Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A cell-autonomous role for border-associated macrophages in ApoE4 neurovascular dysfunction and susceptibility to white matter injury

Abstract

Apolipoprotein E4 (ApoE4), the strongest genetic risk factor for sporadic Alzheimer’s disease, is also a risk factor for microvascular pathologies leading to cognitive impairment, particularly subcortical white matter injury. These effects have been attributed to alterations in the regulation of the brain blood supply, but the cellular source of ApoE4 and the underlying mechanisms remain unclear. In mice expressing human ApoE3 or ApoE4, we report that border-associated macrophages (BAMs), myeloid cells closely apposed to neocortical microvessels, are both sources and effectors of ApoE4 mediating the neurovascular dysfunction through reactive oxygen species. ApoE4 in BAMs is solely responsible for the increased susceptibility to oligemic white matter damage in ApoE4 mice and is sufficient to enhance damage in ApoE3 mice. The data unveil a new aspect of BAM pathobiology and highlight a previously unrecognized cell-autonomous role of BAM in the neurovascular dysfunction of ApoE4 with potential therapeutic implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The rApoE4 or lipidated rApoE4 alters functional hyperemia and endothelial vasoactivity.
Fig. 2: BAMs mediate the deleterious cerebrovascular effects of ApoE4 through NOX-derived ROS.
Fig. 3: ApoE4 induces Ca2+ currents in BAMs, leading to ROS production.
Fig. 4: BAM depletion prevents the neurovascular dysfunction induced by ApoE4.
Fig. 5: Deletion of ApoE4 selectively in BAMs restores neurovascular function.
Fig. 6: ApoE4 in BAMs induces CBF dysfunction in ApoE3-TR mice, whereas ApoE3 in BAMs reverses the dysfunction in ApoE4-TR mice.
Fig. 7: In a model of cerebral hypoperfusion ApoE4 in BAMs worsens CBF reduction and white matter damage in ApoE3-TR mice, whereas ApoE3 in BAMs ameliorates the phenotype.
Fig. 8: In a model of cerebral hypoperfusion, ApoE4 in BAMs worsens cognitive deficits in ApoE3-TR mice, whereas ApoE3 in BAMs ameliorates the cognitive phenotype.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of the present study are available within the article and Extended Data Figures. The dataset with GEO accession no. GSE174574 can be accessed at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE174574. Source data are provided with this paper.

Code availability

No customized software codes were used in the paper.

References

  1. Iadecola, C. et al. The neurovasculome: key roles in brain health and cognitive impairment: a scientific statement from the American Heart Association/American Stroke Association. Stroke 54, e251–e271 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Iadecola, C. et al. Vascular cognitive impairment and dementia: JACC Scientific Expert Panel. J. Am. Coll. Cardiol. 73, 3326–3344 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vemuri, P. et al. White matter abnormalities are key components of cerebrovascular disease impacting cognitive decline. Brain Commun. 3, fcab076 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Festa, L. K., Grinspan, J. B. & Jordan-Sciutto, K. L. White matter injury across neurodegenerative disease. Trends Neurosci. 47, 47–57 (2024).

    Article  CAS  PubMed  Google Scholar 

  5. McAleese, K. E. et al. Frontal white matter lesions in Alzheimer’s disease are associated with both small vessel disease and AD-associated cortical pathology. Acta Neuropathol. 142, 937–950 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Phuah, C. L. et al. Association of data-driven white matter hyperintensity spatial signatures with distinct cerebral small vessel disease etiologies. Neurology 99, e2535–e2547 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Soldan, A. et al. White matter hyperintensities and CSF Alzheimer disease biomarkers in preclinical Alzheimer disease. Neurology 94, e950–e960 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Feekes, J. A., Hsu, S. W., Chaloupka, J. C. & Cassell, M. D. Tertiary microvascular territories define lacunar infarcts in the basal ganglia. Ann. Neurol. 58, 18–30 (2005).

