Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = gait assessment/fall risk estimation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1266 KiB  
Article
Stratification of Older Adults According to Frailty Status and Falls Using Gait Parameters Explored Using an Inertial System
by Marta Neira Álvarez, Elisabet Huertas-Hoyas, Robert Novak, Ana Elizabeth Sipols, Guillermo García-Villamil-Neira, M. Cristina Rodríguez-Sánchez, Antonio J. Del-Ama, Luisa Ruiz-Ruiz, Sara García De Villa and Antonio R. Jiménez-Ruiz
Appl. Sci. 2024, 14(15), 6704; https://doi.org/10.3390/app14156704 - 1 Aug 2024
Viewed by 443
Abstract
Background: The World Health Organization recommends health initiatives focused on the early detection of frailty and falls. Objectives: 1—To compare clinical characteristics, functional performance and gait parameters (estimated with the G-STRIDE inertial sensor) between different frailty groups in older adults with and without [...] Read more.
Background: The World Health Organization recommends health initiatives focused on the early detection of frailty and falls. Objectives: 1—To compare clinical characteristics, functional performance and gait parameters (estimated with the G-STRIDE inertial sensor) between different frailty groups in older adults with and without falls. 2—To identify variables that stratify participants according to frailty status and falls. 3—To verify the sensitivity, specificity and accuracy of the model that stratifies participants according to frailty status and falls. Methods: Observational, multicenter case-control study. Participants, adults over 70 years with and without falls were recruited from two outpatient clinics and three nursing homes from September 2021 to March 2022. Clinical variables and gait parameters were gathered using the G-STRIDE inertial sensor. Random Forest regression was applied to stratify participants. Results: 163 participants with a mean age of 82.6 ± 6.2 years, of which 118 (72%) were women, were included. Significant differences were found in all gait parameters (both conventional assessment and G-STRIDE evaluation). A hierarchy of factors contributed to the risk of frailty and falls. The confusion matrix and the performance metrics demonstrated high accuracy in classifying participants. Conclusions: Gait parameters, particularly those assessed by G-STRIDE, are effective in stratifying individuals by frailty status and falls. These findings underscore the importance of gait analysis in early intervention strategies. Full article
Show Figures

Figure 1

17 pages, 3928 KiB  
Article
Computer Vision System Based on the Analysis of Gait Features for Fall Risk Assessment in Elderly People
by Rogelio Cedeno-Moreno, Diana L. Malagon-Barillas, Luis A. Morales-Hernandez, Mayra P. Gonzalez-Hernandez and Irving A. Cruz-Albarran
Appl. Sci. 2024, 14(9), 3867; https://doi.org/10.3390/app14093867 - 30 Apr 2024
Viewed by 807
Abstract
Up to 30% of people over the age of 60 are at high risk of falling, which can cause injury, aggravation of pre-existing conditions, or even death, with up to 684,000 fatal falls reported annually. This is due to the difficult task of [...] Read more.
Up to 30% of people over the age of 60 are at high risk of falling, which can cause injury, aggravation of pre-existing conditions, or even death, with up to 684,000 fatal falls reported annually. This is due to the difficult task of establishing a preventive system for the care of the elderly, both in the hospital environment and at home. Therefore, this work proposes the development of an intelligent vision system that uses a novel methodology to infer fall risk from the analysis of kinetic and spatiotemporal gait parameters. In general, each patient is assessed using the Tinetti scale. Then, the computer vision system estimates the biomechanics of walking and obtains gait features, such as stride length, cadence, period, and range of motion. Subsequently, this information serves as input to an artificial neural network that diagnoses the risk of falling. Ninety-six participants took part in the study. The system’s performance was 99.1% accuracy, 94.4% precision, 96.9% recall, 99.4% specificity, and 95.5% F1-Score. Thus, the proposed system can evaluate the fall risk assessment, which could benefit clinics, hospitals, and even homes by allowing them to assess in real time whether a person is at high risk of falling to provide timely assistance. Full article
(This article belongs to the Special Issue Advanced Sensors for Postural or Gait Stability Assessment)
Show Figures

