Characteristics and Wear Mechanisms of TiAlN-Based Coatings for Machining Applications: A Comprehensive Review
Abstract
:1. Introduction
- Monolayer (single layer) coating;
- Bilayer (double layer) coating;
- Gradient coating;
- Multilayer coating;
- Nanolayer coating;
- Nanocomposite coating.
2. TiAlN-Based Coatings
- The studies being conducted about monolayered TiAlN-based coatings, mentioning the influence of doping elements (such as, Ru, Ta, Y and Mo) on the overall properties of these coatings;
- Studies about multilayered coatings, presenting the new structures and composition combination which are being employed recently and analyzing its influence on the coating’s properties;
- Studies being conducted about nanolayered coatings, mentioning the recent developments being made on this topic, presenting the various structures and their benefits when compared to the other types of TiAlN-based coatings.
2.1. Monolayered TiAlN-Based Coatings
2.1.1. Machining Applications and Coating Wear Behavior
Milling Process
Turning Process
2.1.2. Comparison of the Coating’s Mechanical Properties
2.2. Multilayered TiAlN-Based Coatings
2.2.1. Machining Applications and Coating Wear Behavior
Milling Process
Turning Process
2.2.2. Comparison of the Coating’s Mechanical Properties
2.3. Nanolayered TiAlN-Based Coatings
2.3.1. Machining Applications and Coating Wear Behavior
Milling Process
Turning Process
2.3.2. Comparison of the Coating’s Mechanical Properties
3. Machining Conditions and Tool Wear Mechanisms for TiAlN Based Coatings
3.1. Milling Process
3.2. Turning Process
4. Current Research Trends of TiAlN-Based Coatings
5. Concluding Remarks
- Hardness;
- Toughness;
- H/E ratio (plasticity);
- Friction coefficient.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kulkarni, B.H.; Nadakatti, M.M.; Kulkarni, S.C.; Kulkarni, R.M. Investigations on effect of nanofluid based minimum quantity lubrication technique for surface milling of Al7075-T6 aerospace alloy. Mater. Today Proc. 2020, 27, 251–256. [Google Scholar] [CrossRef]
- Mersni, W.; Boujelbene, M.; Salem, S.B.; Singh, H.P. Machining time and quadratic mean roughness optimization. Mater. Today Proc. 2020, 26, 2619–2624. [Google Scholar] [CrossRef]
- Gabiccini, M.; Bracci, A.; Battaglia, E. On the estimation of continuous mappings from cradle-style to 6-axis machines for face-milled hypoid gear generation. Mech. Mach. Theory 2011, 46, 1492–1506. [Google Scholar] [CrossRef]
- Moriya, T.; Nakamoto, K.; Ishida, T.; Takeuchi, Y. Creation of V-shaped microgrooves with flat-ends by 6-axis control ultraprecision machining. CIRP Ann. 2010, 61–66. [Google Scholar] [CrossRef]
- Siddiqui, T.U.; Singh, S.K. Design, fabrication and characterization of a self-lubricated textured tool in dry machining. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Ji, W.; Zou, B.; Zhang, S.; Xing, H.; Yun, H.; Wang, Y. Design and fabrication of gradient cermet composite cutting tool, and its cutting performance. J. Alloys Compd. 2018, 732, 25–31. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, K.; Li, C.; Wang, Q.; Wu, S.; Liu, J. Effect of ultrafine gradient cemented carbides substrate on the performance of coating tools for titanium alloy high speed cutting. Int. J. Refract. Met. Hard Mater. 2019, 84, 105024. [Google Scholar] [CrossRef]
- Chowdhury, M.S.I.; Bose, B.; Yamamoto, K.; Shuster, L.S.; Paiva, J.; Fox-Rabinovich, G.S.; Veldhuis, S.C. Wear performance investigation of PVD coated and uncoated carbide tools during high-speed machining of TiAl6V4 aerospace alloy. Wear 2020, 446–447, 203168. [Google Scholar] [CrossRef]
- Hovsepian, P.E.; Luo, Q.; Robinson, G.; Pittman, M.; Howarth, M.; Doerwald, D.; Tietema, R.; Sim, W.M.; Deeming, A.; Zeus, T. Surface and Coatings Technology TiAlN/VN superlattice structured PVD coatings: A new alternative in machining of aluminium alloys for aerospace and automotive components. Surf. Coat. Technol. 2016, 201, 265–272. [Google Scholar] [CrossRef]
- Sánchez, J.M.; Rubio, E.; Álvarez, M.; Sebastián, M.A.; Marcos, M. Microstructural characterisation of material adhered over cutting tool in the dry machining of aerospace aluminium alloys. J. Mater. Process. Technol. 2005, 164–165, 911–918. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, X.; Zhang, D. Performance evaluation of high-speed ultrasonic vibration cutting for improving machinability of Inconel 718 with coated carbide tools. Tribol. Int. 2020, 106766. [Google Scholar] [CrossRef]