    Article  PubMed  Google Scholar 

  9. Vogels, V., Dammers, R., van Bilsen, M. & Volovici, V. Deep cerebral perforators: anatomical distribution and clinical symptoms: an overview. Stroke 52, e660–e674 (2021).

    Article  PubMed  Google Scholar 

  10. Horsburgh, K. et al. Small vessels, dementia and chronic diseases—molecular mechanisms and pathophysiology. Clin. Sci. 132, 851–868 (2018).

    Article  Google Scholar 

  11. Wardlaw, J. M., Smith, C. & Dichgans, M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 18, 684–696 (2019).

    Article  PubMed  Google Scholar 

  12. Bordes, C., Sargurupremraj, M., Mishra, A. & Debette, S. Genetics of common cerebral small vessel disease. Nat. Rev. Neurol. 18, 84–101 (2022).

    Article  PubMed  Google Scholar 

  13. El Husseini, N. et al. Cognitive impairment after ischemic and hemorrhagic stroke: a scientific statement from the American Heart Association/American Stroke Association. Stroke 54, e272–e291 (2023).

    Article  PubMed  Google Scholar 

  14. Pendlebury, S. T. et al. APOE-epsilon4 genotype and dementia before and after transient ischemic attack and stroke: population-based cohort study. Stroke 51, 751–758 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Grinberg, L. T. & Thal, D. R. Vascular pathology in the aged human brain. Acta Neuropathol. 119, 277–290 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lamar, M. et al. APOE genotypes as a risk factor for age-dependent accumulation of cerebrovascular disease in older adults. Alzheimer’s Dement. 15, 258–266 (2019).

    Article  Google Scholar 

  17. Mirza, S. S. et al. APOE epsilon4, white matter hyperintensities, and cognition in Alzheimer and Lewy body dementia. Neurology 93, e1807–e1819 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pinheiro, A. et al. Association of apolipoprotein E varepsilon4 allele with enlarged perivascular spaces. Ann. Neurol. 92, 23–31 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rojas, S. et al. Higher prevalence of cerebral white matter hyperintensities in homozygous APOE-varepsilon4 allele carriers aged 45–75: results from the ALFA study. J. Cereb. Blood Flow Metab. 38, 250–261 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Sudre, C. H. et al. APOE epsilon4 status is associated with white matter hyperintensities volume accumulation rate independent of AD diagnosis. Neurobiol. Aging 53, 67–75 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Salloway, S. et al. Amyloid-related imaging abnormalities in 2 phase 3 studies evaluating aducanumab in patients with early Alzheimer disease. JAMA Neurol. 79, 13–21 (2022).

    Article  PubMed  Google Scholar 

  22. Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 7, 280–292 (2011).

    Article  Google Scholar 

  23. van Dyck, C. H. et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9–21 (2023).

    Article  PubMed  Google Scholar 

  24. Castellani, R. J. et al. Neuropathology of anti-amyloid-beta immunotherapy: a case report. J. Alzheimers Dis. 93, 803–813 (2023).