Figure 1

15 pages, 954 KiB  
Article
Assessing Gait & Balance in Adults with Mild Balance Impairment: G&B App Reliability and Validity
by Hina Shafi, Waqar Ahmed Awan, Sharon Olsen, Furqan Ahmed Siddiqi, Naureen Tassadaq, Usman Rashid and Imran Khan Niazi
Sensors 2023, 23(24), 9718; https://doi.org/10.3390/s23249718 - 8 Dec 2023
Cited by 2 | Viewed by 1437
Abstract
Smartphone applications (apps) that utilize embedded inertial sensors have the potential to provide valid and reliable estimations of different balance and gait parameters in older adults with mild balance impairment. This study aimed to assess the reliability, validity, and sensitivity of the Gait&Balance [...] Read more.
Smartphone applications (apps) that utilize embedded inertial sensors have the potential to provide valid and reliable estimations of different balance and gait parameters in older adults with mild balance impairment. This study aimed to assess the reliability, validity, and sensitivity of the Gait&Balance smartphone application (G&B App) for measuring gait and balance in a sample of middle- to older-aged adults with mild balance impairment in Pakistan. Community-dwelling adults over 50 years of age (N = 83, 50 female, range 50–75 years) with a Berg Balance Scale (BBS) score between 46/56 and 54/56 were included in the study. Data collection involved securing a smartphone to the participant’s lumbosacral spine. Participants performed six standardized balance tasks, including four quiet stance tasks and two gait tasks (walking looking straight ahead and walking with head turns). The G&B App collected accelerometry data during these tasks, and the tasks were repeated twice to assess test-retest reliability. The tasks in quiet stance were also recorded with a force plate, a gold-standard technology for measuring postural sway. Additionally, participants completed three clinical measures, the BBS, the Functional Reach Test (FRT), and the Timed Up and Go Test (TUG). Test-retest reliability within the same session was determined using intraclass correlation coefficients (ICCs) and the standard error of measurement (SEM). Validity was evaluated by correlating the G&B App outcomes against both the force plate data and the clinical measures using Pearson’s product-moment correlation coefficients. To assess the G&B App’s sensitivity to differences in balance across tasks and repetitions, one-way repeated measures analyses of variance (ANOVAs) were conducted. During quiet stance, the app demonstrated moderate reliability for steadiness on firm (ICC = 0.72) and compliant surfaces (ICC = 0.75) with eyes closed. For gait tasks, the G&B App indicated moderate to excellent reliability when walking looking straight ahead for gait symmetry (ICC = 0.65), walking speed (ICC = 0.93), step length (ICC = 0.94), and step time (ICC = 0.84). The TUG correlated with app measures under both gait conditions for walking speed (r −0.70 and 0.67), step length (r −0.56 and −0.58), and step time (r 0.58 and 0.50). The BBS correlated with app measures of walking speed under both gait conditions (r 0.55 and 0.51) and step length when walking with head turns (r = 0.53). Force plate measures of total distance wandered showed adequate to excellent correlations with G&B App measures of steadiness. Notably, G&B App measures of walking speed, gait symmetry, step length, and step time, were sensitive to detecting differences in performance between standard walking and the more difficult task of walking with head turns. This study demonstrates the G&B App’s potential as a reliable and valid tool for assessing some gait and balance parameters in middle-to-older age adults, with promise for application in low-income countries like Pakistan. The app’s accessibility and accuracy could enhance healthcare services and support preventive measures related to fall risk. Full article
(This article belongs to the Special Issue Sensors in Neurophysiology and Neurorehabilitation (2nd Edition))
Show Figures

