] [CrossRef]
- Manu, M.K.; Li, D.; Liwen, L.; Jun, Z.; Varjani, S.; Wong, J.W.C. A review on nitrogen dynamics and mitigation strategies of food waste digestate composting. Bioresour. Technol. 2021, 334, 125032. [Google Scholar] [CrossRef]
- Igliński, B.; Kujawski, W.; Kiełkowska, U. Pyrolysis of Waste Biomass: Technical and Process Achievements, and Future Development—A Review. Energies 2023, 16, 1829. [Google Scholar] [CrossRef]
- Aboelela, D.; Saleh, H.; Attia, A.M.; Elhenawy, Y.; Majozi, T.; Bassyouni, M. Recent Advances in Biomass Pyrolysis Processes for Bioenergy Production: Optimization of Operating Conditions. Sustainability 2023, 15, 11238. [Google Scholar] [CrossRef]
- Vuppaladadiyam, A.K.; Vuppaladadiyam, S.S.V.; Sahoo, A.; Murugavelh, S.; Anthony, E.; Bhaskar, T.; Zheng, Y.; Zhao, M.; Duan, H.; Zhao, Y.; et al. Bio-oil and biochar from the pyrolytic conversion of biomass: A current and future perspective on the trade-off between economic, environmental, and technical indicators. Sci. Total Environ. 2023, 857, 159155. [Google Scholar] [CrossRef]
- Frantzi, D.; Zabaniotou, A. Waste-based intermediate bioenergy carriers: Syngas production via coupling slow pyrolysis with gasification under a circular economy model. Energies 2021, 14, 7366. [Google Scholar] [CrossRef]
- Kavan Kumar, V.; Panwar, N.L. Pyrolysis technologies for biochar production in waste management: A review. Clean. Energy 2024, 8, 61–78. [Google Scholar] [CrossRef]
- Czajczyńska, D.; Anguilano, L.; Ghazal, H.; Krzyżyńska, R.; Reynolds, A.; Spencer, N.; Jouhara, H. Potential of pyrolysis processes in the waste management sector. Therm. Sci. Eng. Prog. 2017, 3, 171–197. [Google Scholar] [CrossRef]
- Mong, G.R.; Chong, C.T.; Chong, W.W.F.; Ng, J.H.; Ong, H.C.; Ashokkumar, V.; Yasin, M.F.M. Progress and challenges in sustainable pyrolysis technology: Reactors, feedstocks and products. Fuel 2022, 324, 124777. [Google Scholar] [CrossRef]
- El Bari, H.; Fanezoune, C.K.; Dorneanu, B.; Arellano-Garcia, H.; Majozi, T.; Elhenawy, Y.; Ashour, F. Catalytic fast pyrolysis of lignocellulosic biomass: Recent advances and comprehensive overview. J. Anal. Appl. Pyrolysis 2024, 178, 106390. [Google Scholar] [CrossRef]
- Dada, T.K.; Sheehan, M.; Murugavelh, S.; Antunes, E. A review on catalytic pyrolysis for high-quality bio-oil production from biomass. Biomass Convers. Biorefin. 2023, 13, 2595–2614. [Google Scholar] [CrossRef]
- Vershinina, K.; Nyashina, G.; Strizhak, P. Combustion, pyrolysis, and gasification of waste-derived fuel slurries, low-grade liquids, and high-moisture waste: Review. Appl. Sci. 2022, 12, 1039. [Google Scholar] [CrossRef]
- Galavote, T.; Cerqueira, A.; Alves, R.; Ramalho, J.; Yamane, L.; Siman, R. Energy recovery technologies from municipal solid waste: Enhancing solid waste Brazilian policy. Rev. Bras. Energia 2022, 28, 1–15. [Google Scholar] [CrossRef]
- Rezania, S.; Oryani, B.; Nasrollahi, V.R.; Darajeh, N.; Lotfi Ghahroud, M.; Mehranzamir, K. Review on waste-to-energy approaches toward a circular economy in developed and developing countries. Processes 2023, 11, 2566. [Google Scholar] [CrossRef]
- Khan, M.S.; Mubeen, I.; Yu, C.; Zhu, G.; Khalid, A.; Yan, M. Waste-to-energy incineration technology: Recent development under climate change scenarios. Waste Manag. Res. 2022, 40, 1054–1068. [Google Scholar] [CrossRef]
- Luo, Y.; Ye, M.; Zhou, Y.; Su, R.; Huang, S.; Wang, H.; Dai, X. Assessing the environmental impact of municipal waste on energy incineration technology for power generation using life cycle assessment methodology. Toxics 2024, 12, 786. [Google Scholar] [CrossRef] [PubMed]
- Thabit, Q.; Nassour, A.; Nelles, M. Flue gas composition and treatment potential of a waste incineration plant. Appl. Sci. 2022, 12, 5236. [Google Scholar] [CrossRef]
- Dadario, N.; Gabriel Filho, L.R.A.; Cremasco, C.P.; Santos, F.A.d.; Rizk, M.C.; Mollo Neto, M. Waste-to-energy recovery from municipal solid waste: Global scenario and prospects of mass burning technology in Brazil. Sustainability 2023, 15, 5397. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Tan, X.; Show, P.L.; Rambabu, K.; Banat, F.; Veeramuthu, A.; Lau, B.F.; Ng, E.P.; Ling, T.C. Incorporating biowaste into circular bioeconomy: A critical review of current trend and scaling up feasibility. Environ. Technol. Innov. 2020, 19, 101034. [Google Scholar] [CrossRef]
- Sharma, K.; Sharma, M.; Kaul, K.; Singh, G.; Arya, S. Commercial waste to energy, technologies, economics, and challenges: Stores, hotels, restaurant. In Advances in Sustainable Waste Management; Elsevier: Amsterdam, The Netherlands, 2024; pp. 1–12. [Google Scholar] [CrossRef]
- Hoang, A.; Varbanov, P.; Nižetić, S.; Sirohi, R.; Pandey, A.; Luque, R.; Ng, K.; Pham, V.V. Perspective review on municipal solid waste-to-energy route: Characteristics, management strategy, and role in circular economy. J. Clean. Prod. 2022, 359, 131897. [Google Scholar] [CrossRef]