    Article  PubMed  Google Scholar 

  25. Solopova, E. et al. Fatal iatrogenic cerebral beta-amyloid-related arteritis in a woman treated with lecanemab for Alzheimer’s disease. Nat. Commun. 14, 8220 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hays, C. C. et al. APOE modifies the interaction of entorhinal cerebral blood flow and cortical thickness on memory function in cognitively normal older adults. Neuroimage 202, 116162 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Scarmeas, N. et al. APOE related alterations in cerebral activation even at college age. J. Neurol. Neurosurg. Psychiatry 76, 1440–1444 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tai, L. M. et al. The role of APOE in cerebrovascular dysfunction. Acta Neuropathol. 131, 709–723 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thambisetty, M., Beason-Held, L., An, Y., Kraut, M. A. & Resnick, S. M. APOE epsilon4 genotype and longitudinal changes in cerebral blood flow in normal aging. Arch. Neurol. 67, 93–98 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zlokovic, B. V. Cerebrovascular effects of apolipoprotein E: implications for Alzheimer disease. JAMA Neurol. 70, 440–444 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Montagne, A. et al. APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. Nature 581, 71–76 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamazaki, Y., Zhao, N., Caulfield, T. R., Liu, C. C. & Bu, G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat. Rev. Neurol. 15, 501–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Koizumi, K. et al. Apoepsilon4 disrupts neurovascular regulation and undermines white matter integrity and cognitive function. Nat. Commun. 9, 3816 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Katusic, Z. S., d’Uscio, L. V. & He, T. Emerging roles of endothelial nitric oxide in preservation of cognitive health. Stroke 54, 686–696 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schaeffer, S. & Iadecola, C. Revisiting the neurovascular unit. Nat. Neurosci. 24, 1198–1209 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bell, R. D. et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485, 512–516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Masuda, T., Amann, L. & Prinz, M. Novel insights into the origin and development of CNS macrophage subsets. Clin. Transl. Med. 12, e1096 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Prinz, M., Masuda, T., Wheeler, M. A. & Quintana, F. J. Microglia and central nervous system-associated macrophages—from origin to disease modulation. Annu. Rev. Immunol. 39, 251–277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Faraco, G. et al. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J. Clin. Invest. 126, 4674–4689 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lin, X. et al. Perivascular macrophages mediate microvasospasms after experimental subarachnoid hemorrhage. Stroke 54, 2126–2134 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Park, L. et al. Brain perivascular macrophages initiate the neurovascular dysfunction of Alzheimer Abeta peptides. Circ. Res. 121, 258–269 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Santisteban, M. M. et al. Endothelium-macrophage crosstalk mediates blood–brain barrier dysfunction in hypertension. Hypertension 76, 795–807 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Uekawa, K. et al. Border-associated macrophages promote cerebral amyloid angiopathy and cognitive impairment through vascular oxidative stress. Mol. Neurodegen. 18, 73 (2023).

    Article  CAS  Google Scholar 

  44. Levard, D. et al. Central nervous system-associated macrophages modulate the immune response following stroke in aged mice. Nat. Neurosci. https://doi.org/10.1038/s41593-024-01695-3 (2024).

    Article  PubMed  Google Scholar 

  45. Park, L. et al. Tau induces PSD95-neuronal NOS uncoupling and neurovascular dysfunction independent of neurodegeneration. Nat. Neurosci. 23, 1079–1089 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, C. et al. Selective removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration and decreases synaptic phagocytosis by microglia. Neuron 109, 1657–1674.e1657 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Toda, N., Ayajiki, K. & Okamura, T. Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol. Rev. 61, 62–97 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Chen, Y., Strickland, M. R., Soranno, A. & Holtzman, D. M. Apolipoprotein E: structural insights and links to Alzheimer disease pathogenesis. Neuron 109, 205–221 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Lanfranco, M. F., Ng, C. A. & Rebeck, G. W. ApoE lipidation as a therapeutic target in Alzheimer’s disease. Int. J. Mol. Sci. 21, 6336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bu, G. Receptor-associated protein: a specialized chaperone and antagonist for members of the LDL receptor gene family. Curr. Opin. Lipidol. 9, 149–155 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Deane, R. et al. apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J. Clin. Invest. 118, 4002–4013 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Victor, M. B. et al. Lipid accumulation induced by APOE4 impairs microglial surveillance of neuronal-network activity. Cell Stem Cell 29, 1197–1212.e1198 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kazama, K. et al. Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals. Circ. Res. 95, 1019–1026 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Knock, G. A. NADPH oxidase in the vasculature: expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic. Biol. Med. 145, 385–427 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Park, L. et al. Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc. Natl. Acad. Sci. USA 105, 1347–1352 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gorlach, A., Bertram, K., Hudecova, S. & Krizanova, O. Calcium and ROS: a mutual interplay. Redox Biol. 6, 260–271 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang, G. et al. Nox2, Ca2+, and protein kinase C play a role in angiotensin II-induced free radical production in nucleus tractus solitarius. Hypertension 48, 482–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Park, L., Anrather, J., Girouard, H., Zhou, P. & Iadecola, C. Nox2-derived reactive oxygen species mediate neurovascular dysregulation in the aging mouse brain. J. Cereb. Blood Flow Metab. 27, 1908–1918 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Alata, W., Ye, Y., St-Amour, I., Vandal, M. & Calon, F. Human apolipoprotein E varepsilon4 expression impairs cerebral vascularization and blood-brain barrier function in mice. J. Cereb. Blood Flow Metab. 35, 86–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Jackson, R. J. et al. APOE4 derived from astrocytes leads to blood-brain barrier impairment. Brain 145, 3582–3593 (2022).