Figure 1

28 pages, 8265 KiB  
Article
A Novel Smart Shoe Instrumented with Sensors for Quantifying Foot Placement and Clearance during Stair Negotiation
by Malarvizhi Ram, Vasilios Baltzopoulos, Andy Shaw, Constantinos N. Maganaris, Jeff Cullen, Thomas O’Brien and Patryk Kot
Sensors 2023, 23(24), 9638; https://doi.org/10.3390/s23249638 - 5 Dec 2023
Cited by 1 | Viewed by 1395
Abstract
Trips and slips are significant causal perturbations leading to falls on stairs, especially in older people. The risk of a trip caused by a toe or heel catch on the step edge increases when clearance is small and variable between steps. The risk [...] Read more.
Trips and slips are significant causal perturbations leading to falls on stairs, especially in older people. The risk of a trip caused by a toe or heel catch on the step edge increases when clearance is small and variable between steps. The risk of a slip increases if the proportion of the foot area in contact with the step is reduced and variable between steps. To assess fall risk, these measurements are typically taken in a gait lab using motion-capture optoelectronic systems. The aim of this work was to develop a novel smart shoe equipped with sensors to measure foot placement and foot clearance on stairs in real homes. To validate the smart shoe as a tool for estimating stair fall risk, twenty-five older adults’ sensor-based measurements were compared against foot placement and clearance measurements taken in an experimental staircase in the lab using correlations and Bland–Altman agreement techniques. The results showed that there was a good agreement and a strong positive linear correlation for foot placement (r = 0.878, p < 0.000) and foot clearance (r = 0.967, p < 0.000) between sensor and motion analysis, offering promise for advancing the current prototype into a measurement tool for fall risk in real-life staircases. Full article
(This article belongs to the Special Issue Advanced Sensors for Health Monitoring in Older Adults)
Show Figures

Figure 1

10 pages, 956 KiB  
Article
One Step at a Time: Improving Gait Speed Measurement in a Geriatric Medicine Clinic
by Kirstyn James, Matthew E. Growdon, Ariela R. Orkaby and Andrea Wershof Schwartz
Geriatrics 2023, 8(4), 81; https://doi.org/10.3390/geriatrics8040081 - 11 Aug 2023
Viewed by 1554
Abstract
(1) Background: Mobility assessment is a key component of the assessment of an older adult as a part of the Age-Friendly Health System (AFHS) “geriatric 4Ms” framework. Several validated tools for assessing mobility and estimating fall risk in older adults are available. However, [...] Read more.
(1) Background: Mobility assessment is a key component of the assessment of an older adult as a part of the Age-Friendly Health System (AFHS) “geriatric 4Ms” framework. Several validated tools for assessing mobility and estimating fall risk in older adults are available. However, they are often under-utilized in daily practice even in specialty geriatric medicine care settings. We aimed to increase formal mobility assessment with brief gait speed measurement in a geriatric medicine outpatient clinic using phased change interventions. (2) Methods: This quality improvement (QI) initiative was conducted in a single outpatient geriatric medicine clinic. All clinic attendees who could complete a gait speed measurement were eligible for inclusion. The outcome measure was the completion of a 4 m gait speed. Several change interventions were implemented on a phased basis using the Model for Improvement methodology during the period from December 2018 to March 2020. Statistical process control charts were used to record gait speed measurements and detect non-random shifts. (3) Results: During this QI initiative, 80 patients were seen, accounting for 142 clinic visits. In response to change interventions, gait speed measurement at clinic visits increased from a median of 25% of visits to 67% by March 2020. (4) Conclusions: Adopting an AFHS care model is an urgent and challenging task to improve the quality of care for older adults. This initiative details how to effectively incorporate a brief, validated assessment of mobility using gait speed measurement into every geriatric medicine outpatient visit and progresses implementation of the AFHS “geriatric 4Ms”. Mobility assessment can aid in identifying older adults at increased fall risk. Full article
(This article belongs to the Section Healthy Aging)
Show Figures