- Kumar, C.S.; Majumder, H.; Khan, A.; Patel, S.K. Applicability of DLC and WC/C low friction coatings on Al2O3/TiCN mixed ceramic cutting tools for dry machining of hardened 52100 steel. Ceram. Int. 2020, 46, 11889–11897. [Google Scholar] [CrossRef]
- Lakshmanan, S.; Xavior, M.A. Performance of coated and uncoated inserts during intermittent cut milling of AISI 1030 steel. Procedia Eng. 2014, 97, 372–380. [Google Scholar] [CrossRef] [Green Version]
- Sokovic, M.; Kopac, J.; Dobrzanski, L.A.; Mikula, J.; Golombek, K.; Pakula, D. Cutting characteristics of PVD and CVD-coated ceramic tool inserts. Tribology Ind. 2006, 28, 3–8. [Google Scholar]
- Bobzin, K. High-performance coatings for cutting tools. CIRP J. Manuf. Sci. Technol. 2017, 18, 1–9. [Google Scholar] [CrossRef]
- Bouzakis, K.-D.; Michailidis, N.; Skordaris, G.; Bouzakis, E. Coated Tools. CIRP Encycl. Prod. Eng. 2018, 1–13. [Google Scholar] [CrossRef]
- Lim, S.C.; Lim, C.Y.H. Effective use of coated tools—the wear-map approach. Surf. Coat. Technol. 2001, 139, 127–134. [Google Scholar] [CrossRef]
- Arunnath, A.; Masooth, P.H.S. Optimization of process parameters in CNC turning process on machining SCM440 steel by uncoated carbide and TiCN/Al2O3/TiN coated carbide tool under dry conditions. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Sousa, V.F.C.; Silva, F.J.G.; Fecheira, J.S.; Lopes, H.M.; Martinho, R.P.; Casais, R.B.; Ferreira, L.P. Cutting Forces Assessment in CNC Machining Processes: A Critical Review. Sensors 2020, 20, 4536. [Google Scholar] [CrossRef]
- Behera, G.C.; Thrinadh, J.; Datta, S. Influence of cutting insert (uncoated and coated carbide) on cutting force, tool-tip temperature, and chip morphology during dry machining of Inconel 825. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Z.; Wang, B.; Hu, J.; Wan, Y. Tool coating effects on cutting temperature during metal cutting processes: Comprehensive review and future research directions. Mech. Syst. Sig. Process. 2021, 150, 107302. [Google Scholar] [CrossRef]
- Thakur, A.; Gangopadhyay, S. Influence of tribological properties on the performance of uncoated, CVD and PVD coated tools in machining of Incoloy 825. Tribol. Int. 2016, 102, 198–212. [Google Scholar] [CrossRef]
- Silva, F.J.G.; Baptista, A.P.M.; Pereira, E.; Teixeira, V.; Fan, Q.H.; Fernandes, A.J.S.; Costa, F.M. Microwave plasma chemical vapour deposition diamond nucleation on ferrous substrates with Ti and Cr interlayers. Diam. Rel. Mater. 2002, 11, 1617–1622. [Google Scholar] [CrossRef] [Green Version]
- Caliskan, H.; Panjan, P.; Kurbanoglu, C. 3.16 Hard coatings on cutting tools and surface finish. Compr. Mater. Finish. 2017, 3, 230–242. [Google Scholar] [CrossRef]
- Baptista, A.; Silva, F.J.G.; Porteiro, J.; Míguez, J.L.; Pinto, G.; Fernandes, L. On the physical vapour deposition (PVD): Evolution of magnetron sputtering processes for industrial applications. Procedia Manuf. 2018, 17, 746–757. [Google Scholar] [CrossRef]
- Baptista, A.; Silva, F.; Porteiro, J.; Míguez, J.; Pinto, G. Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement and market trend demands. Coatings 2018, 8, 402. [Google Scholar] [CrossRef] [Green Version]
- Silva, F.J.G.; Fernandes, A.J.S.; Costa, F.M.; Baptista, A.P.M.; Pereira, E. A new interlayer approach for CVD diamond coating of steel substrates. Diam. Relat. Mater. 2004, 13, 828–833. [Google Scholar] [CrossRef]
- Silva, F.J.G.; Fernandes, A.J.; Costa, F.; Teixeira, V.; Baptista, A.P.; Pereira, E. Tribological behaviour of CVD diamond films on steel substrates. Wear 2003, 255, 846–853. [Google Scholar] [CrossRef]
- Silva, F.J.; Martinho, R.P.; Alexandre, R.J.D.; Baptista, A.P.M. Wear resistance of TiAlSiN thin coatings. J. Nanosci. Nanotechnol. 2012, 12, 9094–9101. [Google Scholar] [CrossRef]
- Sousa, V.F.C.; Silva, F.J.G. Recent Advances in Turning Processes Using Coated Tools—A Comprehensive Review. Metals 2020, 10, 170. [Google Scholar] [CrossRef] [Green Version]
- Seidl, W.M.; Bartosik, M.; Kolozsvári, S.; Bolvardi, H.; Mayrhofer, P.H. Influence of coating thickness and substrate on stresses and mechanical properties of (Ti,Al,Ta)N/(Al,Cr)N. Surf. Coat. Technol. 2018, 347, 92–98. [Google Scholar] [CrossRef]
- Fernández-Abia, A.I.; Barreiro, J.; Fernández-Larrinoa, J.; Lacalle, L.N.L.; de Fernández-Valdivielso, A.; Pereira, O.M. Behaviour of PVD coatings in the turning of austenitic stainless steels. Procedia Eng. 2013, 63, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Klocke, F.; Krieg, T. Coated tools for metal cutting—Features and applications. CIRP Ann. 1999, 48, 515–525. [Google Scholar] [CrossRef]