- Slorach, P.; Jeswani, H.; Cuéllar-Franca, R.; Azapagic, A. Environmental and economic implications of recovering resources from food waste in a circular economy. Sci. Total Environ. 2019, 693, 133897. [Google Scholar] [CrossRef]
- Verheijen, F.; Jeffery, S.; Bastos, A.; Van Der Velde, M.; Diafas, I. Biochar Application to Soils—A Critical Scientific Review of Effects on Soil Properties, Processes and Functions; EUR 24099 EN; European Commission: Luxembourg, 2010; JRC55799. [Google Scholar]
- Murugesan, P.; Raja, V.; Dutta, S.; Moses, J.A.; Anandharamakrishnan, C. Food waste valorisation via gasification—A review on emerging concepts, prospects and challenges. Sci. Total Environ. 2022, 851, 157955. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Joo, H.S.; Yang, Y.H. Biowaste-to-bioenergy using biological methods—A mini-review. Energy Convers. Manag. 2018, 177, 640–660. [Google Scholar] [CrossRef]
- Lohri, C.R.; Diener, S.; Zabaleta, I.; Mertenat, A.; Zurbrügg, C. Treatment technologies for urban solid biowaste to create value products: A review with focus on low- and middle-income settings. Rev. Environ. Sci. Biotechnol. 2017, 16, 81–130. [Google Scholar] [CrossRef]
- Alengebawy, A.; Ran, Y.; Osman, A.; Jin, K.; Samer, M.; Ai, P. Anaerobic digestion of agricultural waste for biogas production and sustainable bioenergy recovery: A review. Environ. Chem. Lett. 2024, 22, 2641–2668. [Google Scholar] [CrossRef]
- Tabasso, S.; Ginepro, M.; Tomasso, L.; Montoneri, E.; Nisticò, R.; Francavilla, M. Integrated biochemical and chemical processing of municipal bio-waste to obtain bio-based products for multiple uses: The case of soil remediation. J. Clean. Prod. 2020, 245, 119191. [Google Scholar] [CrossRef]
- Jain, A.; Sarsaiya, S.; Awasthi, M.K.; Singh, R.; Rajput, R.; Mishra, U.C.; Shi, J. Bioenergy and bio-products from bio-waste and its associated modern circular economy: Current research trends, challenges, and future outlooks. Fuel 2022, 307, 121859. [Google Scholar] [CrossRef]
- Manczarski, P.; Rolewicz-Kalińska, A.; Lelicińska-Serafin, K. Quantitative Analysis of Household Food Waste Collection in Warsaw: Assessing Efficiency and Waste Minimization. Sustainability 2023, 15, 16827. [Google Scholar] [CrossRef]
- Di Stefano, V.; Durazzo, A.; Lucarini, M. Food Waste: Treatments, Environmental Impacts, Current and Potential Uses. Sustainability 2022, 14, 234. [Google Scholar] [CrossRef]
- Becker, S.; Fanzo, J. Population and food systems: What does the future hold? Popul. Environ. 2023, 45, 20. [Google Scholar] [CrossRef]
- Central Statistical Office of Poland (GUS). Administrative Division of Poland. Available online: https://stat.gov.pl/en/regional-statistics/classification-of-territorial-units/administrative-division-of-poland/ (accessed on 10 November 2024).
- Wikimedia Commons. Map of Polish Voivodeships. Available online: https://commons.wikimedia.org/wiki/File:POL_voivodships_map.svg (accessed on 30 December 2024).
- Central Statistical Office of Poland (GUS). Available online: https://stat.gov.pl/en/regional-statistics/classification-of-territorial-units/delimitation-of-rural-areas/ (accessed on 20 October 2024).
- Central Statistical Office of Poland (GUS). Urbanization Levels—DEGURBA. Available online: https://stat.gov.pl/en/regional-statistics/classification-of-territorial-units/union-territorial-typologies-tercet/degree-of-urbanisation-degurba/ (accessed on 11 October 2024).
- Central Statistical Office of Poland (GUS). Demographic Forecast. Available online: https://stat.gov.pl/en/topics/population/population-projection/population-projection-20232060,4,1.html (accessed on 20 October 2024).
- Central Statistical Office of Poland (GUS). Data on Waste Generation for years 2003-2023. Bank Danych Lokalnych—Statistical Data. Available online: https://bdl.stat.gov.pl/bdl/metadane/podgrupy/223 (accessed on 11 October 2024).
- European Commission. Proposal for a Directive of the European Parliament and of the Council amending Directive 2008/98/EC on Waste. COM/2023/420 final. Official Journal of the European Union. 2023. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52023PC0420 (accessed on 30 December 2024).
- Kolanowska, J.; Skwara, A. Households Biological Waste from Different Urban Environments—Technological and Survey Research and Proposed Solutions Regarding Their Selective Collection in the Capital City of Warsaw. Master’s Thesis, Warsaw University of Technology, Warsaw, Poland, 2021. Supervisors: Lelicińska-Serafin, K.; Rolewicz-Kalińska, A. (Unpublished Work). Available online: https://apd.usos.pw.edu.pl/diplomas/41174/ (accessed on 7 November 2024).
- Matsakas, L.; Kekos, D.; Loizidou, M.; Christakopoulos, P. Utilization of household food waste for the production of ethanol at high dry material content. Biotechnol. Biofuels 2014, 7, 4. [Google Scholar] [CrossRef]
- IEA. Outlook for Biogas and Biomethane: Prospects for Organic Growth; IEA: Paris, France, 2020; Available online: https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth (accessed on 20 April 2024).