Figure 1

21 pages, 4209 KiB  
Article
Methods for Spatiotemporal Analysis of Human Gait Based on Data from Depth Sensors
by Jakub Wagner, Marcin Szymański, Michalina Błażkiewicz and Katarzyna Kaczmarczyk
Sensors 2023, 23(3), 1218; https://doi.org/10.3390/s23031218 - 20 Jan 2023
Cited by 4 | Viewed by 1977
Abstract
Gait analysis may serve various purposes related to health care, such as the estimation of elderly people’s risk of falling. This paper is devoted to gait analysis based on data from depth sensors which are suitable for use both at healthcare facilities and [...] Read more.
Gait analysis may serve various purposes related to health care, such as the estimation of elderly people’s risk of falling. This paper is devoted to gait analysis based on data from depth sensors which are suitable for use both at healthcare facilities and in monitoring systems dedicated to household environments. This paper is focused on the comparison of three methods for spatiotemporal gait analysis based on data from depth sensors, involving the analysis of the movement trajectories of the knees, feet, and centre of mass. The accuracy of the results obtained using those methods was assessed for different depth sensors’ viewing angles and different types of subject clothing. Data were collected using a Kinect v2 device. Five people took part in the experiments. Data from a Zebris FDM platform were used as a reference. The obtained results indicate that the viewing angle and the subject’s clothing affect the uncertainty of the estimates of spatiotemporal gait parameters, and that the method based on the trajectories of the feet yields the most information, while the method based on the trajectory of the centre of mass is the most robust. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

36 pages, 1618 KiB  
Article
Detection of Fall Risk in Multiple Sclerosis by Gait Analysis—An Innovative Approach Using Feature Selection Ensemble and Machine Learning Algorithms
by Paula Schumann, Maria Scholz, Katrin Trentzsch, Thurid Jochim, Grzegorz Śliwiński, Hagen Malberg and Tjalf Ziemssen
Brain Sci. 2022, 12(11), 1477; https://doi.org/10.3390/brainsci12111477 - 31 Oct 2022
Cited by 5 | Viewed by 2029
Abstract
One of the common causes of falls in people with Multiple Sclerosis (pwMS) is walking impairment. Therefore, assessment of gait is of importance in MS. Gait analysis and fall detection can take place in the clinical context using a wide variety of available [...] Read more.
One of the common causes of falls in people with Multiple Sclerosis (pwMS) is walking impairment. Therefore, assessment of gait is of importance in MS. Gait analysis and fall detection can take place in the clinical context using a wide variety of available methods. However, combining these methods while using machine learning algorithms for detecting falls has not been performed. Our objective was to determine the most relevant method for determining fall risk by analyzing eleven different gait data sets with machine learning algorithms. In addition, we examined the most important features of fall detection. A new feature selection ensemble (FS-Ensemble) and four classification models (Gaussian Naive Bayes, Decision Tree, k-Nearest Neighbor, Support Vector Machine) were used. The FS-Ensemble consisted of four filter methods: Chi-square test, information gain, Minimum Redundancy Maximum Relevance and RelieF. Various thresholds (50%, 25% and 10%) and combination methods (Union, Union 2, Union 3 and Intersection) were examined. Patient-reported outcomes using specialized walking questionnaires such as the 12-item Multiple Sclerosis Walking Scale (MSWS-12) and the Early Mobility Impairment Questionnaire (EMIQ) achieved the best performances with an F1 score of 0.54 for detecting falls. A combination of selected features of MSWS-12 and EMIQ, including the estimation of walking, running and stair climbing ability, the subjective effort as well as necessary concentration and walking fluency during walking, the frequency of stumbling and the indication of avoidance of social activity achieved the best recall of 75%. The Gaussian Naive Bayes was the best classification model for detecting falls with almost all data sets. FS-Ensemble improved the classification models and is an appropriate technique for reducing data sets with a large number of features. Future research on other risk factors, such as fear of falling, could provide further insights. Full article
(This article belongs to the Section Sensory and Motor Neuroscience)
Show Figures