- Sousa, V.F.C.; Silva, F.J.G. Recent Advances on Coated Milling Tool Technology—A Comprehensive Review. Coatings 2020, 10, 235. [Google Scholar] [CrossRef] [Green Version]
- Vannan, R.R.R.; Moorthy, T.V.; Harihan, P.; Prabhu, P. Effect of physical vapor deposited bilayer (AlCrN + TiAlN) coating on high-speed steel single point cutting tool. Mater. Manuf. Processes. 2017, 32. [Google Scholar] [CrossRef]
- Fox-Rabinovich, G.S.; Kovalev, A.I.; Aguirre, M.H.; Beake, D.B.; Yamamoto, K.; Vekduis, S.C.; Endrino, J.L.; Wainstein, D.L.; Rashkovskiy, A.Y. Design and performance of AlTiN and TiAlCrN PVD coatings for machining of hard to cut materials. Surf. Coat. Technol. 2009, 204, 489–496. [Google Scholar] [CrossRef]
- Czarniak, P.; Szymanowski, K.; Kucharska, B.; Krawczynska, A.; Sobiecki, J.R.; Kubacki, J.; Panjan, P. Modification of tools for wood based materials machining with TiAlN/a-CN coating. Mater. Sci. Eng. B 2020, 257, 114540. [Google Scholar] [CrossRef]
- Mejía, H.D.; Echavarría, A.M.; Calderón, J.A.; Bejarano, G. Microstructural and electrochemical properties of TiAlN(Ag,Cu) nanocomposite coatings for medical applications deposited by dc magnetron sputtering. J. Alloys Compd. 2020, 828, 154396. [Google Scholar] [CrossRef]
- Nunes, V.; Silva, F.J.G.; Andrade, M.F.; Alexandre, R.; Baptista, A.P.M. Increasing the lifespan of high-pressure die cast molds subjected to severe wear. Surf. Coat. Technol. 2017, 332, 319–331. [Google Scholar] [CrossRef]
- Selvam, P.T.; Pugazhenthi, R.; Dhanasekaran, C.; Chandrasekaran, M.; Sivaganesan, S. Experimental Investigation on the Frictional Wear Behaviour of TiAlN Coated Brake Pads. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Ma, X.-F.; Wu, Y.-W.; Tan, J.; Meng, C.-Y.; Yang, L.; Dang, W.-A.; He, X.-J. Evaluation of corrosion and oxidation behaviors of TiAlCrN coatings for nuclear fuel cladding. Surf. Coat. Technol. 2019, 358, 521–530. [Google Scholar] [CrossRef]
- Alat, E.; Motta, A.T.; Comstock, R.J.; Partezana, J.M.; Wolfe, D.E. Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding. J. Nucl. Mater. 2016, 478, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Romero, E.C.; Macías, A.H.; Nonell, J.M.; Canto, O.S.; Botero, M.G. Mechanical and tribological properties of nanostructured TiAlN/TaN coatings deposited by DC magnetron sputtering. Surf. Coat. Technol. 2019, 378, 124941. [Google Scholar] [CrossRef]
- Zauner, L.; Ertelthaler, P.; Wojcik, T.; Bolvardi, H.; Kolozsvári, S.; Mayrhofer, P.H.; Riedl, H. Reactive HiPIMS deposition of Ti-Al-N: Influence of the deposition parameters on the cubic to hexagonal phase transition. Surf. Coat. Technol. 2020, 382, 125007. [Google Scholar] [CrossRef]
- Zhao, B.; Zhao, X.; Lin, L.; Zou, L. Effect of bias voltage on mechanical properties, milling performance and thermal crack propagation of cathodic arc ion-plated TiAlN coatings. Thin Solid Films 2020, 708, 1381116. [Google Scholar] [CrossRef]
- Tillmann, W.; Grisales, D.; Stangier, D.; Thomann, C.-A.; Debus, J.; Nienhaus, A.; Apel, D. Residual stresses and tribomechanical behaviour of TiAlN and TiAlCN monolayer and multilayer coatings by DCMS and HiPIMS. Surf. Coat. Technol. 2020, 126664. [Google Scholar] [CrossRef]
- Tillmann, W.; Grisales, D.; Stangier, D.; Jebara, I.B.; Kang, H. Influence of the etching processes on the adhesion of TiAlN coatings deposited by DCMS, HiPIMS and hybrid techniques on heat treated AISI H11. Surf. Coat. Technol. 2019, 378, 125075. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, L.; Tang, W.; Ruan, Q.; Li, X.; Wu, Z.; Qasim, A.M.; Cui, S.; Li, T.; Tian, X.; et al. Study of TiAlN coatings deposited by continuous high power magnetron sputtering (C-HPMS). Surf. Coat. Technol. 2020, 402, 126315. [Google Scholar] [CrossRef]
- Zhirkov, I.; Polcik, P.; Kolozsvári, S.; Rosen, J. Process development for stabilization of vacuum arc plasma generation from a TiB2 cathode. AIP Adv. 2019, 9, 015103. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.L.; Hsu, C.H.; Liu, H.S.; Su, C.Y.; Lin, C.K. Analysis on microstructure and characteristics of TiAlN/CrN nano-multilayer films deposited by cathodic arc deposition. Thin Solid Films 2010, 518, 7519–7522. [Google Scholar] [CrossRef]