- Ouadi, M.; Bashir, M.A.; Speranza, L.G.; Jahangiri, H.; Hornung, A. Food and market waste—A pathway to sustainable fuels and waste valorization. Energy Fuels 2019, 33, 9843–9850. [Google Scholar] [CrossRef]
- Meyer-Kohlstock, D.; Haupt, T.; Heldt, E.; Heldt, N.; Kraft, E. Biochar as Additive in Biogas-Production from Bio-Waste. Energies 2016, 9, 247. [Google Scholar] [CrossRef]
- Bong, C.P.C.; Lim, L.Y.; Lee, C.T.; Klemeš, J.J.; Ho, C.S.; Ho, W.S. The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion—A review. J. Clean. Prod. 2018, 172, 1545–1558. [Google Scholar] [CrossRef]
- Al-Wahaibi, A.; Osman, A.I.; Al-Muhtaseb, A.H.; Alqaisi, O.; Baawain, M.; Fawzy, S.; Rooney, D.W. Techno-economic evaluation of biogas production from food waste via anaerobic digestion. Sci. Rep. 2020, 10, 15719. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, D.; Morris, D. Ethanol Net Energy Balance; Institute for Local Self Reliance: Washington, DC, USA, 1995; Available online: https://ilsr.org/wp-content/uploads/files/ethanolnetenergy.pdf (accessed on 12 November 2024).
- Fambri, G.; Lombardi, G.; Badami, M.; Chiaramonti, D. Energy assessment of a slow pyrolysis plant for biochar and heat cogeneration. Chem. Eng. Trans. 2024, 109, 571–576. [Google Scholar] [CrossRef]
- Jerzak, W.; Reinmöller, M.; Magdziarz, A. Estimation of the heat required for intermediate pyrolysis of biomass. Clean. Technol. Environ. Policy 2022, 24, 3061–3075. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, Z.; Yu, Z.; Zhu, L. Optimization of F/M ratio for stability of aerobic granular process via quantitative sludge discharge. Bioresour. Technol. 2018, 252, 150–156. [Google Scholar] [CrossRef]
- Jędrczak, A. Composting and Fermentation of Biowaste—Advantages and Disadvantages of Processes. Civ. Environ. Eng. Rep. 2018, 28, 71–87. [Google Scholar] [CrossRef]
- Ma, X.; Yu, M.; Song, N.; Xu, B.; Gao, M.; Wu, C.; Wang, Q. Effect of ethanol pre-fermentation on organic load rate and stability of semi-continuous anaerobic digestion of food waste. Bioresour. Technol. 2020, 299, 122587. [Google Scholar] [CrossRef]
- Angelonidi, E.; Smith, S. A comparison of wet and dry anaerobic digestion processes for the treatment of municipal solid waste and food waste. Water Environ. J. 2015, 29, 549–557. [Google Scholar] [CrossRef]
- Chatterjee, S.; Mohan, S.V. Refining of vegetable waste to renewable sugars for ethanol production: Depolymerization and fermentation optimization. Bioresour. Technol. 2021, 340, 125650. [Google Scholar] [CrossRef] [PubMed]
- Robak, K.; Balcerek, M. Current state-of-the-art in ethanol production from lignocellulosic feedstocks. Microbiol. Res. 2020, 240, 126534. [Google Scholar] [CrossRef]
- Yeh, C.K.; Lin, C.; Shen, H.C.; Cheruiyot, N.K.; Camarillo, M.E.; Wang, C.L. Optimizing food waste composting parameters and evaluating heat generation. Appl. Sci. 2020, 10, 2284. [Google Scholar] [CrossRef]
- Palaniveloo, K.; Amran, M.A.; Norhashim, N.A.; Mohamad-Fauzi, N.; Peng-Hui, F.; Hui-Wen, L.; Kai-Lin, Y.; Jiale, L.; Chian-Yee, M.G.; Jing-Yi, L.; et al. Food waste composting and microbial community structure profiling. Processes 2020, 8, 723. [Google Scholar] [CrossRef]
- Voběrková, S.; Maxianová, A.; Schlosserová, N.; Adamcová, D.; Vršanská, M.; Richtera, L.; Vaverková, M.D. Food waste composting—Is it really so simple as stated in scientific literature?–A case study. Sci. Total Environ. 2020, 723, 138202. [Google Scholar] [CrossRef]
- Lelicińska-Serafin, K.; Rolewicz-Kalińska, A.; Manczarski, P. Challenges in the Valorization of Green Waste in the Central European Region: Case Study of Warsaw. Energies 2024, 17, 5056. [Google Scholar] [CrossRef]
- Su, G.; Ong, H.C.; Fattah, I.R.; Ok, Y.S.; Jang, J.H.; Wang, C.T. State-of-the-art of the pyrolysis and co-pyrolysis of food waste: Progress and challenges. Sci. Total Environ. 2022, 809, 151170. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, Y.; Lin, K.Y.A.; Hong, E.; Kwon, E.E.; Lee, J. The valorization of food waste via pyrolysis. J. Clean. Prod. 2020, 259, 120816. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Z.; Li, J.; Yan, B.; Chen, G. Pyrolysis of food waste and food waste solid digestate: A comparative investigation. Bioresour. Technol. 2022, 354, 127191. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Ming, X.; Jia, R.; Zhao, M.; Wang, B.; Qiao, Y.; Tian, Y. Effects of operating parameters on products yield and volatiles composition during fast pyrolysis of food waste in the presence of hydrogen. Fuel Process. Technol. 2020, 210, 106558. [Google Scholar] [CrossRef]
- Hasan, M.R.; Anzar, N.; Sharma, P.; Malode, S.J.; Shetti, N.P.; Narang, J.; Kakarla, R.R. Converting biowaste into sustainable bioenergy through various processes. Bioresour. Technol. Rep. 2023, 23, 101542. [Google Scholar] [CrossRef]
- Kougioumtzis, M.A.; Kanaveli, I.P.; Karampinis, E.; Grammelis, P.; Kakaras, E. Combustion of olive tree pruning pellets versus sunflower husk pellets at industrial boiler: Monitoring of emissions and combustion efficiency. Renew. Energy 2021, 171, 516–525. [Google Scholar] [CrossRef]
- Mayer, F.; Bhandari, R.; Gäth, S.A. Life cycle assessment on the treatment of organic waste streams by anaerobic digestion, hydrothermal carbonization and incineration. Waste Manag. 2021, 130, 93–106. [Google Scholar] [CrossRef]
- Istrate, I.R.; Galvez-Martos, J.L.; Vázquez, D.; Guillén-Gosálbez, G.; Dufour, J. Prospective analysis of the optimal capacity, economics and carbon footprint of energy recovery from municipal solid waste incineration. Resour. Conserv. Recycl. 2023, 193, 106943. [Google Scholar] [CrossRef]
- International Solid Waste Association (ISWA). Whitebook on Energy-from-Waste Technologies. 2023. Available online: https://www.iswa.org/wp-content/uploads/2023/07/ISWA-Whitebook-on-Energy-from-Waste-Technologies.pdf (accessed on 20 April 2024).