Figure 1

20 pages, 4115 KiB  
Systematic Review
Nonlinear Dynamic Measures of Walking in Healthy Older Adults: A Systematic Scoping Review
by Arezoo Amirpourabasi, Sallie E. Lamb, Jia Yi Chow and Geneviève K. R. Williams
Sensors 2022, 22(12), 4408; https://doi.org/10.3390/s22124408 - 10 Jun 2022
Cited by 5 | Viewed by 2195
Abstract
Background: Maintaining a healthy gait into old age is key to preserving the quality of life and reducing the risk of falling. Nonlinear dynamic analyses (NDAs) are a promising method of identifying characteristics of people who are at risk of falling based on [...] Read more.
Background: Maintaining a healthy gait into old age is key to preserving the quality of life and reducing the risk of falling. Nonlinear dynamic analyses (NDAs) are a promising method of identifying characteristics of people who are at risk of falling based on their movement patterns. However, there is a range of NDA measures reported in the literature. The aim of this review was to summarise the variety, characteristics and range of the nonlinear dynamic measurements used to distinguish the gait kinematics of healthy older adults and older adults at risk of falling. Methods: Medline Ovid and Web of Science databases were searched. Forty-six papers were included for full-text review. Data extracted included participant and study design characteristics, fall risk assessment tools, analytical protocols and key results. Results: Among all nonlinear dynamic measures, Lyapunov Exponent (LyE) was most common, followed by entropy and then Fouquet Multipliers (FMs) measures. LyE and Multiscale Entropy (MSE) measures distinguished between older and younger adults and fall-prone versus non-fall-prone older adults. FMs were a less sensitive measure for studying changes in older adults’ gait. Methodology and data analysis procedures for estimating nonlinear dynamic measures differed greatly between studies and are a potential source of variability in cross-study comparisons and in generating reference values. Conclusion: Future studies should develop a standard procedure to apply and estimate LyE and entropy to quantify gait characteristics. This will enable the development of reference values in estimating the risk of falling. Full article
(This article belongs to the Special Issue Sensor Technologies for Gait Analysis)
Show Figures

Figure 1

14 pages, 2437 KiB  
Article
Reducing Slip Risk: A Feasibility Study of Gait Training with Semi-Real-Time Feedback of Foot–Floor Contact Angle
by Christina Zong-Hao Ma, Tian Bao, Christopher A. DiCesare, Isaac Harris, April Chambers, Peter B. Shull, Yong-Ping Zheng, Rakie Cham and Kathleen H. Sienko
Sensors 2022, 22(10), 3641; https://doi.org/10.3390/s22103641 - 10 May 2022
Cited by 3 | Viewed by 1957
Abstract
Slip-induced falls, responsible for approximately 40% of falls, can lead to severe injuries and in extreme cases, death. A large foot–floor contact angle (FFCA) during the heel-strike event has been associated with an increased risk of slip-induced falls. The goals of this feasibility [...] Read more.
Slip-induced falls, responsible for approximately 40% of falls, can lead to severe injuries and in extreme cases, death. A large foot–floor contact angle (FFCA) during the heel-strike event has been associated with an increased risk of slip-induced falls. The goals of this feasibility study were to design and assess a method for detecting FFCA and providing cues to the user to generate a compensatory FFCA response during a future heel-strike event. The long-term goal of this research is to train gait in order to minimize the likelihood of a slip event due to a large FFCA. An inertial measurement unit (IMU) was used to estimate FFCA, and a speaker provided auditory semi-real-time feedback when the FFCA was outside of a 10–20 degree target range following a heel-strike event. In addition to training with the FFCA feedback during a 10-min treadmill training period, the healthy young participants completed pre- and post-training overground walking trials. Results showed that training with FFCA feedback increased FFCA events within the target range by 16% for “high-risk” walkers (i.e., participants that walked with more than 75% of their FFCAs outside the target range) both during feedback treadmill trials and post-training overground trials without feedback, supporting the feasibility of training FFCA using a semi-real-time FFCA feedback system. Full article
(This article belongs to the Special Issue Feedback-Based Balance, Gait Assistive and Rehabilitation Aids)
Show Figures