- Warcholinski, B.; Gilewicz, A.; Myslinski, P.; Dobruchowska, E.; Murzynski, D.; Kochmanski, P.; Rokosz, K.; Raaen, S. Effect of nitrogen pressure and substrate bias voltage on the properties of Al–Cr–B–N coatings deposited using cathodic arc evaporation. Tribol. Int. 2021, 154, 106744. [Google Scholar] [CrossRef]
- Knotek, O.; Löffler, F.; Krämer, G. Multicomponent and multilayer physically vapour deposited coatings for cutting tools. Surf. Coat. Technol. 1992, 54–55, 241–248. [Google Scholar] [CrossRef]
- Shuai, J.; Zuo, X.; Wang, Z.; Guo, P.; Xu, B.; Zhou, J.; Wang, A.; Ke, P. Comparative study on crack resistance of TiAlN monolithic and Ti/TiAlN multilayer coatings. Ceram. Int. 2020, 46, 6672–6681. [Google Scholar] [CrossRef]
- Man, B.Y.; Guzman, L.; Miotello, A.; Adami, M. Microstructure, oxidation and H2- permeation resistance of TiAlN films deposited by DC magnetron sputtering technique. Surf. Coat. Technol. 2004, 180–181, 9–14. [Google Scholar] [CrossRef]
- Hsieh, J.H.; Liang, C.; Yu, C.H.; Wu, W. Deposition and characterization of TiAlN and multi-layered TiN/TiAlN coatings using unbalanced magnetron sputtering. Surf. Coat. Technol. 1998, 108–109, 132–137. [Google Scholar] [CrossRef]
- Kale, A.N.; Ravindranath, K.; Kothari, D.C.; Raole, P.M. Tribological properties of (Ti, Al)N coatings deposited at different bias voltages using the cathodic arc technique. Surf. Coat. Technol. 2001, 145, 60–70. [Google Scholar] [CrossRef]
- Mitsuo, A.; Uchida, S.; Nihira, N.; Iwaki, M. Improvement of high-temperature oxidation resistance of titanium nitride and titanium carbide films by aluminum ion implantation. Surf. Coat. Technol. 1998, 103–104, 98–103. [Google Scholar] [CrossRef]
- Du, H.; Zhao, H.; Xiong, J.; Xian, G. Effect of interlayers on the structure and properties of TiAlN based coatings on WC-Co cemented carbide substrate. Int. J. Refract. Met. Hard Mater. 2013, 37, 60–66. [Google Scholar] [CrossRef]
- Yang, K.; Xian, G.; Zhao, H.; Fan, H.; Wang, J.; Wang, H.; Du, H. Effect of Mo content on the structure and mechanical properties of TiAlMoN films deposited on WC–Co cemented carbide substrate by magnetron sputtering. Int. J. Refract. Met. Hard Mater. 2015, 52, 29–35. [Google Scholar] [CrossRef]
- Tomaszewski, L.; Gukbinski, W.; Urbanowicz, A.; Suszko, T.; Lewandowski, A.; Gulbinski, W. TiAlN based wear resistant coatings modified by molybdenum addition. Vacuum 2015, 121, 223–229. [Google Scholar] [CrossRef]
- Yi, J.; Chen, S.; Chen, K.; Xu, Y.; Chen, Q.; Zhu, C.; Liu, L. Effects of Ni content on microstructure, mechanical properties and Inconel 718 cutting performance of AlTiN-Ni nanocomposite coatings. Ceram. Int. 2018, 45, 474–480. [Google Scholar] [CrossRef]
- Liu, Z.R.; Chen, L.; Du, Y.; Zhang, S. Influence of Ru-addition on thermal decomposition and oxidation resistance of TiAlN coatings. Surf. Coat. Technol. 2020, 401, 126234. [Google Scholar] [CrossRef]
- Aninat, R.; Valle, N.; Chemin, J.-B.; Duday, D.; Michotte, C.; Penoy, M.; Bourgeois, L.; Choquet, P. Addition of Ta and Y in a hard Ti-Al-N PVD coating: Individual and conjugated effect on the oxidation and wear properties. Corros. Sci. 2019, 156, 171–180. [Google Scholar] [CrossRef]
- Chandra, N.G.P.S.; Otsuka, Y.; Mutoh, Y.; Yamamoto, K. Effect of coating thickness on fatigue behavior of TiAlN coated Ti-alloys. Int. J. Fatigue 2020, 140, 105767. [Google Scholar] [CrossRef]
- Das, S.; Guha, S.; Ghadai, R.; Swain, B.P. A comparative analysis over different properties of TiN, TiAlN and TiAlSiN thin film coatings grown in nitrogen gas atmosphere. Mater. Chem. Phys. 2021, 258, 123866. [Google Scholar] [CrossRef]
- Chaar, A.B.B.; Rogstrom, L.; Johansson-Joesaar, M.P.; Barrirero, J.; Aboulfadl, H.; Schell, N.; Ostach, D.; Mucklich, F.; Oden, M. Microstructural influence of the thermal behavior of arc deposited TiAlN coatings with high aluminum content. J. Alloys Compd. 2021, 854, 157205. [Google Scholar] [CrossRef]
- Jacob, A.; Gangopadhyay, S.; Satapathy, A.; Mantry, S.; Jha, B.B. Influences of micro-blasting as surface treatment technique on properties and performance of AlTiN coated tool. J. Manuf. Processes 2017, 29, 407–418. [Google Scholar] [CrossRef]
- Zhang, K.; Deng, J.; Meng, R.; Lei, S.; Yu, S. Influence of laser substrate pretreatment on anti-adhesive wear properties of WC/Co-based TiAlN coatings against AISI 316 stainless steel. Int. J. Refract. Met. Hard Mater. 2016, 57, 101–114. [Google Scholar] [CrossRef]
- Masooth, P.H.S.; Jayakumar, V.; Bharathiraj, G. Experimental investigation on surface roughness in CNC end milling process by uncoated and TiAlN coated carbide end mill under dry conditions. Mater. Today Procc. 2020, 22, 726–736. [Google Scholar] [CrossRef]