- Miguez, M.G.; Veról, A.P.; Battemarco, B.P.; Yamamoto, L.M.T.; de Brito, F.A.; Fernandez, F.F.; Rego, A.Q. A framework to support the urbanization process on lowland coastal areas: Exploring the case of Vargem Grande–Rio de Janeiro, Brazil. J. Clean. Prod. 2019, 231, 1281–1293. [Google Scholar] [CrossRef]
- Holden, E.; Linnerud, K.; Rygg, B.J. A review of dominant sustainable energy narratives. Renew. Sustain. Energy Rev. 2021, 144, 110955. [Google Scholar] [CrossRef]
- Bilska, B.; Tomaszewska, M.; Kołożyn-Krajewska, D. Food waste in Polish households—Characteristics and sociodemographic determinants on the phenomenon. Nationwide research. Waste Manag. 2024, 176, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Grant, B. Organics Processing Technology Assessment; NSW EPA, Blue Environment: Sydney, Australia, 2023. Available online: https://www.epa.nsw.gov.au/-/media/epa/corporate-site/resources/wasteregulation/organics-processing-technology-emissions-2023.pdf (accessed on 27 December 2024).
- Pavlas, M.; Dvořáček, J.; Pitschke, T.; Peche, R. Biowaste Treatment and Waste-To-Energy—Environmental Benefits. Energies 2020, 13, 1994. [Google Scholar] [CrossRef]
- Kemppainen, A.J.; Shonnard, D.R. Comparative Life-Cycle Assessments for Biomass-to-Ethanol Production from Different Regional Feedstocks. Biotechnol. Prog. 2005, 21, 1075–1084. [Google Scholar] [CrossRef]
- Sayara, T.; Sánchez, A. Gaseous Emissions from the Composting Process: Controlling Parameters and Strategies of Mitigation. Processes 2021, 9, 1844. [Google Scholar] [CrossRef]
- Garrido, M.A.; Font, R.; Conesa, J.A. Pollutant Emissions during the Pyrolysis and Combustion of Flexible Polyurethane Foam. Waste Manag. 2016, 52, 138–146. [Google Scholar] [CrossRef]
- Li, S. Reviewing Air Pollutants Generated during the Pyrolysis of Solid Waste for Biofuel and Biochar Production: Toward Cleaner Production Practices. Sustainability 2024, 16, 1169. [Google Scholar] [CrossRef]
- Hutchings, N.; Mikkelsen, M.; Dore, C.; German, R.; Mitchell, J.; Thornton, A.; Sanchez, B.; Amon, B.; Mellios, G.; Juhrich, K.; et al. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2023: Technical Guidance to Prepare National Emission Inventories; European Environment Agency: Copenhagen, Denmark, 2023; ISBN 978-92-9480-598-0. ISSN 1977-8449. [Google Scholar] [CrossRef]
- Bilitewski, B.; Wagner, J.; Reichenbach, J. Best Practice Municipal Waste Management: Information Pool on Approaches Towards a Sustainable Design of Municipal Waste Management and Supporting Technologies and Equipment; TEXTE 40/2018; Umweltbundesamt (UBA): Dessau-Roßlau, Germany, 2018; Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2018-05-30_texte_40-2018-municipal-waste-management_en.pdf (accessed on 25 December 2024).
- International Bank for Reconstruction and Development/The World Bank. Municipal Solid Waste Cost Calculation Technical Guidelines for Low- and Middle-Income Countries; The World Bank: Washington, DC, USA, 2024; Available online: https://documents1.worldbank.org/curated/en/099032224175084042/pdf/P17734410d06ad0e91af6019fc9a2cd9659.pdf (accessed on 27 December 2024).