Figure 1

30 pages, 2298 KiB  
Article
Predicting Fall Counts Using Wearable Sensors: A Novel Digital Biomarker for Parkinson’s Disease
by Barry R. Greene, Isabella Premoli, Killian McManus, Denise McGrath and Brian Caulfield
Sensors 2022, 22(1), 54; https://doi.org/10.3390/s22010054 - 22 Dec 2021
Cited by 10 | Viewed by 4381
Abstract
People with Parkinson’s disease (PD) experience significant impairments to gait and balance; as a result, the rate of falls in people with Parkinson’s disease is much greater than that of the general population. Falls can have a catastrophic impact on quality of life, [...] Read more.
People with Parkinson’s disease (PD) experience significant impairments to gait and balance; as a result, the rate of falls in people with Parkinson’s disease is much greater than that of the general population. Falls can have a catastrophic impact on quality of life, often resulting in serious injury and even death. The number (or rate) of falls is often used as a primary outcome in clinical trials on PD. However, falls data can be unreliable, expensive and time-consuming to collect. We sought to validate and test a novel digital biomarker for PD that uses wearable sensor data obtained during the Timed Up and Go (TUG) test to predict the number of falls that will be experienced by a person with PD. Three datasets, containing a total of 1057 (671 female) participants, including 71 previously diagnosed with PD, were included in the analysis. Two statistical approaches were considered in predicting falls counts: the first based on a previously reported falls risk assessment algorithm, and the second based on elastic net and ensemble regression models. A predictive model for falls counts in PD showed a mean R2 value of 0.43, mean error of 0.42 and a mean correlation of 30% when the results were averaged across two independent sets of PD data. The results also suggest a strong association between falls counts and a previously reported inertial sensor-based falls risk estimate. In addition, significant associations were observed between falls counts and a number of individual gait and mobility parameters. Our preliminary research suggests that the falls counts predicted from the inertial sensor data obtained during a simple walking task have the potential to be developed as a novel digital biomarker for PD, and this deserves further validation in the targeted clinical population. Full article
(This article belongs to the Special Issue Feature Papers in Wearables Section 2021)
Show Figures

Figure 1

7 pages, 234 KiB  
Article
Kinematics or Kinetics: Optimum Measurement of the Vertical Variations of the Center of Mass during Gait Initiation
by Antoine Langeard, Charlotte Mathon, Mourad Ould-Slimane, Leslie Decker, Nicolas Bessot, Antoine Gauthier and Nathalie Chastan
Sensors 2021, 21(23), 7954; https://doi.org/10.3390/s21237954 - 29 Nov 2021
Cited by 2 | Viewed by 2027
Abstract
Background: During gait, the braking index represents postural control, and consequently, the risk of falls. Previous studies based their determination of the braking index during the first step on kinetic methods using force platforms, which are highly variable. This study aimed to investigate [...] Read more.
Background: During gait, the braking index represents postural control, and consequently, the risk of falls. Previous studies based their determination of the braking index during the first step on kinetic methods using force platforms, which are highly variable. This study aimed to investigate whether determining the braking index with a kinematic method, through 3D motion capture, provides more precise results. Methods: Fifty participants (20 to 40 years) performed ten trials in natural and fast gait conditions. Their braking index was estimated from their first step simultaneously using a force platform and VICON motion capture system. The reliability of each braking index acquisition method was assessed by intraclass correlation coefficients, standard error measurements, and the minimal detectable change. Results: Both kinetic and kinematic methods allowed good to excellent reliability and similar minimum detectable changes (10%). Conclusion: Estimating the braking index through a kinetic or a kinematic method was highly reliable. Full article
(This article belongs to the Special Issue Sensor Technology for Fall Prevention)
18 pages, 1759 KiB  
Article
Validity and Sensitivity of an Inertial Measurement Unit-Driven Biomechanical Model of Motor Variability for Gait
by Christopher A. Bailey, Thomas K. Uchida, Julie Nantel and Ryan B. Graham
Sensors 2021, 21(22), 7690; https://doi.org/10.3390/s21227690 - 19 Nov 2021
Cited by 18 | Viewed by 3805
Abstract
Motor variability in gait is frequently linked to fall risk, yet field-based biomechanical joint evaluations are scarce. We evaluated the validity and sensitivity of an inertial measurement unit (IMU)-driven biomechanical model of joint angle variability for gait. Fourteen healthy young adults completed seven-minute [...] Read more.
Motor variability in gait is frequently linked to fall risk, yet field-based biomechanical joint evaluations are scarce. We evaluated the validity and sensitivity of an inertial measurement unit (IMU)-driven biomechanical model of joint angle variability for gait. Fourteen healthy young adults completed seven-minute trials of treadmill gait at several speeds and arm swing amplitudes. Trunk, pelvis, and lower-limb joint kinematics were estimated by IMU- and optoelectronic-based models using OpenSim. We calculated range of motion (ROM), magnitude of variability (meanSD), local dynamic stability (λmax), persistence of ROM fluctuations (DFAα), and regularity (SaEn) of each angle over 200 continuous strides, and evaluated model accuracy (RMSD: root mean square difference), consistency (ICC2,1: intraclass correlation), biases, limits of agreement, and sensitivity to within-participant gait responses (effects of speed and swing). RMSDs of joint angles were 1.7–9.2° (pooled mean of 4.8°), excluding ankle inversion. ICCs were mostly good to excellent in the primary plane of motion for ROM and in all planes for meanSD and λmax, but were poor to moderate for DFAα and SaEn. Modelled speed and swing responses for ROM, meanSD, and λmax were similar. Results suggest that the IMU-driven model is valid and sensitive for field-based assessments of joint angle time series, ROM in the primary plane of motion, magnitude of variability, and local dynamic stability. Full article
(This article belongs to the Special Issue Sensors and Musculoskeletal Dynamics to Evaluate Human Movement)
Show Figures

Figure 1

21 pages, 496 KiB  
Review
Detecting Fall Risk and Frailty in Elders with Inertial Motion Sensors: A Survey of Significant Gait Parameters
by Luisa Ruiz-Ruiz, Antonio R. Jimenez, Guillermo Garcia-Villamil and Fernando Seco
Sensors 2021, 21(20), 6918; https://doi.org/10.3390/s21206918 - 19 Oct 2021
Cited by 32 | Viewed by 5738
Abstract
In the elderly, geriatric problems such as the risk of fall or frailty are a challenge for society. Patients with frailty present difficulties in walking and higher fall risk. The use of sensors for gait analysis allows the detection of objective parameters related [...] Read more.
In the elderly, geriatric problems such as the risk of fall or frailty are a challenge for society. Patients with frailty present difficulties in walking and higher fall risk. The use of sensors for gait analysis allows the detection of objective parameters related to these pathologies and to make an early diagnosis. Inertial Measurement Units (IMUs) are wearables that, due to their accuracy, portability, and low price, are an excellent option to analyze human gait parameters in health-monitoring applications. Many relevant gait parameters (e.g., step time, walking speed) are used to assess motor, or even cognitive, health problems in the elderly, but we perceived that there is not a full consensus on which parameters are the most significant to estimate the risk of fall and the frailty state. In this work, we analyzed the different IMU-based gait parameters proposed in the literature to assess frailty state (robust, prefrail, or frail) or fall risk. The aim was to collect the most significant gait parameters, measured from inertial sensors, able to discriminate between patient groups and to highlight those parameters that are not relevant or for which there is controversy among the examined works. For this purpose, a literature review of the studies published in recent years was carried out; apart from 10 previous relevant reviews using inertial and other sensing technologies, a total of 22 specific studies giving statistical significance values were analyzed. The results showed that the most significant parameters are double-support time, gait speed, stride time, step time, and the number of steps/day or walking percentage/day, for frailty diagnosis. In the case of fall risk detection, parameters related to trunk stability or movements are the most relevant. Although these results are important, the total number of works found was limited and most of them performed the significance statistics on subsets of all possible gait parameters; this fact highlights the need for new frailty studies using a more complete set of gait parameters. Full article
(This article belongs to the Collection Sensors for Human Movement Applications)
Show Figures