    Article  PubMed  Google Scholar 

  61. Main, B. S. et al. Apolipoprotein E4 impairs spontaneous blood brain barrier repair following traumatic brain injury. Mol. Neurodegen. 13, 17 (2018).

    Article  Google Scholar 

  62. Santisteban, M. M. et al. Meningeal interleukin-17-producing T cells mediate cognitive impairment in a mouse model of salt-sensitive hypertension. Nat. Neurosci. 27, 63–77 (2024).

    Article  CAS  PubMed  Google Scholar 

  63. Kockx, M. M. et al. Phagocytosis and macrophage activation associated with hemorrhagic microvessels in human atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 23, 440–446 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Utter, S. et al. Cerebral small vessel disease-induced apolipoprotein E leakage is associated with Alzheimer disease and the accumulation of amyloid beta-protein in perivascular astrocytes. J. Neuropathol. Exp. Neurol. 67, 842–856 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Huynh, T. V. et al. Lack of hepatic apoE does not influence early Abeta deposition: observations from a new APOE knock-in model. Mol. Neurodegen. 14, 37 (2019).

    Article  Google Scholar 

  66. Lambertsen, K. L. et al. Differences in origin of reactive microglia in bone marrow chimeric mouse and rat after transient global ischemia. J. Neuropathol. Exp. Neurol. 70, 481–494 (2011).

    Article  PubMed  Google Scholar 

  67. Shemer, A. et al. Engrafted parenchymal brain macrophages differ from microglia in transcriptome, chromatin landscape and response to challenge. Nat. Commun. 9, 5206 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ajami, B., Bennett, J. L., Krieger, C., McNagny, K. M. & Rossi, F. M. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14, 1142–1149 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Diserbo, M. et al. Blood-brain barrier permeability after gamma whole-body irradiation: an in vivo microdialysis study. Can. J. Physiol. Pharmacol. 80, 670–678 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Herz, J. Apolipoprotein E receptors in the nervous system. Curr. Opin. Lipidol. 20, 190–196 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhao, N., Liu, C. C., Qiao, W. & Bu, G. Apolipoprotein E, receptors, and modulation of Alzheimer’s disease. Biol. Psychiatry 83, 347–357 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Koutsodendris, N. et al. Neuronal APOE4 removal protects against tau-mediated gliosis, neurodegeneration and myelin deficits. Nat. Aging 3, 275–296 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mahan, T. E. et al. Selective reduction of astrocyte apoE3 and apoE4 strongly reduces Abeta accumulation and plaque-related pathology in a mouse model of amyloidosis. Mol. Neurodegen. 17, 13 (2022).