- Kalligeros, S.; Maniatis, K.; Landälv, I.; van den Heuvel, E.; Waldheim, L. Building Up the Future—Cost of Biofuel; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- Susmozas, A.; Matschegg, D.; Davidis, B.; Spekreijse, J.; Tzelepi, V.; Kourkoumpas, D.-S.; Alonso, J.M.G.; Coto, B.; Iglesias, R. Economic and Environmental Assessment of the Retrofitting of a First-Generation Ethanol Plant. Biomass Convers. Biorefin. 2024. [Google Scholar] [CrossRef]
- Sakarika, M.; Spiller, M.; Baetens, R.; Donies, G.; Vanderstuyf, J.; Vinck, K.; Vrancken, K.C.; Van Barel, G.; Du Bois, E.; Vlaeminck, S.E. Proof of Concept of High-Rate Decentralized Pre-Composting of Kitchen Waste: Optimizing Design and Operation of a Novel Drum Reactor. Waste Manag. 2019, 95, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Salimbeni, A.; Lombardi, G.; Rizzo, A.M.; Chiaramonti, D. Techno-Economic Feasibility of Integrating Biomass Slow Pyrolysis in an EAF Steelmaking Site: A Case Study. Appl. Energy 2023, 345, 120991. [Google Scholar] [CrossRef]
- Watson, J.; Zhang, Y.; Si, B.; Chen, W.-T.; de Souza, R. Gasification of Biowaste: A Critical Review and Outlooks. Renew. Sustain. Energy Rev. 2018, 83, 1–17. [Google Scholar] [CrossRef]
- Arfan, M.; Eriksson, O.; Wang, Z.; Soam, S. Life Cycle Assessment and Life Cycle Costing of Hydrogen Production from Biowaste and Biomass in Sweden. Energies Convers. Manag. 2023, 291, 117262. [Google Scholar] [CrossRef]
- Haeldermans, T.; Campion, L.; Kuppens, T.; Vanreppelen, K.; Cuypers, A.; Schreurs, S. A Comparative Techno-Economic Assessment of Biochar Production from Different Residue Streams Using Conventional and Microwave Pyrolysis. Bioresour. Technol. 2020, 318, 124083. [Google Scholar] [CrossRef] [PubMed]
- KindleTech. How Much Does a Pyrolysis Unit Cost? KindleTech FAQs. Available online: https://kindle-tech.com/faqs/how-much-does-a-pyrolysis-unit-cost (accessed on 29 December 2024).
- WTE International. Cost of Incineration Plant. Available online: https://wteinternational.com/news/cost-of-incineration-plant/ (accessed on 26 December 2024).
- Hogg, D.; Eunomia Research & Consulting. Costs for Municipal Waste Management in the EU: Final Report to Directorate General Environment, European Commission; European Commission: Brussels, Belgium, 2001; Available online: http://projects.mcrit.com/ceara/attachments/article/154/cost%20for%20municipal%20waste%20management%20UE.pdf (accessed on 23 December 2024).
- Tong, H.; Shen, Y.; Zhang, J.; Wang, C.-H.; Ge, T.S.; Tong, Y.W. A Comparative Life Cycle Assessment on Four Waste-to-Energy Scenarios for Food Waste Generated in Eateries. Appl. Energy 2018, 225, 1143–1157. [Google Scholar] [CrossRef]
- den Boer, J.; Kobel, P.; den Boer, E.; Obersteiner, G. Food waste quantities and composition in Polish households. Waste Manag. Res. 2023, 41, 1318–1330. [Google Scholar] [CrossRef]
- Household food waste generation in high-income countries: A scoping review and pooled analysis between 2010 and 2022. J. Clean. Prod. 2024, 143375. [CrossRef]
- Vambol, V.; Kowalczyk-Juśko, A.; Vambol, S.; Khan, N.A.; Mazur, A.; Goroneskul, M.; Kruzhilko, O. Multi criteria analysis of municipal solid waste management and resource recovery in Poland compared to other EU countries. Sci. Rep. 2023, 13, 22053. [Google Scholar] [CrossRef]
- Mazalan, M.; Bong, C.P.C.; Ho, W.S.; Lim, J.S.; Muis, Z.A.; Hashim, H.; Elagroudy, S.; Teck, G.L.H.; Ho, C.S. Review on the suitability of waste for appropriate waste-to-energy technology. Chem. Eng. Trans. 2018, 63, 187–192. [Google Scholar] [CrossRef]
- Awino, F.B.; Apitz, S.E. Solid waste management in the context of the waste hierarchy and circular economy frameworks: An international critical review. Integr. Environ. Assess. Manag. 2024, 20, 9–35. [Google Scholar] [CrossRef]
- Deviatkin, I.; Horttanainen, M.; Havukainen, J. Sustainability of Waste Management Systems: Energy Recovery. In Encyclopedia of Sustainable Management; Idowu, S.O., Schmidpeter, R., Capaldi, N., Zu, L., Del Baldo, M., Abreu, R., Eds.; Springer: Cham, Switzerland, 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Tait, P.W.; Brew, J.; Che, A.; Costanzo, A.; Danyluk, A.; Davis, M.; Khalaf, A.; McMahon, K.; Watson, A.; Rowcliff, K.; et al. The health impacts of waste incineration: A systematic review. Aust. N. Z. J. Public Health 2020, 44, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Salleh, N.A.; Mohd Shafiei, M.W.; Anwar, A.; Zulhumadi, F.; Hubadillah, S.K. Sustaining the environment: Critical success factors and barriers of solid waste management through composting practices by rural communities in Malaysia. Sustainability 2022, 14, 13541. [Google Scholar] [CrossRef]
- Manea, E.E.; Bumbac, C.; Dinu, L.R.; Bumbac, M.; Nicolescu, C.M. Composting as a sustainable solution for organic solid waste management: Current practices and potential improvements. Sustainability 2024, 16, 6329. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Olanrewaju, O.S.; Babalola, O.O.; Odeyemi, O. Waste management through composting: Challenges and potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Iwuchukwu, F.U.; Eyankware, O.E.; Iwuozor, K.O.; Olotu, K.; Bright, O.C.; Igwegbe, C.A. Flash pyrolysis of biomass: A review of recent advances. Clean. Technol. Environ. Policy 2022, 24, 2349–2363. [Google Scholar] [CrossRef]
- Li, Y.; Chen, W.; Fang, S.; Xu, Z.; Weng, H.; Zhang, X. The influence of pyrolysis temperature and feedstocks on the characteristics of biochar-derived dissolved organic matter: A systematic assessment. Clean. Technol. 2024, 6, 1314–1325. [Google Scholar] [CrossRef]
- Rolewicz-Kalińska, A.; Oniszk-Popławska, A.; Wesołowska, J.; Ryńska, E.D. Conditions for the development of anaerobic digestion technologies using the organic fraction of municipal solid waste: Perspectives for Poland. Environ. Dev. Sustain. 2016, 18, 1279–1296. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Yang, L.; Du, X.; Zhou, Y.; Sun, G.; Liu, J. Carbon footprints of centralized and decentralized food waste utilization pathways. Renew. Sustain. Energy Rev. 2025, 208, 115040. [Google Scholar] [CrossRef]
- Bilitewski, B.; Wagner, J.; Reichenbach, J. Sprawdzone Metody Gospodarowania Odpadami Komunalnymi. Zbiór Informacji i Założenia dla Zrównoważonej Gospodarki Odpadami Komunalnymi Wraz z Odpowiednimi Instalacjami i Technologiami Umweltbundesamt. Podręcznik Ochrony Środowiska. 2010. (In Polish). Available online: https://www.umweltbundesamt.de/sites/default/files/podrecznik.pdf (accessed on 2 January 2025).