Figure 1

17 pages, 2422 KiB  
Article
Wearable Sensor-Based Prediction Model of Timed up and Go Test in Older Adults
by Jungyeon Choi, Sheridan M. Parker, Brian A. Knarr, Yeongjin Gwon and Jong-Hoon Youn
Sensors 2021, 21(20), 6831; https://doi.org/10.3390/s21206831 - 14 Oct 2021
Cited by 15 | Viewed by 2618
Abstract
The Timed Up and Go (TUG) test has been frequently used to assess the risk of falls in older adults because it is an easy, fast, and simple method of examining functional mobility and balance without special equipment. The purpose of this study [...] Read more.
The Timed Up and Go (TUG) test has been frequently used to assess the risk of falls in older adults because it is an easy, fast, and simple method of examining functional mobility and balance without special equipment. The purpose of this study is to develop a model that predicts the TUG test using three-dimensional acceleration data collected from wearable sensors during normal walking. We recruited 37 older adults for an outdoor walking task, and seven inertial measurement unit (IMU)-based sensors were attached to each participant. The elastic net and ridge regression methods were used to reduce gait feature sets and build a predictive model. The proposed predictive model reliably estimated the participants’ TUG scores with a small margin of prediction errors. Although the prediction accuracies with two foot-sensors were slightly better than those of other configurations (e.g., MAPE: foot (0.865 s) > foot and pelvis (0.918 s) > pelvis (0.921 s)), we recommend the use of a single IMU sensor at the pelvis since it would provide wearing comfort while avoiding the disturbance of daily activities. The proposed predictive model can enable clinicians to assess older adults’ fall risks remotely through the evaluation of the TUG score during their daily walking. Full article
(This article belongs to the Special Issue Inertial Sensors for Gait Recognition and Analysis)
Show Figures

Figure 1

17 pages, 3583 KiB  
Article
A Pilot Study to Validate a Wearable Inertial Sensor for Gait Assessment in Older Adults with Falls
by Guillermo García-Villamil, Marta Neira-Álvarez, Elisabet Huertas-Hoyas, Antonio Ramón-Jiménez and Cristina Rodríguez-Sánchez
Sensors 2021, 21(13), 4334; https://doi.org/10.3390/s21134334 - 24 Jun 2021
Cited by 12 | Viewed by 4268
Abstract
The high prevalence of falls and the enormous impact they have on the elderly population is a cause for concern. We aimed to develop a walking-monitor gait pattern (G-STRIDE) for older adults based on a 6-axis inertial measurement (IMU) with the application of [...] Read more.
The high prevalence of falls and the enormous impact they have on the elderly population is a cause for concern. We aimed to develop a walking-monitor gait pattern (G-STRIDE) for older adults based on a 6-axis inertial measurement (IMU) with the application of pedestrian dead reckoning algorithms and tested its structural and clinical validity. A cross-sectional case–control study was conducted with 21 participants (11 fallers and 10 non-fallers). We measured gait using an IMU attached to the foot while participants walked around different grounds (indoor flooring, outdoor floor, asphalt, etc.). The G-STRIDE consisted of a portable inertial device that monitored the gait pattern and a mobile app for telematic clinical analysis. G-STRIDE made it possible to measure gait parameters under normal living conditions when walking without assessing the patient in the outpatient clinic. Moreover, we verified concurrent validity with convectional outcome measures using intraclass correlation coefficients (ICCs) and analyzed the differences between participants. G-STRIDE showed high estimation accuracy for the walking speed of the elderly and good concurrent validity compared to conventional measures (ICC = 0.69; p < 0.000). In conclusion, the developed inertial-based G-STRIDE can accurately classify older people with risk to fall with a significance as high as using traditional but more subjective clinical methods (gait speed, Timed Up and Go Test). Full article
(This article belongs to the Special Issue Systems, Applications and Services for Smart Cities)
Show Figures

Figure 1

Back to TopTop