    Article  CAS  Google Scholar 

  74. Yin, Z. et al. APOE4 impairs the microglial response in Alzheimer’s disease by inducing TGFbeta-mediated checkpoints. Nat. Immunol. 24, 1839–1853 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu, C. C. et al. Peripheral apoE4 enhances Alzheimer’s pathology and impairs cognition by compromising cerebrovascular function. Nat. Neurosci. 25, 1020–1033 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yamazaki, Y. et al. Vascular ApoE4 impairs behavior by modulating gliovascular function. Neuron 109, 438–447 e436 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Yamazaki, Y. et al. ApoE (apolipoprotein E) in brain pericytes regulates endothelial function in an isoform-dependent manner by modulating basement membrane components. Arterioscler. Thromb. Vasc. Biol. 40, 128–144 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Ruiz, J. et al. The apoE isoform binding properties of the VLDL receptor reveal marked differences from LRP and the LDL receptor. J. Lipid Res. 46, 1721–1731 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Cummings, J. et al. Lecanemab: appropriate use recommendations. J. Prev. Alzheimers Dis. 10, 362–377 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Percie du Sert, N. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sullivan, P. M. et al. Targeted replacement of the mouse apolipoprotein E gene with the common human APOE3 allele enhances diet-induced hypercholesterolemia and atherosclerosis. J. Biol. Chem. 272, 17972–17980 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Piedrahita, J. A., Zhang, S. H., Hagaman, J. R., Oliver, P. M. & Maeda, N. Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc. Natl Acad. Sci. USA 89, 4471–4475 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zheng, K. et al. Single-cell RNA-seq reveals the transcriptional landscape in ischemic stroke. J. Cereb. Blood Flow Metab. 42, 56–73 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e1821 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Heng, T. S., Painter, M. W. & Immunological Genome Project, C. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019).

    Article  PubMed  Google Scholar 

  89. Tabula Muris, C. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    Article  Google Scholar 

  90. Verghese, P. B. et al. ApoE influences amyloid-beta (Abeta) clearance despite minimal apoE/Abeta association in physiological conditions. Proc. Natl Acad. Sci. USA 110, E1807–E1816 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Uekawa, K. et al. Obligatory role of EP1 receptors in the Increase in cerebral blood flow produced by hypercapnia in the mice. PLoS ONE 11, e0163329 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Garcia-Bonilla, L. et al. Analysis of brain and blood single-cell transcriptomics in acute and subacute phases after experimental stroke. Nat. Immunol. 25, 357–370 (2024).

    Article  CAS  PubMed  Google Scholar 

  93. Kawano, T. et al. Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat. Med. 12, 225–229 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Park, L. et al. The key role of transient receptor potential melastatin-2 channels in amyloid-beta-induced neurovascular dysfunction. Nat. Commun. 5, 5318 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Park, L. et al. tPA deficiency underlies neurovascular coupling dysfunction by amyloid-beta. J. Neurosci. 40, 8160–8173 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Aggleton, J. P. & Pearce, J. M. Neural systems underlying episodic memory: insights from animal research. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1467–1482 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dellu, F., Contarino, A., Simon, H., Koob, G. F. & Gold, L. H. Genetic differences in response to novelty and spatial memory using a two-trial recognition task in mice. Neurobiol. Learn. Mem. 73, 31–48 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Vorhees, C. V. & Williams, M. T. Assessing spatial learning and memory in rodents. ILAR J. 55, 310–332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present study was supported by NIH grant nos. R01-NS126467 (to C.I.), R01-NS097805 (to L.P.) and K22-NS123507 (to M.M.S.) and the BrightFocus Foundation (to A.A.). We thank the Feil Family Foundation for their support.

Author information

Authors and Affiliations

Authors

Contributions

A.A., L.P., S.S., M.M.S., N.C. and Y.H. conducted the experiments and performed the data analysis. G.W. performed the ROS measurement in BAMs ex vivo. N.C. performed the RNAscope and histology experiments and mouse genotyping. P.Z. assisted in mouse breeding. M.S. and D.M.H. provided and validated lipidated ApoE3 and ApoE4 and edited the manuscript. L.P., J.A. and C.I. supervised the research. L.P. and C.I. provided funding and wrote the manuscript.

Corresponding authors

Correspondence to Laibaik Park or Costantino Iadecola.

Ethics declarations

Competing interests

D.M.H. is on the scientific advisory board of C2N diagnostics and has equity. He is also on the scientific advisory board of Denali Therapeutics, Genentech and Cajal Therapeutics and consults for Asteroid. C.I. is on the scientific advisory board of Broadview Ventures. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Effect of rApoE4 in ApoE−/− or CD36−/− mice, and of VLDL receptor antibodies and sex in ApoE4-TR mice.

a. Topical application of rApoE4 (10 µg/ml), but not rApoE3 (10 µg/ml), leads to neurovascular dysfunction in ApoE−/− mice, prevented by CLO. b. Superfusion with VLDL receptor blocking antibodies (anti-VLDLr; 500 nM) fails to prevent the neurovascular dysfunction in ApoE4-TR mice, while RAP superfusion (200 nM) is effective. c. rApoE4 induces neurovascular dysfunction in mice lacking CD36. d. The detrimental neurovascular effects of ApoE4 are not sexually dimorphic. Data were analyzed using one-way or two-way ANOVA with Tukey’s or paired two-tailed t-test and are presented as mean±SEM. N = 5/group.