- Manfredi, S.; Pant, R. Supporting Environmentally Sound Decisions for Bio-waste Management: A Practical Guide to Life Cycle Thinking (LCT) and Life Cycle Assessment (LCA); Publications Office of the European Union: Luxembourg, 2011; EUR 24917 EN; ISBN 978-92-79-21019-8. [Google Scholar] [CrossRef]
- Lubańska, A.; Kazak, J.K. The role of biogas production in circular economy approach from the perspective of locality. Energies 2023, 16, 3801. [Google Scholar] [CrossRef]
- Hannan, M.A.; Begum, R.; Al-Shetwi, A.; Ker, P.J.; Mamun, M.A.; Hussain, A.; Basri, H.; Mahlia, T.M.I. Waste collection route optimisation model for linking cost saving and emission reduction to achieve sustainable development goals. Sustain. Cities Soc. 2020, 62, 102393. [Google Scholar] [CrossRef]
- Weber, L.; Bartek, L.; Brancoli, P.; Sjölund, A.; Eriksson, M. Climate change impact of food distribution: The case of reverse logistics for bread in Sweden. Sustain. Prod. Consum. 2023, 36, 386–396. [Google Scholar] [CrossRef]
- Xu, Y.; Sahnoun, M.; Ben Abdelaziz, F.; Louis, A. Multimodal transportation network for bio-waste collection: The case of Normandy. Ann. Oper. Res. 2024. [Google Scholar] [CrossRef]
- Sharma, P.; Bano, A.; Singh, S.P.; Varjani, S.; Tong, Y.W. Sustainable organic waste management and future directions for environmental protection and techno-economic perspectives. Curr. Pollut. Rep. 2024, 10, 459–477. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiao, R.; Klammsteiner, T.; Kong, X.; Yan, B.; Mihai, F.C.; Awasthi, M.K. Recent trends and advances in composting and vermicomposting technologies: A review. Bioresour. Technol. 2022, 360, 127591. [Google Scholar] [CrossRef] [PubMed]
- Applications of machine learning tools for biological treatment of organic wastes: Perspectives and challenges. Curr. Environ. Chang. 2024, 3, 100088. [CrossRef]
- Joshi, L.; Bharti, R.; Singh, R. Internet of things and machine learning-based approaches in the urban solid waste management: Trends, challenges, and future directions. Expert Syst. 2021, 39, e12865. [Google Scholar] [CrossRef]
- Singh, D.; Dikshit, A.K.; Kumar, S. Smart technological options in collection and transportation of municipal solid waste in urban areas: A mini review. Waste Manag. Res. 2024, 42, 3–15. [Google Scholar] [CrossRef]
- Olíverı, L.M.; Arfò, S.; Matarazzo, A.; D’Urso, D.; Chıacchıo, F. Improving the composting process of a treatment facility via an Industry 4.0 monitoring and control solution: Performance and economic feasibility assessment. J. Environ. Manag. 2023, 345, 118776. [Google Scholar] [CrossRef]
- Tayibi, S.; Monlau, F.; Bargaz, A.; Jimenez, R.; Barakat, A. Synergy of anaerobic digestion and pyrolysis processes for sustainable waste management: A critical review and future perspectives. Renew. Sustain. Energy Rev. 2021, 152, 111603. [Google Scholar] [CrossRef]
- Singh, R.; Paritosh, K.; Pareek, N.; Vivekanand, V. Integrated system of anaerobic digestion and pyrolysis for valorization of agricultural and food waste towards circular bioeconomy: Review. Bioresour. Technol. 2022, 360, 127596. [Google Scholar] [CrossRef] [PubMed]
- Rathore, P.; Chakraborty, S.; Gupta, M.; Sarmah, S.P. Towards a sustainable organic waste supply chain: A comparison of centralized and decentralized systems. J. Environ. Manag. 2022, 315, 115141. [Google Scholar] [CrossRef]
- Tonini, D.; Wandl, A.; Meister, K.; Unceta, P.M.; Taelman, S.E.; Sanjuan-Delmás, D.; Dewulf, J.; Huygens, D. Quantitative sustainability assessment of household food waste management in the Amsterdam Metropolitan Area. Resour. Conserv. Recycl. 2020, 160, 104854. [Google Scholar] [CrossRef] [PubMed]
- Dalke, R.; Demro, D.; Khalid, Y.; Wu, H.; Urgun-Demirtas, M. Current status of anaerobic digestion of food waste in the United States. Renew. Sustain. Energy Rev. 2021, 151, 111554. [Google Scholar] [CrossRef]
- Tsafara, P.; Passadis, K.; Christianides, D.; Chatziangelakis, E.; Bousoulas, I.; Malamis, D.; Mai, S.; Barampouti, E.M.; Moustakas, K. Advanced bioethanol production from source-separated bio-waste in pilot scale. Sustainability 2022, 14, 12127. [Google Scholar] [CrossRef]
Parameter | Values | Units | References |
---|---|---|---|
Food Waste | |||
Water content (WC) | 77 | % | [14] |
Volatile solids (VS) | 85.73 | % | |
Impurities | 5.85 | % | |
Biogas yield | 389 | m3 Mg−1 VS−1 | |