- Ravi, S.; Gurusamy, P. Experimental investigations on performance of TiN and TiAlN coated tools in cryogenic milling of AISI D2 hardened steel. Mater. Today Procc. 2020, 33, 3612–3615. [Google Scholar] [CrossRef]
- Siwawut, S.; Saikaew, C.; Wisitsoraat, A.; Surinphong, S. Cutting performances and wear characteristics of WC inserts coated with TiAlSiN and CrTiAlSiN by filtered cathodic arc in dry face milling of cast iron. Int. J. Adv. Manuf. Technol. 2018. [Google Scholar] [CrossRef]
- Hou, M.; Mou, W.; Yan, G.; Song, G.; Wu, Y.; Ji, W.; Jiang, Z.; Wang, W.; Qian, C.; Cai, Z. Effects of different distribution of residual stresses in the depth direction on cutting performance of TiAlN coated WC-10wt%Co tools in milling Ti-6Al-4V. Surf. Coat. Technol. 2020, 397, 125972. [Google Scholar] [CrossRef]
- Sen, B.; Gupta, M.K.; Mia, M.; Mandal, U.T.; Mondal, S.P. Wear behaviour of TiAlN coated solid carbide end-mill under alumina enriched minimum quantity palm oil-based lubricating condition. Tribology Inter. 2020, 148, 106310. [Google Scholar] [CrossRef]
- Tansukatanon, S.; Tangwarodomnukun, V.; Dumkum, C.; Kruytong, P.; Plauchum, N.; Charee, W. Micromachining of Stainless steel using TiAlN-coated tungsten carbide end mill. Procedia Manuf. 2019, 30, 419–426. [Google Scholar] [CrossRef]
- Ziberov, M.; Oliveira, D.; Silva, M.B.; Hung, W.N.P. Wear of TiAlN and DLC coated microtools in micromilling of Ti-6Al-4V alloy. J. Manuf. Process. 2020, 56, 337–349. [Google Scholar] [CrossRef]
- Bandapalli, C.; Sutaria, B.M.; Bhatt, D.V.P.; Singh, K.K. Tool Wear Analysis of Micro End Mills—Uncoated and PVD TiAlN and AlTiN in High speed Micro Milling of Titanium alloy-Ti-0.3Mo-0.8Ni. Procedia CIRP 2018, 77, 626–629. [Google Scholar] [CrossRef]
- Swain, N.; Venkatesh, V.; Kumar, P.; Srinivas, G.; Ravishankar, S.; Barshilia, H.C. An experimental investigation on the machining characteristics of Nimonic 75 using uncoated and TiAlN coated tungsten carbide micro-end mills. CIRP J. Manuf. Sci. Technol. 2017, 16, 34–42. [Google Scholar] [CrossRef]
- Zhao, J.; Lie, Z. Influences of coating thickness on cutting temperature for dry hard turning Inconel 718 with PVD TiAlN coated carbide tools in initial tool wear stage. J. Manuf. Process. 2020, 56, 1155–1165. [Google Scholar] [CrossRef]
- Kurniawan, R.; Park, G.C.; Park, K.M.; Zhen, Y.; Kwak, Y.I.; Kim, M.C.; Lee, J.M.; Ko, T.J.; Park, C.S. Machinability of modified Inconel 713C using a WC TiAlN-coated tool. J. Manuf. Process. 2020, 57, 409–430. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Z.; Wang, B.; Hu, J. PVD AlTiN coating effects on tool-chip heat partition coefficient and cutting temperature rise in orthogonal cutting Inconel 718. Int. J. Heat Mass Transf. 2020, 163, 120449. [Google Scholar] [CrossRef]
- Hao, G.; Liu, Z. Thermal contact resistance enhancement with aluminum oxide layer generated on TiAlN-coated tool and its effect on cutting performance for H13 hardened steel. Surf. Coat. Technol. 2020, 385, 125436. [Google Scholar] [CrossRef]
- Lu, W.; Li, G.; Zhou, Y.; Liu, S.; Wang, K.; Wang, Q. Effect of high hardness and adhesion of gradient TiAlSiN coating on cutting performance of titanium alloy. J. Alloys Compounds 2020, 820, 153137. [Google Scholar] [CrossRef]
- Kulkarni, A.P.; Sargade, V.G. Characterization and Performance of AlTiN, AlTiCrN, TiN/TiAlN PVD Coated Carbide tools While Turning SS 304. Mater. Manuf. Process. 2015, 30, 748–755. [Google Scholar] [CrossRef]
- Beake, B.D.; Endrino, J.L.; Kimpton, C.; Fox-Rabinovich, G.S.; Veldhuis, S.C. Elevated temperature repetitive micro-scratch testing of AlCrN, TiAlN and AlTiN PVD coatings. Int. J. Refract. Metal. Hard Mater. 2017, 69, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Gong, M.; Chen, J.; Deng, X.; Wu, S. Sliding wear behavior of TiAlN and AlCrN coatings on a unique cemented carbide substrate. Int. J. Refract. Metal. Hard Mater. 2017, 69, 209–214. [Google Scholar] [CrossRef]
- Vettivel, S.C.; Jegan, R.; Vignesh, J.; Suresh, S. Surface characteristics and wear depth profile of the TiN, TiAlN and AlCrN coated stainless steel in dry sliding wear condition. Surf. Interf. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Zou, H.K.; Chen, L.; Chang, K.K.; Pei, F.; Du, Y. Enhanced hardness and age-hardening of TiAlN coatings through Ru-addition. Scriptia Materialia 2019, 162, 382–386. [Google Scholar] [CrossRef]