Source data

Extended Data Fig. 2 Smooth muscle vasoactivity, BBB, Iba1+ cell, or BAM engraftment in the mice studied.

a. The NOX peptide inhibitor gp91ds-tat or its scrambled control sgp91ds-tat does not alter the CBF increase induced by neocortical application of adenosine (smooth muscle vasoactivity) in WT, ApoE3-TR, and ApoE4-TR mice, or in WT mice treated with vehicle, rApoE4 or rApoE3. b. BBB permeability to 3kD dextran was not altered in ApoE4-TR mice, with or without i.c.v. administration of CLO. c. CLO does not reduce the number of Iba1+ cells. d. Smooth muscle vasoactivity in ApoE3- or 4-TR mice with or without CLO treatment. e. Smooth muscle vasoactivity in Mrc1Cre+, Mrc1Cre+/ApoE4fl/fl, or Mrc1Cre+/ApoE3fl/fl treated with tamoxifen alone or with rApoE4 (10 µg/ml). f. Numbers of GFP+, CD206+, and GFP-CD206 double-positive cells in WT, ApoE3-TR, ApoE4-TR mice transplanted with GFP+ BM. g. Smooth muscle vasoactivity in ApoE3, ApoE4, WT BM chimeras. Data were analyzed using one-way or two-way ANOVA with Tukey’s test and are presented as mean±SEM. N = 4-5/group.

Source data

Extended Data Fig. 3 Targeting vector, BAM targeting selectivity, and efficiency of ApoE deletion in Mrc1Cre+ mice crossed with R26tdT, ApoE3fl/fl, or ApoE4fl/fl mice.

a. DNA construct used to generate Mrc1Cre+ mice. Tamoxifen (TAM) treatment of Mrc1Cre+/R26tdT crosses induces recombinase activity in over 80–90% of cells expressing the BAM marker CD206 but not in Iba1+ microglia or CD31+ cerebral endothelial cells. N = 5 mice/group; represented images selected from N = 5 mice/group; 2-3 sections analyzed in neocortex per mouse; unpaired t-test; mean±SEM. b–e. Dual RNAScope in situ hybridization with mRNA probes for Mrc1 (green) and ApoE (magenta), combined with DAPI nuclear staining (blue) and the basement membrane marker laminin (yellow). Representative images showing expression of ApoE in Mrc1+ cells in Mrc1Cre+/ApoE4fl/fl (b) and Mrc1Cre+/ApoE3fl/fl (c) mice treated with vehicle (corn oil). However, in Mrc1Cre+/ApoE4fl/fl (d) and Mrc1Cre+/ApoE3fl/fl (e) mice treated with TAM ApoE levels in Mrc1+ cells are markedly reduced. Scale bars = 20 µm in a–e. f–g. The number of Mrc1+ cells (f) and their Mrc1 puncta (g) is comparable in vehicle- and TAM-treated Mrc1Cre+/ApoE4fl/fl and Mrc1Cre+/ApoE3fl/fl mice. N = 5 mice/group; 1-2 sections/mouse; 5–12 cells analyzed in neocortex per section; two-way ANOVA with Tukey’s test; mean±SEM.