CH4 share | 57 | % | |
HHV | 17.421 | MJ kg−1 DM | [90] |
Fast pyrolysis products | |||
bio-oil | 60–75 | % | [61] |
biochar | 15–25 | % | |
syngas | 10–20 | % | |
Moderate pyrolysis products | |||
bio-oil | 35–50 | % | [57] |
biochar | 25–40 | % | |
syngas | 20–30 | % | |
Carbonization products | |||
bio-oil | 30 | % | [54] |
biochar | 35 | % | |
syngas | 35 | % | |
Gasification products | |||
syngas | 1.2 | m3 kg−1 DM | [74] |
Ethanol fermentation | |||
ethanol yield | 107.58 | g kg−1 DM | [91] |
Heat values | |||
biomethane | 36.0 | MJ m−3 | [92] |
ethanol | 21.6 | MJ kg−1 | [91] |
bio-oil | 36.7 | MJ kg−1 | [93] |
biochar | 23.6 | MJ kg−1 | |
syngas | 17.0 | MJ m−3 |
Criteria | T1: Anaerobic Digestion | T2: Ethanol Fermentation | T3: Composting | T4: Thermochemical Conversion | T5: Incineration |
---|---|---|---|---|---|
Purpose of application | Converting bio-waste into biogas and digestate | Converting bio-waste rich in sugars and starch into bioethanol | Aerobic stabilization of bio-waste to obtain compost | Decomposition of bio-waste into biochar, bio-oil, and synthesis gas under anaerobic conditions | Converting bio-waste into energy by direct combustion in the presence of excess oxygen |
Maturity | Mature technology, widely used | New technology with limited commercialization | Mature technology, widely used | Developing technology. High level of innovation with potential for regional and global development | Mature technology widely used worldwide. innovations focus on emission control and energy efficiency |
Flexibility of application | High flexibility, lower input requirements for dry AD, higher for wet AD | Low flexibility, significant feedstock requirements and complex pre-treatment | High flexibility, minimal pre-treatment requirements | Medium flexibility, depending on process parameters, special pre-treatment for higher efficiency, but no need to reject plastic ingredients | High flexibility, no complex pre-treatment required |
Optimal criteria ranges | Anaerobic process Moisture: 60–75%—dry static 75–85%—dry dynamic >85/88%—wet, Biogas yield >100 m3/Mg, Methane: >50% C/N = 10–30 | Sugars: >30%, Starch: >20% | Oxygen process, from 5% to 15% O2 in the air Moisture: 40–60%, Nitrogen: >0.3–1.5% Organic content: >20–40% TOC > 10%, C/N = 25–35 | Cellulose: >30%, Lignin: >10%, Calorific value: >15 MJ kg−1 | calorific value: 8–10 MJ kg−1, Contaminants: <5% Conditions for autothermal combustion: moisture content: <50%; ash content: <60% combustible mass: >25% |
Sources | [24,100,101,102,103] | [10,39,40,104,105] | [106,107,108,109] | [110,111,112,113,114] | [114,115,116,117,118,119,120,121] |
Emission level a | CH4: 0.950–11.060 kg Mg−1 N2O = 0.013–0.12 kg Mg−1 NH3 = 0.024–0.72 kg Mg−1 CO2e = 76–506 kg Mg−1 | CO2e = 258–403 g L−1 | CH4 = 4.060 kg Mg−1 N2O = 0.055 kg Mg−1 NH3 = 0.157 kg Mg−1 CO2e = 78–118 kg Mg−1 | PM <4.7 mg Nm−3 HCl = 11.6 mg Nm−3 CO = 5.8 mol kg−1 CH4 = 3.2 mol kg−1 | NOx = 1.07–1.8 kg Mg−1 SO2 = 0.096–1.36 kg Mg−1 NMVOC = 0.18–0.891 kg Mg−1 CO2e = 386 kg Mg−1 SO2 = 5.00 kg Mg−1 NMVOC = 0.89 kg Mg−1 |
Sources | [101,122,123] | [123] | [101,122,123,124] | [125,126] | [127,128] |
Cost estimation | CAPEX: 150–490 EUR Mg−1; OPEX: 15–50 EUR Mg−1 Total treatment cost: 20–70 EUR Mg−1 | CAPEX: 145–189 EUR MWh−1 OPEX: 212 EUR MWh−1 Bioethanol production cost: 500–700 EUR m−3 bioethanol | CAPEX: 180–240 EUR Mg−1 OPEX: 16–65 EUR Mg−1; Total treatment cost: 30–75 EUR Mg−1 | OPEX: 49–936 EUR Mg−1 (gasification) Bioproducts production cost: 0.45–2.76 EUR/kg/hydrogen (LCC approach); 400 EUR Mg−1 biocoal; 436–863 EUR Mg−1 biochar (conventional pyrolysis); 564- 979 EUR Mg−1 biochar (microwave pyrolysis); 75–300 EUR Mg−1 Oil 83–118 EUR MWh−1 (pyrolysis); 436–860 EUR MWh−1 | CAPEX: 350–760 EUR Mg−1 OPEX: 21–102 EUR Mg−1 Total treatment cost: 80–250 EUR Mg−1 |
Sources | [129,130] | [131,132] | [129,130,133] | [134,135,136,137,138] | [129,139,140,141] |
City | 2023–2030 | 2023–2050 |
---|---|---|
Kraków | 3% | 4% |
Warsaw | 3% | 2% |
Wrocław | 2% | −4% |
Poznań | −2% | −16% |
Łódź | −5% | −22% |
Unit Yield of Products | Unit Yield of Gross Energy (GJ Mg−1 FW) | |
---|---|---|
Dry static methane fermentation | ||
Methane (m3 Mg−1 FW) | 55.8 | 2.0 |
Dry dynamic methane fermentation | ||
Methane (m3 Mg−1 FW) | 34.1 | 1.2 |
Wet methane fermentation | ||
Methane (m3 Mg−1 FW) | 42.7 | 1.5 |
Alcoholic fermentation | ||