- Zhang, M.; Cheng, Y.; Xin, L.; Su, J.; Li, Y.; Zhu, S.; Wang, F. Cyclic oxidation behaviour of Ti/TiAlN composite multilayer coatings deposited on titanium alloy. Corrosion Sci. 2020, 166, 108476. [Google Scholar] [CrossRef]
- Sprute, T.; Tillmann, W.; Grisales, D.; Selvadurai, U.; Fischer, G. Influence of substrate pre-treatments on residual stresses and tribo-mechanical properties of TiAlN-based PVD coatings. Surf. Coat. Technol. 2014, 260, 369–379. [Google Scholar] [CrossRef]
- Çomakli, O. Improved structural, mechanical, corrosion and tribocorrosion properties of Ti45Nb alloys by TiN, TiAlN monolayers, and TiAlN/TiN multilayer ceramic films. Ceram. Inter. 2021, 47, 4149–4156. [Google Scholar] [CrossRef]
- Çomakli, O. Influence of CrN, TiAlN monolayers and TiAlN/CrN multilayer ceramic films on structural, mechanical and tribological behavior of β-type Ti45Nb alloys. Ceram. Inter. 2020, 46, 8185–8191. [Google Scholar] [CrossRef]
- Shugurov, A.R.; Kazachenok, M.S. Mechanical properties and tribological behavior of magnetron sputtered TiAlN/TiAl multilayer coatings. Surf. Coat. Technol. 2018, 353, 254–262. [Google Scholar] [CrossRef]
- Shang, H.; Li, J.; Shao, T. Mechanical properties and thermal stability of TiAlN/Ta multilayer film deposited by ion beam assisted deposition. Applied Surf. Sci. 2014, 310, 317–320. [Google Scholar] [CrossRef]
- Zhao, F.; Ge, Y.; Wang, L.; Wang, X. Tribological and mechanical properties of hardness-modulated TiAlSiN multilayer coatings fabricated by plasma immersion ion implantation and deposition. Surf. Coat. Technol. 2020, 126475. [Google Scholar] [CrossRef]
- Sukuroglu, E.E.; Baran, O.; Totik, Y.; Efeoglu, I. Investigation of high temperature wear resistance of TiCrAlCN/TiAlN multilayer coatings over M2 Steel. J. Adhesion Sci. Technol. 2018. [Google Scholar] [CrossRef]
- An, Q.; Chen, J.; Tao, Z.; Ming, W.; Chen, M. Experimental investigation on tool wear characteristics of PVD and CVD coatings during face milling of Ti-6242S ad Ti- 555 titanium alloys. Refrac. Metals Hard Mater. 2019. [Google Scholar] [CrossRef]
- Varghese, V.; Chakradhar, D.; Ramesh, M.R. Micro-mechanical characterization and wear performance of TiAlN/NbN PVD coated inserts during Eng milling of AISI 304 Austenitic Stainless Steel. Mater. Today Proc. 2018, 5, 12855–12862. [Google Scholar]
- Zheng, G.; Zhao, G.; Cheng, X.; Xu, R.; Zhao, J.; Zhang, H. Frictional and wear performance of TiAlN/TiN coated tool against high-strength steel. Ceram. Inter. 2018, 44, 6878–6885. [Google Scholar] [CrossRef]
- Thakur, A.; Gnagopadhyay, S. Dry machining of nickel-based super alloy as a sustainable alternative using TiN/TiAlN coated tool. J. Clean. Product. 2016, 129, 256–268. [Google Scholar] [CrossRef]
- Abdoos, M.; Bose, B.; Rawal, S.; Fazal, A.; Arif, M.; Veldhuis, S.C. The influence of residual stress on the properties and performance of thick TiAlN multilayer coating during dry turning of compacted graphite iron. Wear 2020, 15, 203342. [Google Scholar] [CrossRef]
- Bonu, V.; Jeevitha, M.; Kumar, V.P.; Srinivas, G.; Siju; Barshilia, H.C. Solid particle erosion and corrosion resistance performance of nanolayered and multilayered Ti/TiN and TiAl/TiAlN coatings deposited on Ti6Al4V. Surf. Coat. Technol. 2020, 387, 125531. [Google Scholar] [CrossRef]
- Wang, J.; Yazdi, M.A.P.; Lomello, F.; Billard, A.; Kovács, A.; Schuster, F.; Guet, C.; White, T.J.; Sanchette, F.; Dong, Z. Influence of microstructures on mechanical properties and tribology behaviors of TiN/TiAlN multilayer coatings. Surf. Coat. Technol. 2016. [Google Scholar] [CrossRef]
- Liang, F.; Shen, Y.; Pei, C.; Qiu, B.; Lei, J.; Sun, D. Microstructure evolution and corrosion resistance of multi interfaces Al-TiAlN nanocomposite films on AZ91D magnesium alloy. Surf. Coat. Technol. 2019, 15, 83–92. [Google Scholar] [CrossRef]
- Seidl, W.M.; Bartosik, M.; Kolozsvári, S.; Bolvardi, H.; Mayrhofer, P.H. Mechanical properties and oxidation resistance of AlCrN/TiAlTaN multilayer coatings. Surf. Coat. Technol. 2018, 347, 427–433. [Google Scholar] [CrossRef]
- Xian, G.; Xiong, J.; Zhao, H.; Fan, H.; Li, Z.; Du, H. Evaluation of the structure and properties of the hard TiAlN-(TiAlN/CrAlSiN)-TiAlN multiple coatings deposited on different substrate materials. Int. J. Refract. Met. Hard Mater. 2019, 85, 105056. [Google Scholar] [CrossRef]
- Pshyk, A.V.; Kravchenko, Y.; Coy, E.; Kempinski, M.; Iatsunskyi, I.; Zaleski, K.; Pogrebnjak, A.D.; Jurga, S. Microstructure, phase composition and mechanical properties of novel nanocomposite (TiAlSiY)N and nano-scale (TiAlSiY)N/MoN multifunctional heterostructures. Surf. Coat. Technol. 2018, 350, 376–390. [Google Scholar] [CrossRef]
- Kravchenko, Y.; Coy, L.E.; Peplinska, B.; Iatsunskyi, I.; Zaleski, K.; Kempinski, M.; Beresnev, V.M.; Kanarski, P.; Jurga, S.; Pogrebnjak, A.D. Nano-multilayered coatings of (TiAlSiY)N/MeN (Me=Mo, Cr and Zr): Influence of composition of the alternating layer on their structural and mechanical properties. J. Alloys Compd. 2018, 767, 483–495. [Google Scholar] [CrossRef]
- Wang, L.P.; Qi, J.L.; Cao, Y.Q.; Zhang, K.; Zhang, Y.; Hao, J.; Ren, P.; Wen, M. N-rich Zr3N4 nanolayers-dependent superhard effect and fracture behavior in TiAlN/Zr3N4 nanomultilayer films. Ceram. Inter. 2020, 46, 19111–19120. [Google Scholar] [CrossRef]
- Chen, L.; Pei, Z.; Xiao, J.; Sun, C. TiAlN/Cu Nanocomposite Coatings Deposited by Filtered Cathodic Arc Ion Plating. J. Mater. Sci. Technol. 2017, 33, 111–116. [Google Scholar] [CrossRef]
- Mejía, H.D.; Perea, D.; Bejarano, G.G. Development and characterization of TiAlN (Ag, Cu) nanocomposite coatings deposited by DC magnetron sputtering for tribological applications. Surf. Coat. Technol. 2020, 381, 125095. [Google Scholar] [CrossRef]
- Geng, D.; Zeng, R.; Wu, Z.; Wang, Q. An investigation on microstructure and milling performance of arc-evaporated TiSin/AlTiN film. Thin Solid Film 2020, 709, 138243. [Google Scholar] [CrossRef]
- Teppernegg, T.; Czettl, C.; Michotte, C.; Mitterer, C. Arc evaporated Ti-Al-N/Cr-Al-N multilayer coating systems for cutting applications. Int. J. Refract. Metal. Hard Mater. 2018, 72, 83–88. [Google Scholar] [CrossRef]
- Chowdhury, S.; Bose, B.; Yamamoto, K.; Veldhuis, S.C. Effect of Interlayer Thickness on Nano-Multilayer Coating Performance during High speed dry milling of H13 Tool Steel. Coatings 2019, 9, 737. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.; Beake, B.D.; Yamamoto, K.; Bose, B.; Aguirre, M.; Fox-Rabinovich, G.S.; Veldhuis, S.C. Improvement of Wear Performance of Nano-Multilayer PVD Coatings under Dry Hard End Milling Conditions Based on Their Architectural Development. Coatings 2018, 8, 59. [Google Scholar] [CrossRef] [Green Version]
- Zha, C.; Chen, F.; Jiang, F.; Xu, X. Correlation of the fatigue impact resistance of bilayer and nanolayered PVD coatings with their cutting performance in machining T-6Al-4V. Ceram. Inter. 2019, 45, 14704–14717. [Google Scholar] [CrossRef]
- Sui, X.; Li, G.; Jiang, C.; Wang, K.; Zhang, Y.; Hao, J.Q. Improved toughness of layered architecture TiAlN/CrN coatings for titanium high speed cutting. Ceram. Inter. 2018, 44, 5629–5635. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, Y.; Zhang, T.; Wu, Z.; Wang, Q. Tribological properties, oxidation resistance and turning performance of AlTiN/AlCrSiN multilayer coatings by arc ion plating. Surf. Coat. Technol. 2018, 356, 1–10. [Google Scholar] [CrossRef]
- Fernandes, C.; Carvalho, S.; Rebouta, L.; Vaz, F.; Denannot, M.F.; Pacaud, J.; Riviére, J.P.; Cavaleiro, A. Effect of the microstructure on the cutting performance of superhard (Ti,Si,Al)N nanocomposite films. Vacuum 2008, 82, 1470–1474. [Google Scholar] [CrossRef] [Green Version]
- Glechner, T.; Hahn, R.; Wojcik, T.; Holec, D.; Kolozsvári, S.; Zaid, H.; Kodambaka, S.; Mayrhofer, P.H.; Riedl, H. Assessment of ductile character in superhard Ta-C-N thin films. Acta Materialia 2019, 179, 17–25. [Google Scholar] [CrossRef]
- Vuchkov, T.; Yaqub, T.B.; Evaristo, M.; Cavaleiro, A. Synthesis, microstructural and mechanical properties of self.lubricating Mo-Se-C coatings deposited by closed-field unbalanced magnetron sputtering. Surf. Coat. Technol. 2020, 394, 123889. [Google Scholar] [CrossRef]
- Gilmore, R.; Baker, M.A.; Gibson, P.N.; Gissler, W.; Stoiber, M.; Losbichler, P.; Mitterer, C. Low-friction TiN-MoS2 coatings produced by dc magnetron co-deposition. Surf. Coat. Technol. 1998, 108–109, 345–351. [Google Scholar] [CrossRef]
- Ding, X.; Zeng, X.T.; Goto, T. Unbalanced magnetron sputtered Ti–Si–N:MoSx composite coatings for improvement of tribological properties. Surf. Coat. Technol. 2005, 198, 432–436. [Google Scholar] [CrossRef]
- Bondarev, A.V.; Kiryukhantsev-Korneev, V.; Sheveyko, A.N.; Shtansky, D.V. Structure, tribological and electrochemical properties of low friction TiAlSiCN/MoSeC coatings. Applied Surf. Sci. 2015, 327, 235–261. [Google Scholar] [CrossRef]
- Shtansky, D.V.; Kuptsov, K.A.; Kiryukhantsev-Korneev, V.; Sheveyko, A.N. High thermal stability of TiAlSiCN coatings with “comb” like nanocomposite structure. Surf. Coat. Technol. 2012, 206, 4840–4849. [Google Scholar] [CrossRef]
- Kuptsov, K.A.; Kiryukhantsev-Korneev, V.; Sheveyko, A.N.; Shtansky, D.V. Surface modification of TiAlSiCN coatings to improve oxidation protection. Applied Surf. Sci. 2015, 347, 713–718. [Google Scholar] [CrossRef]
- Golizadeh, M.; Kuptsov, K.A.; Svyndina, N.V.; Shtansky, D.V. Multilayer SiBCN/TiAlSiCN and AlOx/TiAlSiCN coatings with high thermal stability and oxidation resistance. Surf. Coat. Technol. 2017, 319, 277–285. [Google Scholar] [CrossRef]
Sample ID | Composition (at. %) | |||
---|---|---|---|---|
Ti | Al | Mo | N | |
S1 | 27.6 | 24.1 | 2.8 | 45.6 |
S2 | 23.9 | 22.2 | 6.9 | 47.0 |
S3 | 17.8 | 18.0 | 8.3 | 54.9 |
S4 | 18.2 | 19.4 | 10.1 | 54.4 |
S5 | 16.4 | 16.7 | 12.1 | 54.8 |
Coating | Hardness | Young’s Modulus |
---|---|---|
(GPa) | (GPa) | |
1 (Unaffected) | 30.6 | 482 |
2 (Affected) | 34.9 | 567 |
Coating | Hardness | Young’s Modulus |
---|---|---|
(GPa) | (GPa) | |
TiAlN [60,64,65,66,68,84,85,86] | 29.2–34.9 | 482–511 |
AlTiN [67,85] | 20.0–24.3 | 337–358 |
TiAlSiN [65] | 25.2–29.8 | 266–288 |
CrTiAlSiN [71] | 24.0–27.1 | 200–275 |
AlTiN–Ni [61] | 20.9–24.3 | 300–316 |
TiAlMoN [59] | 21.58–37.0 | 510–620 |
TiAlYN [63] | 31.6–35.2 | 520–575 |
TiAlTaN [63] | 27.0–31.0 | 542–588 |
TiAlTaYN [63] | 31.7–34.3 | 526–568 |
TiAlRuN [62,87] | 26.09–33.2 | 334–492 |
Coating | Hardness | Young’s Modulus |
---|---|---|
(GPa) | (GPa) | |
TiAlN (multilayer) [89,100] | 29.0–37.0 | 370–462 |
TiAlSiN (multilayer) [94] | 32.5–37.6 | 400–415 |
TiAlN/Ta [93] | 29.0–33.0 | 300–325 |
Ti/TiAlN [88] | 25.0–35.0 | 325–410 |
TiAlN/CrN [91] | 37–41 | 420–475 |
TiAlN/TiN [90,96,98] | 42–46 | N/A |
TiAlN/TiAl [92] | 22.5–33.1 | 220–350 |
TiAlN/NbN [97] | 16–30 | 433–606 |
TiCrAlCN/TiAlN [95] | 23 | N/A |
Coating | Hardness | Young’s Modulus |
---|---|---|
(GPa) | (GPa) | |
TiN/TiAlN [102] | 31.5–42.5 | 417–520 |
Al/TIAlN [103] | 23.0–31.0 | N/A |
(TiAlSiY)N/MoN [106,107] | 36.0–38.0 | 395–406 |
(TiAlSiY)N/ZrN [107] | 21.1–22.7 | 265–275 |
(TiAlSiY)N/CrN [107] | 22.1–23.4 | 289–302 |
AlCrN/TiAlTaN [104] | 32.0–42.0 | N/A |
TiAlN/ZrN [107,108] | 22.0–36.0 | 210–290 |
TiAlN/Cu [109] | 24.0–29.0 | 320–350 |
TiAlN(Ag,Cu) [110] | 6.7–15.2 | 140–216 |
AlTiN/AlCrSiN [117] | 28.5–31.0 | 410–450 |
TiSiN/TiAlN [115] | 33.0–39.0 | 550–570 |
TiAlN/CrAlN [112] | 25.0–30.0 | N/A |
TiAlCriSiYN/TiAlCiN [113,114] | 24.0–33.0 | 430–475 |
Material | Coating | Wear Mechanisms | Machining Speed Range |
---|---|---|---|
[m/min] | |||
Tool steels [70,71,74,97,111,112,113,114] | TiAlN | -Adhesion -Abrasion | 40–600 |
TiAlSIN | -Ploughing -Abrasion | ||
CrTiAlSiN | -Thermal cracking -Abrasion | ||
TiSiN/AlTiN | -Abrasion | ||
TiAlN/CrAlN | -Micro-cracks -Abrasion | ||
TiAlN/NbN | -Adhesion -Abrasion | ||
Titanium alloys [72,75,76,96] | TiAlN | -BUE -Abrasion -Adhesion | 9.6–173 |
AlTiN | -Adhesion -Abrasion | ||
TiAlN/TiN | -Adhesion -Abrasion -BUE | ||
Nimonic 75 [77] | TiAlN | -Coating chipping | 13 |
Inconel 690 [73] | TiAlN | -Adhesion -Abrasion | 60 |
Material | Coating | Wear Mechanisms | Machining Speed Range |
---|---|---|---|
[m/min] | |||
Tool steels [81,83,98,100,117] | TiAlN | -Adhesion -Abrasion | 120–500 |
AlTiN | -Abrasion -Chipping | ||
AlTiCrN | -Abrasion -Adhesion -BUE | ||
TiAlN/TiN | -Abrasion -BUE | ||
Titanium alloys [82,115,116] | TiAlSiN | -Abrasion -BUE | 100 |
TiAlN/CrN | -Abrasion -Coating delamination | ||
TiSiN/TiAlN | -Abrasion | ||
Inconel [78,79,80,99] | TiAlN | -Abrasion -Adhesion -BUE | 30–120 |
AlTiN | -Abrasion | ||
TiN/TiAlN | -Abrasion |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, V.F.C.; Da Silva, F.J.G.; Pinto, G.F.; Baptista, A.; Alexandre, R. Characteristics and Wear Mechanisms of TiAlN-Based Coatings for Machining Applications: A Comprehensive Review. Metals 2021, 11, 260. https://doi.org/10.3390/met11020260
Sousa VFC, Da Silva FJG, Pinto GF, Baptista A, Alexandre R. Characteristics and Wear Mechanisms of TiAlN-Based Coatings for Machining Applications: A Comprehensive Review. Metals. 2021; 11(2):260. https://doi.org/10.3390/met11020260
Chicago/Turabian StyleSousa, Vitor F. C., Francisco José Gomes Da Silva, Gustavo Filipe Pinto, Andresa Baptista, and Ricardo Alexandre. 2021. "Characteristics and Wear Mechanisms of TiAlN-Based Coatings for Machining Applications: A Comprehensive Review" Metals 11, no. 2: 260. https://doi.org/10.3390/met11020260