Source data

Extended Data Fig. 4 ApoE in GFAP+ cells and ApoE levels in CSF and plasma in Mrc1Cre+/ApoE4 fl/fl and Mrc1Cre+/ApoE3fl/fl mice.

a-f. Triple or dual RNAScope in situ hybridization with Mrc1 mRNA probes (green in A–B), GFAP (gray in A–B and green in C-D), and ApoE (magenta), DAPI (blue) and the basal lamina marker laminin (gray in C-D). a, c. In vehicle-treated Mrc1Cre+/AoE4fl/fl (A) and Mrc1Cre+/AoE3fl/fl (C) mice, ApoE expression is found both in Mrc1+ (green, A) and GFAP+ (gray in A and green in C) cells. In tamoxifen (TAM)-treated Mrc1Cre+/AoE4fl/fl (B) and Mrc1Cre+/AoE3fl/f (D) mice, ApoE is deleted in Mrc1+ cells (B), but its expression is not affected in GFAP+ cells (B, D). Representative confocal images (A-D) from N = 3–5 mice/group. Scale bars = 20 μm. E–F. The numbers of GFAP+ and ApoE+GFAP+ cells are comparable in vehicle- and TAM-treated Mrc1Cre+/ApoE4fl/fl and Mrc1Cre+/ApoE3fl/fl mice (N = 5 mice/group; 2-3 sections/mice). G–H. ApoE levels in CSF (G) and plasma (H), quantified by MSD, are comparable in vehicle- and tamoxifen-treated Mrc1Cre+/ApoE4fl/fl and Mrc1Cre+/ApoE3fl/fl mice. N = 5/group. Data in E-H were analyzed using two-way ANOVA with Tukey’s test and are presented as mean±SEM. N = 5/group.

Source data

Extended Data Fig. 5 Tamoxifen treatment of Mrc1Cre+/ApoE4fl/fl mice reduces ApoE immunoreactivity in CD206+ cells, but not in CD206− cells.

Quadruple labeling with Dapi (nuclei: blue), CD206 (BAM: green), human ApoE (magenta), and CD31 (endothelium: gray) in WT (A, B) or MrcCre+/ApoE4fl/fl (C, F) mice treated with corn oil (A, C) or tamoxifen (B, D). No ApoE immunoreactivity is observed in WT mice, attesting to the specificity of the human ApoE antibody (A, B). In corn oil-treated MrcCre+/ApoE4fl/fl mice strong ApoE immunoreactivity is observed both in CD206+ and CD206− cells (C). However, tamoxifen treatment of MrcCre+/ApoE4fl/fl mice suppresses ApoE immunoreactivity in CD206+ but not in CD206− cells (D) (Scale bar = 100 µm in A-D). The number of CD206+ cells is comparable in corn oil- or tamoxifen-treated WT or MrcCre+/ApoE4fl/fl mice (E). The number of CD206+ApoE+ cells (F), but not CD206−ApoE+ cells (G), is markedly reduced in tamoxifen-treated MrcCre+/ApoE4fl/fl mice. Data in E-G were analyzed using two-way ANOVA with Tukey’s test and are presented as mean±SEM. N = 5/group.

Source data

Extended Data Fig. 6 Tamoxifen treatment of Mrc1Cre+/ApoE4fl/fl mice does not alter CD206, TMEM119 or Iba-1 immunoreactivity.

Quadruple labeling with Dapi (nuclei: blue), CD206 (BAM: green), human ApoE (magenta), and CD31 (endothelium: gray) in WT (A, B)or MrcCre+/ApoE4fl/fl (C, D) mice treated with corn oil (A,C) or tamoxifen (B, D). Tamoxifen treatment of WT or MrcCre+/ApoE4fl/fl mice does not alter the number and % area of CD206+ (E) TMEM119+ (F) and Iba1+ cells (G). Scale bars = 100 µm in A-D. N = 5/group. Data in E-G were analyzed using two-way ANOVA with Tukey’s test and are presented as mean±SEM. N = 5/group.