Ethanol (kg Mg−1 FW) | 23.4 | 0.5 |
Fast pyrolysis | ||
Bio-oil (kg Mg−1 FW) | 149.2 | 5.5 |
Biochar (kg Mg−1 FW) | 45.9 | 1.1 |
Syngas (kg Mg−1 FW) | 34.4 | 0.6 |
Moderate pyrolysis | ||
Bio-oil (kg Mg−1 FW) | 97.6 | 3.6 |
Biochar (kg Mg−1 FW) | 74.6 | 1.8 |
Syngas (kg Mg−1 FW) | 57.4 | 1.0 |
Biocarbonization | ||
Bio-oil (kg Mg−1 FW) | 68.9 | 2.5 |
Biochar (kg Mg−1 FW) | 80.3 | 1.9 |
Syngas (kg Mg−1 FW) | 80.3 | 1.4 |
Gasification | ||
Syngas (m3 Mg−1 FW) | 275.5 | 4.7 |
Incineration | ||
Energy recovered from flue gases (GJ Mg−1 FW) | 4.0 |
The Trend in FW Generation | ||||
S1 (2023–2050) | S1 (2030–2050) | S2 (2023–2050) | S2 (2030–2050) | |
country | +47.8% | +31.3% | −8.8% | −13.4% |
voivodeships | +44.7% | +29.3% | −10.7% | −14.8% |
major cities | +33.9% | +21.2% | −4.9% | −9.8% |
SFWGR (Mg km−2) | ||||
S1 (2030) | S1 (2050) | S2 (2030) | S2 (2050) | |
country | 8.8 | 11.6 | 8.3 | 7.2 |
voivodeships | 9.2 | 12.0 | 8.6 | 7.4 |
major cities | 251.1 | 308.3 | 239.6 | 218.8 |
Technology | Pre-Treatment | Post-Treatment | Energy Potential Index (Net) (kWh kg−1 FWDM) | Others |
---|---|---|---|---|
T1 Anerobic Digestion T1.1 Dry static | Simplified pre-treatment Sorting out impurities in the amount of approx. 3% of feedstock Need to correct humidity | Oxygen stabilization of digestate Digestate purification | 2.2 * | Limited amount of wastewater Possibility of co-fermentation with GW (as part of humidity correction)—in the amount of approx. 20% of FW input Endothermic process |
T1 Anerobic Digestion T1.2 Semi-dry dynamic | Simplified pre-treatment Sorting out impurities in the amount of approx. 3% of the feedstock No need for humidity correction | The need to dewater the digestate Oxygen stabilization of digestate Digestate purification | 1.3 | Larger amount of wastewater (approx. 45% of the feedstock) Endothermic process |
T1 Anerobic Digestion T1.3 Wet | Advanced pre-treatment—grinding, fiberizing, slurring Sorting out impurities in the amount of approx. 5% of feedstock Need to increase humidity (water supply in the amount of approx. 90% of the feedstock) | 1.7 | A large amount of wastewater produced (approx. 120% of the feedstock) Endothermic process | |
T2 Ethanol fermentation | Advanced, specialized pre-treatment Sorting out impurities in the amount of approx. 3% of the feedstock | - | 0.4 | Endothermic process |
T3 Composting | Simplified pre-treatment The need to correct (to lower) humidity | Compost gentrifying | No energy recovery Fertilizing use | Possibility of co-composting with GW (as part of humidity correction)—approx. 70% of the input Exothermic process |
T4 Thermochemical conversion T4.1 Pyrolysis (fast and moderate) | No need to sort out impurities Drying, significant fragmentation required (up to 1–2 mm for flash pyrolysis) The degree of advancement depends on the type of pyrolysis | - | 6.0—moderate pyrolysis 6.8—fast pyrolysis | Endothermic process |
T4 Thermochemical conversion T4.2 Biocarbonization (slow pyrolysis) | 5.9 | |||
T4 Thermochemical conversion T4.3 Gasification | 3.7 | |||
T5 Thermal conversion Incineration | Simplified pre-treatment No need to sort out impurities Drying | Ash and slag valorization Fly ash solidification Flue gas purification | 4.8 | Exothermic process Autothermal combustion is possible after drying |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolewicz-Kalińska, A.; Lelicińska-Serafin, K.; Manczarski, P. Selection Path for Energy-Efficient Food Waste Management in Urban Areas: Scenario Analysis and Insights from Poland. Energies 2025, 18, 385. https://doi.org/10.3390/en18020385
Rolewicz-Kalińska A, Lelicińska-Serafin K, Manczarski P. Selection Path for Energy-Efficient Food Waste Management in Urban Areas: Scenario Analysis and Insights from Poland. Energies. 2025; 18(2):385. https://doi.org/10.3390/en18020385
Chicago/Turabian StyleRolewicz-Kalińska, Anna, Krystyna Lelicińska-Serafin, and Piotr Manczarski. 2025. "Selection Path for Energy-Efficient Food Waste Management in Urban Areas: Scenario Analysis and Insights from Poland" Energies 18, no. 2: 385. https://doi.org/10.3390/en18020385
APA StyleRolewicz-Kalińska, A., Lelicińska-Serafin, K., & Manczarski, P. (2025). Selection Path for Energy-Efficient Food Waste Management in Urban Areas: Scenario Analysis and Insights from Poland. Energies, 18(2), 385. https://doi.org/10.3390/en18020385