Source data

Extended Data Fig. 7 Effect of ApoE4 on neurovascular function in Mrc1Cre+, ApoE4fl/fl, or Mrc1Cre+/ApoE4fl/fl mice and on ROS in Mrc1Cre+ and Mrc1Cre+/ApoE4fl/fl brain slices.

a. In Mrc1Cre+ mouse, neocortical superfusion of rApoE4 attenuates functional hyperemia and endothelial vasoactivity compared to vehicle (corn oil), but it has no effect on smooth muscle vasoactivity. b. In ApoE4fl/fl mice, neocortical superfusion with RAP (200 nM) reverses the neurovascular dysfunction. c. In vehicle-treated Mrc1Cre+/ApoE4fl/fl mice, functional hyperemia and endothelial vasoactivity, but not smooth muscle vasoactivity, are attenuated as found in ApoE4-TR mice (see Fig. 2a, Extended Data Fig. 2a). In A-C, N = 5/group. d–e. Baseline ROS production in BAM, assessed by DHE in cortical brain slices in which BAM were labeled by i.c.v. injection of Alexa Fluor 680-labeled dextran (10 kDa). ROS production is higher in BAM of MrcCre+/ApoE4fl/fl mice compared to Mrc1Cre+ mice (D) and is reduced by treatment with tamoxifen (E); N = 3-4 mice per group, 1-2 brain slices/mouse, and 3–7 cells/slice; two-tailed t-test. Data are expressed as mean±SEM. Scale bar = 50 µm.

Source data

Extended Data Fig. 8 Validation steps of preparing the lipidated recombinant ApoE using POPC and cholesterol.

a. Technical replicates of recombinant ApoE3 or ApoE4 lipidated with POPC and cholesterol on an SDS-PAGE gel. ApoE was lipidated at a 1:50:10 molar ratio of ApoE:POPC:Cholesterol. SDS-PAGE was performed under nonreducing (NR) or reducing (R) conditions. Reducing conditions were performed with the addition of 50 mM DTT. One µg of protein was loaded in each well. SDS-PAGE was run on a 4–12% bis-tris gel with MES buffer. Gel was stained with coomassie blue showing only the presence of the ApoE protein. The y-axis represents molecular weight in kDA. Shown are three independent replicates of the samples. b. Native PAGE of technical replicates of recombinant ApoE3 and ApoE4 lipidated with POPC and cholesterol. ApoE was lipidated at a 1:50:10 molar ratio of ApoE:POPC:Cholesterol. One µg of protein was loaded in each well. High molecular weight ladder (Cytiva, 17044501) was detected using PonceauS staining. ApoE was detected by western blot using an anti-ApoE antibody (Academy Bio-Medical, 50A-G1b). Native gel shows the presence of lipidated ApoE. Shown are three independent replicates of the samples. c. FPLC curve of recombinant ApoE3 and ApoE4 lipidated with POPC and cholesterol. Lipidated ApoE was purified from fractions 15−20 and verified by negative stain TEM. Samples were run on a Superose 6 Increase 10/300 GL column (Cytiva, 29091596) at 0.5 mL/min in 20 mM phosphate buffer, 50 mM NaCl, pH 7.4. The x axis represents elution volume. d. Negative stain TEM of size exclusion chromatography fractions of recombinant ApoE3 and ApoE4 lipidated with POPC and cholesterol. Negative stain TEM imaging shows the presence of discoidal lipoprotein. Micrographs (N = 1/sample) were taken on a JEOL JEM-1400 at 120 kV at 80,000× magnification (0.138889 nm/pixel).

Extended Data Fig. 9 Putative pathway by which ApoE4 in BAM induces vascular oxidative stress, neurovascular dysfunction and enhanced white matter injury.

(1) ApoE4 in BAM acts on ApoE receptors, for example, LRP1 as a candidate receptor, to increase intracellular Ca2+ in BAM in a cell autonomous manner resulting in NOX activation, (2) vascular oxidative stress, and (3) neurovascular dysfunction and reduced cerebral perfusion, which, in turn, leads to (4) enhanced white matter damage and cognitive impairment.

Supplementary information

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anfray, A., Schaeffer, S., Hattori, Y. et al. A cell-autonomous role for border-associated macrophages in ApoE4 neurovascular dysfunction and susceptibility to white matter injury. Nat Neurosci 27, 2138–2151 (2024). https://doi.org/10.1038/s41593-024-01757-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-024-01757-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing